Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2023, Vol. 17 Issue (2) : 632-641    https://doi.org/10.1007/s11707-023-1086-6
RESEARCH ARTICLE
Quantitative attribution of Northern Hemisphere temperatures over the past 2000 years
Feng SHI1,2(), Mingfang TING3, Zhengtang GUO1,2,4
1. Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
2. CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
3. Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA
4. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(2175 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Quantitative assessment of natural internal variability and externally forced responses of Northern Hemisphere (NH) temperatures is necessary for understanding and attributing climate change signals during past warm and cold periods. However, it remains a challenge to distinguish the robust internally generated variability from the observed variability. Here, large-ensemble (70 member) simulations, Energy Balance Model simulation, temperature ensemble reconstruction, and three dominant external forcings (volcanic, solar, and greenhouse gas) were combined to estimate the internal variability of NH summer (June–August) temperatures over the past 2000 years (1–2000 CE). Results indicate that the Medieval Climate Anomaly was predominantly attributed to centennial-scale internal oscillation, accounting for an estimated 104% of the warming anomaly. In contrast, the Current Warm Period is influenced mainly by external forcing, contributing up to 90% of the warming anomaly. Internal temperature variability offsets cooling by volcanic eruptions during the Late Antique Little Ice Age. These findings have important implications for the attribution of past climate variability and improvement of future climate projections.

Keywords Common Era      Internal variability      Dark Ages Cold Period      Medieval Climate Anomaly      Current Warm Period     
Corresponding Author(s): Feng SHI   
About author:

Peng Lei and Charity Ngina Mwangi contributed equally to this work.

Issue Date: 31 October 2023
 Cite this article:   
Feng SHI,Mingfang TING,Zhengtang GUO. Quantitative attribution of Northern Hemisphere temperatures over the past 2000 years[J]. Front. Earth Sci., 2023, 17(2): 632-641.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-023-1086-6
https://academic.hep.com.cn/fesci/EN/Y2023/V17/I2/632
Fig.1  Comparison of proxy-based NH summer (June–August) mean temperature anomalies (°C, OIE reconstruction) with previous reconstructions based on tree-ring (Shi15, Shi et al., 2015; and Büntgen21, Büntgen et al., 2021) and multi-proxy (Moberg05, Moberg et al., 2005; and Christiansen12, Christiansen and Ljungqvist, 2012) records. In (a), the gray line represents the median value of OIE ensemble reconstruction; the black line is a 100-yr filtered version with a cut-off frequency of [1/100]; red and blue lines represent cold and warm periods, respectively, based on a 0.5 SD threshold. In (b), the lines of varying colors represent the multidecadal version with cut-off frequency range of [1/100, 1/30]. (c) Linear trends during the pre-industrial period of 1–1850 CE. Anomalies were computed relative to the base period of 1961–1990 CE. The 6th-order bandpass Butterworth filter was used.
Fig.2  Comparison of proxy-based NH summer mean temperature anomalies (°C, OIE reconstruction) (a) with previous reconstructions: Moberg05 (Moberg et al., 2005) (b); Christiansen12 (Christiansen and Ljungqvist, 2012) (c); Shi15 (Shi et al., 2015) (d); and Büntgen21 (Büntgen et al., 2021) (e). (f) Uncertainty ranges of the time spans for the three warm and two cold periods represented by red and blue shading, respectively.
Fig.3  Comparison of proxy-based NH summer mean temperature anomalies (°C) with external forcings for 100-yr filtered versions of LOVECLIM-LCE (black) and CESM-LME (red) simulations (gray shading represents the range of 5th to 95th percentiles of ensemble members; anomalies were computed relative to the base period of 1961–1990 CE) (a); NH volcanic eruption forcing (W·m−2; Toohey and Sigl, 2016) (b); solar activity forcing (W·m−2; Vieira et al., 2011) (c); and CO2 forcing (ppm; Meinshausen et al., 2017) (d). All series were smoothed by a 100-yr 6th-order bandpass Butterworth filter; r2 values refer to correlation between simulated temperatures and external forcing; Neff denotes effective degrees of freedom.
Fig.4  Comparison of NH summer mean temperature anomalies (black line; °C) (a) with three forced-response estimates (°C) over a multidecadal-scale for the ensemble mean scenario of the LOVECLIM-LCE simulations (b), the EBM simulation (c), and the linear combination of the ensemble mean scenario of LOVECLIM-LCE simulations with external forcings (d). Gray shading represents the range of 5th to 95th percentiles of ensemble members. The r2 values refer to correlation between the proxy reconstruction and the three estimates; Neff denotes effective degrees of freedom. All series were smoothed by a 30-yr 6th-order bandpass Butterworth filter.
Fig.5  Comparison of NH summer mean temperature anomalies (black line; °C) (a) with three forced-response estimates (°C) over a centennial-scale for the ensemble mean scenario of the LOVECLIM-LCE simulations (b); the EBM simulation (c); and the linear combination of the ensemble mean scenario of the LOVECLIM-LCE simulations with the external forcings (d). See Fig. 4 for other details.
Fig.6  Comparison of centennial components of internal variability (blue line; °C), forced responses (red line; °C), and OIE reconstruction (shading; °C) of NH temperature anomalies over the last two millennia, showcased in three forced-response estimates (°C) for the ensemble mean of LOVECLIM-LCE simulations (a), the EBM simulation (b), and the linear combination of the ensemble mean scenario of the LOVECLIM-LCE simulations and external forcings (c). Anomalies were computed relative to the base period of 1961–1990 CE. The three warm and two cold periods are indicated by red and blue shading, respectively.
Fig.7  Contributions (explained variance) of unforced and forced variability of NH temperature anomalies over the last two millennia to NH warm/cold periods, based on the linear-combination estimate.
Fig.8  Comparison of unforced variability of NH temperature anomalies over the last millennium (black line; °C) with the oceanic circulations for the AMOC index (red line; Sun et al., 2015) (a) and the AMO index (red line, °C; Wang et al., 2017) (b). All series were smoothed by a 30-year 6th-order bandpass Butterworth filter; r2 values refer to correlation between temperature reconstruction and the two circulation indices; Neff denotes effective degrees of freedom.
1 C M, Ammann F, Joos D S, Schimel B L, Otto-Bliesner R A Tomas (2007). Solar influence on climate during the past millennium: results from transient simulations with the NCAR Climate System Model.Proc Natl Acad Sci USA, 104(10): 3713–3718
https://doi.org/10.1073/pnas.0605064103
2 O, Bothe M, Evans L F, Donado E G, Bustamante J, Gergis J F, Gonzalez-Rouco H, Goosse G C, Hegerl A, Hind J H, Jungclaus D S, Kaufman F, Lehner N P, Mckay A, Moberg C C, Raible A P, Schurer F, Shi J E, Smerdon Gunten L, von S, Wagner E, Warren M, Widmann P, Yiou E Zorita (2015). Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium.Clim Past, 11(12): 1673–1699
https://doi.org/10.5194/cp-11-1673-2015
3 U, Büntgen K, Allen K J, Anchukaitis D, Arseneault É, Boucher A, Bräuning S, Chatterjee P, Cherubini O V, Churakova C, Corona F, Gennaretti J, Grießinger S, Guillet J, Guiot B, Gunnarson S, Helama P, Hochreuther M K, Hughes P, Huybers A V, Kirdyanov P J, Krusic J, Ludescher W J H, Meier V S, Myglan K, Nicolussi C, Oppenheimer F, Reinig M W, Salzer K, Seftigen A R, Stine M, Stoffel George S, St. E, Tejedor A, Trevino V, Trouet J, Wang R, Wilson B, Yang G, Xu J Esper (2021). The influence of decision-making in tree ring-based climate reconstructions.Nat Commun, 12(1): 3411
https://doi.org/10.1038/s41467-021-23627-6
4 U, Büntgen V S, Myglan F C, Ljungqvist M, McCormick Cosmo N, Di M, Sigl J, Jungclaus S, Wagner P J, Krusic J, Esper J O, Kaplan Vaan M A C, de J, Luterbacher L, Wacker W, Tegel A V Kirdyanov (2016). Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD.Nat Geosci, 9(3): 231–236
https://doi.org/10.1038/ngeo2652
5 B, Christiansen F C Ljungqvist (2012). The extra-tropical Northern Hemisphere temperature in the last two millennia: reconstructions of low-frequency variability.Clim Past, 8(2): 765–786
https://doi.org/10.5194/cp-8-765-2012
6 B, Christiansen F C Ljungqvist (2017). Challenges and perspectives for large-scale temperature reconstructions of the past two millennia.Rev Geophys, 55(1): 40–96
https://doi.org/10.1002/2016RG000521
7 T J Crowley (2000). Causes of climate change over the past 1000 years.Science, 289(5477): 270–277
https://doi.org/10.1126/science.289.5477.270
8 C, Deser F, Lehner K B, Rodgers T, Ault T L, Delworth P N, DiNezio A, Fiore C, Frankignoul J C, Fyfe D E, Horton J E, Kay R, Knutti N S, Lovenduski J, Marotzke K A, McKinnon S, Minobe J, Randerson J A, Screen I R, Simpson M F Ting (2020). Insights from Earth system model initial-condition large ensembles and future prospects.Nat Clim Chang, 10(4): 277–286
https://doi.org/10.1038/s41558-020-0731-2
9 C F, Dormann J, Elith S, Bacher C M, Buchmann G, Carl G, Carré J R G, Marquéz B, Gruber B, Lafourcade P J, Leitão T, Münkemüller C J, McClean P E, Osborne B, Reineking B, Schröder A K, Skidmore D, Zurell S Lautenbach (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance.Ecography, 36(1): 27–46
https://doi.org/10.1111/j.1600-0587.2012.07348.x
10 J, Esper E R, Cook F H Schweingruber (2002). Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability.Science, 295(5563): 2250–2253
https://doi.org/10.1126/science.1066208
11 J, Esper D C, Frank M, Timonen E, Zorita R J S, Wilson J, Luterbacher S, Holzkamper N, Fischer S, Wagner D, Nievergelt A, Verstege U Büntgen (2012). Orbital forcing of tree-ring data.Nat Clim Chang, 2(12): 862–866
https://doi.org/10.1038/nclimate1589
12 S N, Feng X Q, Liu F, Shi X, Mao Y, Li J P Wang (2022). Humidity changes and possible forcing mechanisms over the last millennium in arid Central Asia.Clim Past, 18(5): 975–988
https://doi.org/10.5194/cp-18-975-2022
13 H Fritts (1976). Tree Rings and Climate. New Jersey: Blackburn Press
14 H, Goosse V, Brovkin T, Fichefet R, Haarsma P, Huybrechts J, Jongma A, Mouchet F M, Selten P Y, Barriat J M, Campin E, Deleersnijder E, Driesschaert H, Goelzer I, Janssens M F, Loutre Maqueda M A, Morales T, Opsteegh P P, Mathieu G, Munhoven E J, Pettersson H, Renssen D M, Roche M, Schaeffer B, Tartinville A, Timmermann S L Weber (2010). Description of the Earth system model of intermediate complexity LOVECLIM version 1.2.Geosci Model Dev, 3(2): 603–633
https://doi.org/10.5194/gmd-3-603-2010
15 H, Goosse H, Renssen A, Timmermann R S Bradley (2005). Internal and forced climate variability during the last millennium: a model-data comparison using ensemble simulations.Quat Sci Rev, 24(12): 1345–1360
https://doi.org/10.1016/j.quascirev.2004.12.009
16 Z, Hausfather K, Marvel G A, Schmidt J W, Nielsen-Gammon M Zelinka (2022). Climate simulations: recognize the ‘hot model’ problem.Nature, 605(7908): 26–29
https://doi.org/10.1038/d41586-022-01192-2
17 E, Hawkins R T Sutton (2009). The potential to narrow uncertainty in regional climate predictions.Bull Am Meteorol Soc, 90(8): 1095–1108
https://doi.org/10.1175/2009BAMS2607.1
18 S, Helama P D, Jones K R Briffa (2017). Dark ages cold period: a literature review and directions for future research.Holocene, 27(10): 1600–1606
https://doi.org/10.1177/0959683617693898
19 J R Knight, R J Allan, C K Folland, M Vellinga, M E Mann (2005). A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett, 32(20): L20708
https://doi.org/10.1029/2005GL024233
20 M F, Knudsen B H, Jacobsen M S, Seidenkrantz J Olsen (2014). Evidence for external forcing of the Atlantic Multidecadal Oscillation since termination of the Little Ice Age.Nat Commun, 5(1): 3323
https://doi.org/10.1038/ncomms4323
21 Y, Li H J Yang (2022). A theory for self-sustained multicentennial oscillation of the Atlantic Meridional Overturning Circulation.J Clim, 35(18): 5883–5896
https://doi.org/10.1175/JCLI-D-21-0685.1
22 F C Ljungqvist (2010). A new reconstruction of temperature variability in the extra-tropical Northern Hemisphere during the last two millennia. Geogr Ann, Ser A, 92(3): 339–351
https://doi.org/10.1111/j.1468-0459.2010.00399.x
23 M E Mann (2011). On long range dependence in global surface temperature series. Clim Change, 107(3–4): 267–276
https://doi.org/10.1007/s10584-010-9998-z
24 M E Mann (2007). Climate over the past two millennia.Annu Rev Earth Planet Sci, 35(1): 111–136
https://doi.org/10.1146/annurev.earth.35.031306.140042
25 M E, Mann R S, Bradley M K Hughes (1999). Northern hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations.Geophys Res Lett, 26(6): 759–762
https://doi.org/10.1029/1999GL900070
26 M E, Mann B A, Steinman D J, Brouillette A, Fernandez S K Miller (2022). On the estimation of internal climate variability during the preindustrial past millennium.Geophys Res Lett, 49(2): e2021GL096596
27 M E, Mann B A, Steinman S K Miller (2014). On forced temperature changes, internal variability and the AMO.Geophys Res Lett, 41(9): 3211–3219
https://doi.org/10.1002/2014GL059233
28 M E, Mann Z, Zhang M K, Hughes R S, Bradley S K, Miller S, Rutherford F Ni (2008). Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia.Proc Natl Acad Sci USA, 105(36): 13252–13257
https://doi.org/10.1073/pnas.0805721105
29 J, Marotzke P M Forster (2015). Forcing, feedback and internal variability in global temperature trends.Nature, 517(7536): 565–570
https://doi.org/10.1038/nature14117
30 V Masson-Delmotte, M Schulz, A Abe-Ouchi, J Beer, A Ganopolski, J Rouco, E Jansen, K Lambeck, J Luterbacher, T Naish (2013). Information from Paleoclimate Archives. Climate Change 2013: The Physical Science Basis. In: Stocker TF, et al. eds. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press
31 B B, McShane A J Wyner (2011). A statistical analysis of multiple temperature proxies: are reconstructions of surface temperatures over the last 1000 years reliable?.Ann Appl Stat, 5(1): 5–44
32 G A, Meehl C, Covey B, McAvaney M, Latif R J Stouffer (2005). Overview of the coupled model intercomparison project.Bull Am Meteorol Soc, 86(1): 89–93
https://doi.org/10.1175/BAMS-86-1-95
33 M, Meinshausen E, Vogel A, Nauels K, Lorbacher N, Meinshausen D M, Etheridge P J, Fraser S A, Montzka P J, Rayner C M, Trudinger P B, Krummel U, Beyerle J G, Canadell J S, Daniel I G, Enting R M, Law C R, Lunder S, O’Doherty R G, Prinn S, Reimann M, Rubino G J M, Velders M K, Vollmer R H J, Wang R Weiss (2017). Historical greenhouse gas concentrations for climate modelling (CMIP6).Geosci Model Dev, 10(5): 2057–2116
https://doi.org/10.5194/gmd-10-2057-2017
34 S, Milinski N, Maher D Olonscheck (2020). How large does a large ensemble need to be?.Earth Syst Dyn, 11(4): 885–901
https://doi.org/10.5194/esd-11-885-2020
35 S K, Min S, Legutke A, Hense W T Kwon (2005). Internal variability in a 1000-yr control simulation with the coupled climate model ECHO-G — I. Near-surface temperature, precipitation and mean sea level pressure. Tellus A.Dynamic Meteor Oceanogr, 57(4): 605–621
36 A, Moberg D M, Sonechkin K, Holmgren N M, Datsenko W, Karlén S E Lauritzen (2005). Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data.Nature, 433(7026): 613–617
https://doi.org/10.1038/nature03265
37 R, Neukom L A, Barboza M P, Erb F, Shi J, Emile-Geay M N, Evans J, Franke D S, Kaufman L, Lücke K, Rehfeld A, Schurer F, Zhu S, Brönnimann G J, Hakim B J, Henley F C, Ljungqvist N, McKay V, Valler Gunten L, von 2k Consortium PAGES (2019a). Consistent multi-decadal variability in global temperature reconstructions and simulations over the Common Era.Nat Geosci, 12(8): 643–649
https://doi.org/10.1038/s41561-019-0400-0
38 R, Neukom N, Steiger J J, Gómez-Navarro J, Wang J P Werner (2019b). No evidence for globally coherent warm and cold periods over the preindustrial Common Era.Nature, 571(7766): 550–554
https://doi.org/10.1038/s41586-019-1401-2
39 G R, North R F, Cahalan J A Jr Coakley (1981). Energy balance climate models.Rev Geophys, 19(1): 91–121
https://doi.org/10.1029/RG019i001p00091
40 B L, Otto-Bliesner E C, Brady J T, Fasullo A, Jahn L, Landrum S, Stevenson N, Rosenbloom A, Mai G Strand (2016). Climate variability and change since 850 C.E.: an ensemble approach with the Community Earth System Model (CESM).Bull Am Meteorol Soc, 97(5): 735–754
https://doi.org/10.1175/BAMS-D-14-00233.1
41 Consortium (Emile-Geay J, PAGES2k N P, McKay D S, Kaufman Gunten L, von J H, Wang K J, Anchukaitis N J, Abram J A, Addison M A J, Curran M N, Evans B J, Henley Z X, Hao B, Martrat H V, McGregor R, Neukom G T, Pederson B, Stenni K, Thirumalai J P, Werner C X, Xu D V, Divine B C, Dixon J, Gergis I A, Mundo T, Nakatsuka S J, Phipps C C, Routson E J, Steig J E, Tierney J J, Tyler K J, Allen N A N, Bertler J, Björklund B M, Chase M T, Chen E R, Cook Jong R, de K L, DeLong D A, Dixon A A, Ekaykin V, Ersek H L, Filipsson P, Francus M B, Freund M, Frezzotti N P, Gaire K, Gajewski Q S, Ge H, Goosse A, Gornostaeva M, Grosjean K, Horiuchi A, Hormes K, Husum E, Isaksson S, Kandasamy K, Kawamura K H, Kilbourne N, Koç G, Leduc H W, Linderholm A M, Lorrey V, Mikhalenko P G, Mortyn H, Motoyama A D, Moy R, Mulvaney P M, Munz D J, Nash H, Oerter T, Opel A J, Orsi D V, Ovchinnikov T J, Porter H A, Roop C, Saenger M, Sano D, Sauchyn K M, Saunders M S, Seidenkrantz M, Severi X M, Shao M A, Sicre M, Sigl K, Sinclair George S, St Jacques J M, St M, Thamban Thapa U, Kuwar E R, Thomas C S M, Turney R, Uemura A E, Viau D O, Vladimirova E R, Wahl J W C, White Z C, Yu J Zinke (2017). A global multiproxy database for temperature reconstructions of the Common Era. Scientific Data, 4: 170088
https://doi.org/10.1038/sdata.2017.88
42 K M Ramachandran, C P Tsokos (2014). Mathematical Statistics with Applications in R. London: Elsevier,
43 A P, Schurer G C, Hegerl M E, Mann S F B, Tett S J Phipps (2013). Separating forced from chaotic climate variability over the past millennium.J Clim, 26(18): 6954–6973
https://doi.org/10.1175/JCLI-D-12-00826.1
44 A P, Schurer S F B, Tett G C Hegerl (2014). Small influence of solar variability on climate over the past millennium.Nat Geosci, 7(2): 104–108
https://doi.org/10.1038/ngeo2040
45 F, Shi H Y, Lu Z T, Guo Q Z, Yin H B, Wu C X, Xu E L, Zhang J F, Shi J, Cheng X Y, Xiao C Zhao (2021). The position of the Current Warm Period in the context of the past 22000 years of summer climate in China.Geophys Res Lett, 48(5): e2020GL091940
46 F, Shi C, Sun A, Guion Q Z, Yin S, Zhao T, Liu Z T Guo (2022). Roman Warm Period and Late Antique Little Ice Age in an Earth System Model Large Ensemble.J Geophys Res: Atmosph, 127(16): e2021JD035832
https://doi.org/10.1029/2021JD035832
47 F Shi, B Yang, J Feng, J P Li, F M Yang, Z T Guo (2015). Reconstruction of the Northern Hemisphere annual temperature change over the Common Era derived from tree rings. Quatern Sci, 35(5): 1051–1063 (in Chinese)
48 B A, Steinman M E, Mann S K Miller (2015). Climate change. Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures.Science, 347(6225): 988–991
https://doi.org/10.1126/science.1257856
49 L Suarez-Gutierrez, S Milinski, N Maher (2021). Exploiting large ensembles for a better yet simpler climate model evaluation. Clim Dyn, 57(9–10): 2557–2580
https://doi.org/10.1007/s00382-021-05821-w
50 C Sun, J P Li, F F Jin (2015). A delayed oscillator model for the quasi-periodic multidecadal variability of the NAO. Clim Dyn, 45(7–8): 2083–2099
https://doi.org/10.1007/s00382-014-2459-z
51 C, Sun J, Zhang X, Li C M, Shi Z Q, Gong R Q, Ding F, Xie P X Lou (2021). Atlantic Meridional Overturning Circulation reconstructions and instrumentally observed multidecadal climate variability: a comparison of indicators.Int J Climatol, 41(1): 763–778
https://doi.org/10.1002/joc.6695
52 C Tebaldi, R Knutti (2007). The use of the multi-model ensemble in probabilistic climate projections. Philosoph Transact Royal Society A: Mathe, Phys Eng Sci, 365(1857): 2053–2075
53 M Toohey, M Sigl (2016). Ice core-inferred volcanic stratospheric sulfur injection from 500 BCE to 1900 CE. In: World Data Center for Climate (WDCC) at DKRZ
https://doi.org/10.1594/WDCC/eVolv2k_v1
54 M, Toohey M Sigl (2017). Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE.Earth Syst Sci Data, 9(2): 809–831
https://doi.org/10.5194/essd-9-809-2017
55 L E A, Vieira S K, Solanki N A, Krivova I Usoskin (2011). Evolution of the solar irradiance during the Holocene.Astron Astrophys, 531(A6): A6
https://doi.org/10.1051/0004-6361/201015843
56 J L, Wang B, Yang F C, Ljungqvist J, Luterbacher T J, Osborn K R, Briffa E Zorita (2017). Internal and external forcing of multidecadal Atlantic climate variability over the past 1200 years.Nat Geosci, 10(7): 512–517
https://doi.org/10.1038/ngeo2962
57 Z Y, Wang J L, Wang J, Jia X Y, Shi S S, Wang C H Pan (2022). Detection and attribution of summer temperature changes in China during the last millennium.Int J Climatol, 42(12): 6384–6402
https://doi.org/10.1002/joc.7595
58 X Y, Wei R Zhang (2022). A simple conceptual model for the self-sustained multidecadal AMOC variability.Geophys Res Lett, 49(14): e2022GL099800
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed