Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2024, Vol. 18 Issue (2) : 336-346    https://doi.org/10.1007/s11707-022-1056-4
Quantitative evaluation of adsorbed and free water in deep shales: a case study on the Wufeng-Longmaxi Formations from the Luzhou area, southern Sichuan Basin, China
Shengxian ZHAO1,2,3, Yongyang LIU3, Shuangfang LU4(), Shuaihu LIU1,2, Wenbiao LI4, Zhiyan ZHOU1,2, Yashuo WANG1,2, Zhaojing SONG1,2()
1. Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, China
2. School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China
3. Shale Gas Research Institute of PetroChina Southwest Oil & Gasfield Company, Chengdu 610051, China
4. Sanya Offshore Oil & Gas Research Institute, Northeast Petroleum University, Sanya 572025, China
 Download: PDF(3803 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Deep shale gas reservoirs commonly contain connate water, which affects the enrichment and migration of shale gas and has attracted the attention of many scholars. It is significant to quantitatively estimate the amounts of adsorbed and free water in shale matrix pores, considering the different impacts of pore water (adsorbed water and free water) on shale gas. In this paper, pore water in six deep shale samples from the Wufeng-Longmaxi Formations in the Luzhou area, southern Sichuan Basin, China, was quantitatively evaluated by saturation-centrifugation experiments. Further, the impact of shale material composition and microstructure on the pore water occurrence was analyzed. The results show that amounts of adsorbed and free water are respectively 1.7967–9.8218 mg/g (mean 6.4501 mg/g) and 9.5511–19.802 mg/g (mean 13.9541 mg/g) under the experimental conditions (30°C, distilled water). The ratio of adsorbed water to total water is 15.83%–42.61% (mean 30.45%). The amounts of adsorbed and free water are related to the pore microstructure and material compositions of shale. The specific surface area of shale controls the amount of adsorbed water, and the pore volume controls the amount of free water; organic pores developed in shale solid asphalt contribute specific surface area and pore volume, and inorganic pores developed in clay mineral contribute pore volume. Therefore, the pores of shale solid asphalt accumulate the adsorbed water and free water, and the pores of clay minerals mainly accumulate the free water.

Keywords deep shales      pore water      adsorbed amount      free amount     
Corresponding Author(s): Shuangfang LU,Zhaojing SONG   
Online First Date: 27 February 2024    Issue Date: 19 July 2024
 Cite this article:   
Shengxian ZHAO,Yongyang LIU,Shuangfang LU, et al. Quantitative evaluation of adsorbed and free water in deep shales: a case study on the Wufeng-Longmaxi Formations from the Luzhou area, southern Sichuan Basin, China[J]. Front. Earth Sci., 2024, 18(2): 336-346.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-022-1056-4
https://academic.hep.com.cn/fesci/EN/Y2024/V18/I2/336
Fig.1  Results of centrifugation experiment. (a) Relationship between movable water amount and centrifugal force; (b) relationship between reciprocal of centrifugal force and reciprocal of movable water amount.
Sample No.Burial depth/mStratumShale constituent content/%
TOCQKPCFePyCl
L206-13978.13Longmaxi2.2534.5/7.514.78.82.931.7
L206-23983.72Longmaxi3.1543.2/9.34.11.75.636.1
L206-34030.69Longmaxi3.439.1/4.74.224.75.022.2
L206-44036.29Longmaxi4.3461.7/3.55.98.24.716.0
L206-54040.52Longmaxi3.9153.2/4.518.78.23.811.6
L206-64047.04Wufeng2.2131.50.41.35.847.61.112.2
Tab.1  Basic information of shale samples
Sample No.Qt/(mg·g?1)Qa/(mg·g?1)Qf /(mg·g?1)ra/%
L206-121.72865.388716.339924.80
L206-228.22628.424219.80229.85
L206-317.35467.39449.960242.61
L206-424.50619.821814.684340.08
L206-518.99175.604813.386929.51
L206-611.34781.79679.551115.83
Tab.2  Calculated results of adsorbed water, free water, and their proportions
Fig.2  Relationships of total water amount with free (a) and adsorbed (b) water amounts.
Fig.3  Vertical distribution of adsorbed and free water amounts.
Fig.4  Material compositions of studied shales. (a) Inorganic constituents; (b) TOC content.
Fig.5  Shale inorganic minerals.
Sample No.Solid bitumen/%Graptolite/%Vitrinite-like/%
L206-148466
L206-263325
L206-358402
L206-472253
L206-580155
L206-668320
Tab.3  Shale organic micro-composition
Fig.6  Development characteristics of solid bitumen. S is the solid bitumen.
Fig.7  Relationships between TOC content and quartz (a) and pyrite (b) contents.
Fig.8  The proportion of pores at different scales in shale.
Fig.9  Correlation between microstructural parameters.
Fig.10  The relationship between shale material composition and microstructure.
Fig.11  Relationship between adsorbed water amount and specific surface area (a), and the relationship between free water amount and pore volume (b).
Fig.12  Relationship between adsorbed water/free water amounts and material composition.
1 M Ahmad, M Haghighi (2013). Water Saturation Evaluation of Murteree and Roseneath Shale Gas Reservoirs, Cooper Basin, Australia Using Wire-line Logs. Focused Ion Beam Milling and Scanning Electron Microscopy
2 R A Berner (1984). Sedimentary pyrite formation: an update.Geochim Cosmochim Acta, 48(4): 605–615
https://doi.org/10.1016/0016-7037(84)90089-9
3 G R L, Chalmers R M Bustin (2007). The organic matter distribution and methane capacity of the lower Cretaceous strata of northeastern British Columbia, Canada.Int J Coal Geol, 70(1–3): 223–239
https://doi.org/10.1016/j.coal.2006.05.001
4 X, Chen L, Chen X, Tan S, Jiang C Wang (2021). Impact of pyrite on shale gas enrichment—a case study of the lower Silurian Longmaxi Formation in southeast Sichuan Basin.Front Earth Sci, 15(2): 332–342
https://doi.org/10.1007/s11707-021-0907-8
5 P, Cheng H, Tian X, Xiao H, Gai T, Li X Wang (2017). Water distribution in overmature organic-rich shales: implications from water adsorption experiments.Energy Fuels, 31(12): 13120–13132
https://doi.org/10.1021/acs.energyfuels.7b01531
6 H, Dehghanpour Q, Lan Y, Saeed H, Fei Z Qi (2013). Spontaneous imbibition of brine and oil in gas shales: effect of water adsorption and resulting microfractures.Energy Fuels, 27(6): 3039–3049
https://doi.org/10.1021/ef4002814
7 D, Dong Z, Shi Q, Guan S, Jiang M, Zhang C, Zhang S, Wang S, Sun R, Yu D, Liu P, Peng S Wang (2018). Progress, challenges and prospects of shale gas exploration in the Wufeng–Longmaxi reservoirs in the Sichuan Basin.Natural Gas Industry B, 5(5): 415–424
https://doi.org/10.1016/j.ngib.2018.04.011
8 C, Fang Z, Huang Q, Wang D, Zheng H Liu (2014). Cause and significance of the ultra-low water saturation in gas-enriched shale reservoir.Nat Gas Geosci, 25(3): 471–476
9 M, Gasparik P, Bertier Y, Gensterblum A, Ghanizadeh B M, Krooss R Littke (2014). Geological controls on the methane storage capacity in organic-rich shales.Int J Coal Geol, 123: 34–51
https://doi.org/10.1016/j.coal.2013.06.010
10 X, Guo D, Hu Y, Li Z, Wei X, Wei Z Liu (2017). Geological factors controlling shale gas enrichment and high production in Fuling shale gas field.Pet Explor Dev, 44(4): 513–523
https://doi.org/10.1016/S1876-3804(17)30060-5
11 F, Hao H, Zou Y Lu (2013). Mechanisms of shale gas storage: implications for shale gas exploration in China.AAPG Bull, 97(8): 1325–1346
https://doi.org/10.1306/02141312091
12 Y, Hu D, Devegowda A, Striolo Phan A T, Van T A, Ho F, Civan R Sigal (2015). Microscopic dynamics of water and hydrocarbon in shale-kerogen pores of potentially mixed wettability.SPE J, 20(01): 112–124
https://doi.org/10.2118/167234-PA
13 L, Jiang H, Sun S, Yang Y, Zhang H Xu (2020). Investigation on multi-scale pore seepage model of shale gas reservoir considering diffusion and slippage effect.Microfluid Nanofluidics, 24(11): 83
https://doi.org/10.1007/s10404-020-02388-6
14 T, Jiang X, Bian H, Wang S, Li C, Jia H, Liu H Sun (2017). Volume fracturing of deep shale gas horizontal wells.Nat Gas Ind B, 4(2): 127–133
https://doi.org/10.1016/j.ngib.2017.07.018
15 F Jiao (2019). Theoretical insights, core technologies and practices concerning “volume development” of shale gas in China.Nat Gas Ind B, 6(6): 525–538
https://doi.org/10.1016/j.ngib.2019.05.001
16 Z, Jin H, Nie Q, Liu J, Zhao T Jiang (2018). Source and seal coupling mechanism for shale gas enrichment in upper Ordovician Wufeng Formation – lower Silurian Longmaxi Formation in Sichuan Basin and its periphery.Mar Pet Geol, 97: 78–93
https://doi.org/10.1016/j.marpetgeo.2018.06.009
17 J W, Larsen M T Aida (2004). Kerogen chemistry 1. Sorption of water by Type II kerogens at room temperature.Energy Fuels, 18(5): 1603–1604
https://doi.org/10.1021/ef049875f
18 J, Li X, Li X, Wang Y, Li K, Wu J, Shi L, Yang D, Feng T, Zhang P Yu (2016). Water distribution characteristic and effect on methane adsorption capacity in shale clay.Int J Coal Geol, 159: 135–154
https://doi.org/10.1016/j.coal.2016.03.012
19 J, Li X, Li K, Wu D, Feng T, Zhang Y Zhang (2017a). Thickness and stability of water film confined inside nanoslits and nanocapillaries of shale and clay.Int J Coal Geol, 179: 253–268
https://doi.org/10.1016/j.coal.2017.06.008
20 J, Li S, Lu J, Cai P, Zhang H, Xue X Zhao (2018). Adsorbed and free oil in lacustrine nanoporous shale: a theoretical model and a case study.Energy Fuels, 32(12): 12247–12258
https://doi.org/10.1021/acs.energyfuels.8b02953
21 J, Li S, Lu L, Xie J, Zhang H, Xue P, Zhang S Tian (2017b). Modeling of hydrocarbon adsorption on continental oil shale: a case study on n-alkane.Fuel, 206: 603–613
https://doi.org/10.1016/j.fuel.2017.06.017
22 J, Li S, Wang S, Lu P, Zhang J, Cai J, Zhao W Li (2019a). Microdistribution and mobility of water in gas shale: a theoretical and experimental study.Mar Pet Geol, 102: 496–507
https://doi.org/10.1016/j.marpetgeo.2019.01.012
23 R, Li K, Wu J, Li J, Xu Z Chen (2019b). Shale gas transport in wedged nanopores with water films.J Nat Gas Sci Eng, 66: 217–232
https://doi.org/10.1016/j.jngse.2019.04.001
24 C, Liang Z, Jiang C, Zhang L, Guo Y, Yang J Li (2014). The shale characteristics and shale gas exploration prospects of the lower Silurian Longmaxi Shale, Sichuan Basin, south China.J Nat Gas Sci Eng, 21: 636–648
https://doi.org/10.1016/j.jngse.2014.09.034
25 S, Long D, Feng F, Li W Du (2018). Prospect analysis of the deep marine shale gas exploration and development in the Sichuan Basin, China.J Nat Gas Geosci, 3(4): 181–189
https://doi.org/10.1016/j.jnggs.2018.11.001
26 R G, Loucks R M, Reed S C, Ruppel D M Jarvie (2009). Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale.J Sediment Res, 79(12): 848–861
https://doi.org/10.2110/jsr.2009.092
27 X, Ma X, Li F, Liang Y, Wan Q, Shi Y, Wang X, Zhang M, Che W, Guo W Guo (2020). Dominating factors on well productivity and development strategies optimization in Weiyuan shale gas play, Sichuan Basin, SW China.Pet Explor Dev, 47(3): 594–602
https://doi.org/10.1016/S1876-3804(20)60076-3
28 E Odusina, C Sondergeld, C Rai (2011). An NMR study on shale wettability. SPE: Calgary, Alberta, Canada; SPE-147371-MS
29 Z, Pan L D, Connell M, Camilleri L Connelly (2010). Effects of matrix moisture on gas diffusion and flow in coal.Fuel, 89(11): 3207–3217
https://doi.org/10.1016/j.fuel.2010.05.038
30 D J K, Ross Bustin R Marc (2009). The importance of shale composition and pore structure upon gas storage potential of shale Gas Reservoirs.Mar Pet Geol, 26(6): 916–927
https://doi.org/10.1016/j.marpetgeo.2008.06.004
31 G, Sang S, Liu D, Elsworth Y, Yang L Fan (2020). Evaluation and modeling of water vapor sorption and transport in nanoporous shale.Int J Coal Geol, 228: 103553
https://doi.org/10.1016/j.coal.2020.103553
32 G, Sang S, Liu R, Zhang D, Elsworth L He (2018). Nanopore characterization of mine roof shales by SANS, nitrogen adsorption, and mercury intrusion: impact on water adsorption/retention behavior.Int J Coal Geol, 200: 173–185
https://doi.org/10.1016/j.coal.2018.11.009
33 G, Sheng Y, Su H, Zhao J Liu (2020). A unified apparent porosity/permeability model of organic porous media: coupling complex pore structure and multi-migration mechanism.Adv Geo-Energy Res, 4(2): 115–125
https://doi.org/10.26804/ager.2020.02.01
34 X, Tang N, Ripepi K A, Valentine C, Keles T, Long A Gonciaruk (2017). Water vapor sorption on Marcellus shale: measurement, modeling and thermodynamic analysis.Fuel, 209(1): 606–614
https://doi.org/10.1016/j.fuel.2017.07.062
35 H, Tian M, Wang S, Liu S, Zhang C Zou (2020). Influence of pore water on the gas storage of organic-rich shale.Energy Fuels, 34(5): 5293–5306
https://doi.org/10.1021/acs.energyfuels.9b03415
36 P, Wang X Li (2006). Thermal-weightlessness method to determine water content and existing form of hydratable clay.Nat Gas Ind, 26(1): 80–83
37 T, Wang S, Tian G, Li M, Sheng W, Ren Q, Liu Y, Tan P Zhang (2019). Experimental study of water vapor adsorption behaviors on shale.Fuel, 248: 168–177
https://doi.org/10.1016/j.fuel.2019.03.029
38 K, Wu Z, Chen X, Li C, Guo M Wei (2016). A Model for multiple transport mechanisms through nanopores of shale gas reservoirs with real gas effect–adsorption-mechanic coupling.Int J Heat Mass Transf, 93: 408–426
https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.003
39 Q, Wu B, Bai Y, Ma J T, Ok K B, Neeves X Yin (2014). Optic imaging of two-phase-flow behavior in 1D nanoscale channels.SPE J, 19(5): 793–802
https://doi.org/10.2118/164549-PA
40 L, Xie S, Lu J, Li Y, Hu P, Zhang J, Chen P Zhang (2015). Experimental investigations of the mineral wettability in shale and its influence factors.Acta Geol Sin, 89(s1): 170–171
https://doi.org/10.1111/1755-6724.12303_9
41 L, Xu H, Wei L, Chen L, Liu Z, Jiang K, Yang X Li (2022). Storing characteristics and main controlling factors of connate water in lower Paleozoic Shales in Southeast Chongqing, China.J Petrol Sci Eng, 215: 110543
https://doi.org/10.1016/j.petrol.2022.110543
42 B, Yang Y, Kang L, You X, Li Q Chen (2016). Measurement of the surface diffusion coefficient for adsorbed gas in the fine mesopores and micropores of shale organic matter.Fuel, 181: 793–804
https://doi.org/10.1016/j.fuel.2016.05.069
43 R, Yang A, Jia S, He Q, Hu M, Sun T, Dong Y, Hou S Zhou (2021). Experimental investigation of water vapor adsorption isotherm on gas-producing Longmaxi Shale: mathematical modeling and implication for water distribution in shale reservoirs.Chem Eng J, 406: 125982
https://doi.org/10.1016/j.cej.2020.125982
44 R, Yang A, Jia Q, Hu X, Guo M Sun (2020). Particle size effect on water vapor sorption measurement of organic shale: one example from Dongyuemiao Member of lower Jurassic Ziliujing Formation in Jiannan area of China.Adv Geo-Energy Res, 4(2): 207–218
https://doi.org/10.26804/ager.2020.02.09
45 J, Yi H, Bao A, Zheng B, Zhang Z, Shu J, Li C Wang (2019). Main factors controlling marine shale gas enrichment and high-yield wells in South China: a case study of the Fuling shale gas field.Mar Pet Geol, 103: 114–125
https://doi.org/10.1016/j.marpetgeo.2019.01.024
46 W, Yuan Z, Pan X, Li Y, Yang C, Zhao L D, Connell S, Li J He (2014). Experimental study and modelling of methane adsorption and diffusion in shale.Fuel, 117: 509–519
https://doi.org/10.1016/j.fuel.2013.09.046
47 Y, Yuan R, Rezaee M, Verrall S Y, Hu J, Zou N Testmanti (2018). Pore characterization and clay bound water assessment in shale with a combination of NMR and low-pressure nitrogen gas adsorption.Int J Coal Geol, 194: 11–21
https://doi.org/10.1016/j.coal.2018.05.003
48 J, Zhang M, Shi D, Wang Z, Tong X, Hou J, Niu X, Li Z, Li P, Zhang Y Huang (2022). Fields and directions for shale gas exploration in China.Nat Gas Ind B, 9(1): 20–32
https://doi.org/10.1016/j.ngib.2021.08.014
49 T, Zhang X, Li Z, Sun D, Feng Y, Miao P, Li Z Zhang (2017). An analytical model for relative permeability in water-wet nanoporous media.Chem Eng Sci, 174: 1–12
https://doi.org/10.1016/j.ces.2017.08.023
50 Y, Zhu G, Chen Y, Liu X, Shi W, Wu C, Luo X, Yang Y, Yang Y Zou (2021). Sequence stratigraphy and lithofacies paleogeographic evolution of Katian Stage – Aeronian Stage in southern Sichuan Basin, SW China.Pet Explor Dev, 48(5): 1126–1138
https://doi.org/10.1016/S1876-3804(21)60096-4
51 C, Zou D, Dong Y, Wang X, Li J, Huang S, Wang Q, Guan C, Zhang H, Wang H, Liu W, Bai F, Liang W, Lin Q, Zhao D, Liu Z, Yang P, Liang S, Sun Z Qiu (2016). Shale gas in China: characteristics, challenges and prospects (II).Pet Explor Dev, 43(2): 182–196
https://doi.org/10.1016/S1876-3804(16)30022-2
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed