Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2014, Vol. 8 Issue (4) : 524-539    https://doi.org/10.1007/s11707-014-0438-7
RESEARCH ARTICLE
SolidEarth: a new Digital Earth system for the modeling and visualization of the whole Earth space
Liangfeng ZHU1,*(),Jianzhong SUN2,Changling LI3,Bing ZHANG1,4
1. Key Laboratory of Geographic Information Science for Ministry of Education, East China Normal University, Shanghai 200241, China.
2. Center for Earth System Science, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China.
3. School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, China.
4. College of Geomatics Engineering, Nanjing University of Technology, Nanjing 211816, China.
 Download: PDF(7680 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Although many of the first-generation Digital Earth systems have proven to be quite useful for the modeling and visualization of geospatial objects relevant to the Earth’s surface and near-surface, they were not designed for the purpose of modeling and application in geological or atmospheric space. There is a pressing need for a new Digital Earth system that can process geospatial information with full dimensionality. In this paper, we present a new Digital Earth system, termed SolidEarth, as an alternative virtual globe for the modeling and visualization of the whole Earth space including its surface, interior, and exterior space. SolidEarth consists of four functional components: modeling in geographical space, modeling in geological space, modeling in atmospheric space, and, integrated visualization and analysis. SolidEarth has a comprehensive treatment to the third spatial dimension and a series of sophisticated 3D spatial analysis functions. Therefore, it is well-suited to the volumetric representation and visual analysis of the inner/outer spheres in Earth space. SolidEarth can be used in a number of fields such as geoscience research and education, the construction of Digital Earth applications, and other professional practices of Earth science.

Keywords Digital Earth      Earth space      full dimensionality      visualization     
Corresponding Author(s): Liangfeng ZHU   
Online First Date: 06 June 2014    Issue Date: 13 January 2015
 Cite this article:   
Liangfeng ZHU,Jianzhong SUN,Changling LI, et al. SolidEarth: a new Digital Earth system for the modeling and visualization of the whole Earth space[J]. Front. Earth Sci., 2014, 8(4): 524-539.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-014-0438-7
https://academic.hep.com.cn/fesci/EN/Y2014/V8/I4/524
Fig.1  Classification of geospatial information and geospatial data model.
Fig.2  Geocellular voxel structure applied to 3D property models. (a) Geocellular employs a normal latitude-longitude grid as the basis for the spatial partition in the lateral direction. (b) The spatial partition along the vertical direction is deformable according to the actual data fields or the controlling interface of geospatial objects.
Fig.3  Modeling flow of geospatial property elements in 3D.
Fig.4  Network transmission and self-adaptive visualization of 3D geospatial information.
Fig.5  User interface of client side in SolidEarth.
Fig.6  Integration and visualization of geographic information relevant to the Earth’s surface and near-surface in SolidEarth. This figure illustrates the integration and display of remote-sensing images, DEMs, and maps at the same view. Note that at the upper-left part of the screen only the terrain model is visible, whilst at other parts remote-sensing images and maps are draped over the underlying rugged terrain.
Fig.7  Integration and visualization of geological structure model and geographic objects. This figure illustrates the integration, display, and analysis of remote-sensing images, DEMs, ground objects, and 3D solid models of geological structures generated from boreholes, at one view.
Fig.8  Example of modeling and visualization for 3D geospatial property elements in SolidEarth. This figure illustrates an overview of the 3D spatial distribution of the compressional wave velocity (Vp) field within the interior space of the Earth.
Fig.9  Virtual roaming and spatial query of the property information within the interior space of the Earth. In SolidEarth, users can perform such operations as virtual roaming by swooping over geological space, spotting, and measurement of property value in any spatial position by clicking 3D solid models.
Fig.10  Example of modeling and visualization in atmospheric space. In this figure, the geometrical boundaries for individual sublayers and the temperature field model in the atmosphere are integrated and visualized simultaneously. Note that the opacity for each sublayer in the atmosphere is increased from the interstellar space to the Earth’s space.
Fig.11  Integration, visualization, and analysis of geospatial objects in geographical, geological, and atmospheric space. In this figure, the stratified boundaries between different atmospheric sublayers, the temperature field model within atmospheric space, remote-sensing images of the Earth’s surface, and a 3D structural model of the interior Earth are integrated, displayed, and analyzed at the same view.
1 Bailey J E, Chen A (2011). The role of Virtual Globes in geoscience. Comput Geosci, 37(1): 1–2
https://doi.org/10.1016/j.cageo.2010.06.001
2 Bernardin T, Cowgill E, Kreylos O, Bowles C, Gold P, Hamann B, Kellogg L (2011). Crusta: a new virtual globe for real-time visualization of sub-meter digital topography at planetary scales. Comput Geosci, 37(1): 75–85
https://doi.org/10.1016/j.cageo.2010.02.006
3 Bilitza D (2001). International Reference Ionosphere 2000. Radio Sci, 36(2): 261–275
https://doi.org/10.1029/2000RS002432
4 Butler D (2006). Virtual globes: the web-wide world. Nature, 439(7078): 776–778
https://doi.org/10.1038/439776a pmid: 16482123
5 Calcagno P, Chilès J P, Courrioux G, Guillen A (2008). Geological modelling from field data and geological knowledge: part I. Modelling method coupling 3D potential-field interpolation and geological rules. Phys Earth Planet Inter, 171(1–4): 147–157
https://doi.org/10.1016/j.pepi.2008.06.013
6 Craglia M, de Bie K, Jackson D, Pesaresi M, Remetey-Fül?pp G, Wang C, Annoni A, Bian L, Campbell F, Ehlers M, van Genderen J, Goodchild M, Guo H, Lewis A, Simpson R, Skidmore A, Woodgate P (2012). Digital Earth 2020: towards the vision for the next decade. Int J Digital Earth, 5(1): 4–21
https://doi.org/10.1080/17538947.2011.638500
7 Craglia M, Goodchild M F, Annoni A, Camara G, Gould M, Kuhn W, Mark D, Masser I, Maguire D, Liang S, Parsons E (2008). Next-generation Digital Earth: a position paper from the Vespucci Initiative for the advancement of Geographic Information Science. Int J Spatial Data Infrastructures Res, 3: 146–167
8 de Floriani L, Falcidieno B (1988). A hierarchical boundary model for solid object representation. ACM Trans Graph, 7(1): 42–60
https://doi.org/10.1145/42188.46164
9 De Paor D G, Whitmeyer S J (2011). Geological and geophysical modeling on virtual globes using KML, COLLADA, and Javascript. Comput Geosci, 37(1): 100–110
https://doi.org/10.1016/j.cageo.2010.05.003
10 Denver L F, Phillips D C (1990). Stratigraphic geocellular modeling. Geobyte, 5: 45–47
11 Dong S, Li T, Gao R, Hou H, Li Q, Li Y, Zhang S, Keller G R, Liu M (2011). A multidisciplinary Earth science research program in China. Eos Trans AGU, 92(38): 313–314
https://doi.org/10.1029/2011EO380001
12 Dziewonski A M, Anderson D L (1981). Preliminary reference Earth model. Phys Earth Planet Inter, 25(4): 297–356
https://doi.org/10.1016/0031-9201(81)90046-7
13 Fowler C M R (2005). The Solid Earth: An Introduction to Global Geophysics (2nd ed). Cambridge: Cambridge University Press, 685
14 Goodchild M F (2008). The use cases of digital earth. Int J Digital Earth, 1(1): 31–42
https://doi.org/10.1080/17538940701782528
15 Goodchild M F (2012). Discrete global grids: retrospect and prospect. Geography and Geo-Information Science, 28(1): 1–6
16 Goodchild M F, Guo H, Annoni A, Bian L, de Bie K, Campbell F, Craglia M, Ehlers M, van Genderen J, Jackson D, Lewis A J, Pesaresi M, Remetey-Fül?pp G, Simpson R, Skidmore A, Wang C, Woodgate P (2012). Next-generation Digital Earth. Proc Natl Acad Sci USA, 109(28): 11088–11094
https://doi.org/10.1073/pnas.1202383109 pmid: 22723346
17 Gore A (1999). The Digital Earth: Understanding our planet in the 21st Century. Photogramm Eng Remote Sensing, 65: 528–530
18 Guillen A, Calcagno P, Courrioux G, Joly A, Ledru P (2008). Geological modelling from field data and geological knowledge: part II. Modelling validation using gravity and magnetic data inversion. Phys Earth Planet Inter, 171(1–4): 158–169
https://doi.org/10.1016/j.pepi.2008.06.014
19 Guo H (2012). Digital Earth: a new challenge and new vision. Int J Digital Earth, 5(1): 1–3
https://doi.org/10.1080/17538947.2012.646005
20 Hack R, Orlic B, Ozmutlu S, Zhu S, Rengers N (2006). Three and more dimensional modeling in geo-engineering. Bull Eng Geol Environ, 65(2): 143–153
https://doi.org/10.1007/s10064-005-0021-2
21 Jones C B (1989). Data structures for three-dimensional spatial information systems in geology. Int J Geogr Inform Syst, 3: 15–31
22 Kennett B L N, Engdahl E R, Buland R (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophys J Int, 122(1): 108–124
https://doi.org/10.1111/j.1365-246X.1995.tb03540.x
23 Li J, Wu H, Yang C, Wong D W, Xie J (2011). Visualizing dynamic geosciences phenomena using an octree-based view-dependent LOD strategy within virtual globes. Comput Geosci, 37(9): 1295–1302
https://doi.org/10.1016/j.cageo.2011.04.003
24 Li Z, Openshaw S (1993). A natural principle for the objective generalization of digital maps. Cartography and Geographic Information Systems, 20(1): 19–29
https://doi.org/10.1559/152304093782616779
25 Martínez-Gra?a A M, Goy J L, Cimarra C A (2013). A virtual tour of geological heritage: valourising geodiversity using Google Earth and QR code. Comput Geosci, 61: 83–93
https://doi.org/10.1016/j.cageo.2013.07.020
26 Mooney W D, Laske G, Masters T G (1998). CRUST 5.1: a global crustal model at 5°×5°. J Geophys Res, 103(B1): 727–747
https://doi.org/10.1029/97JB02122
27 Navin J, de Hoog M (2011). Presenting geoscience using virtual globes. AusGeo News, 104: 15–19
28 Picone J M, Hedin A E, Drob D P, Aikin A C (2002). NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res, 107(A12): 1468–1483
https://doi.org/10.1029/2002JA009430
29 Postpischl L, Danecek P, Morelli A, Pondrelli S (2011). Standardization of seismic tomographic models and earthquake focal mechanisms data sets based on web technologies, visualization with keyhole markup language. Comput Geosci, 37(1): 47–56
https://doi.org/10.1016/j.cageo.2010.05.006
30 Royse K R, Rutter H K, Entwisle D C (2009). Property attribution of 3D geological models in the Thames Gateway, London: new ways of visualising geoscientific information. Bull Eng Geol Environ, 68(1): 1–16
https://doi.org/10.1007/s10064-008-0171-0
31 Shen D, Wong D W, Camelli F, Liu Y (2013). An ArcScene plug-in for volumetric data conversion, modeling and spatial analysis. Comput Geosci, 61: 104–115
https://doi.org/10.1016/j.cageo.2013.08.004
32 Turner A K (2006). Challenges and trends for geological modelling and visualization. Bull Eng Geol Environ, 65(2): 109–127
https://doi.org/10.1007/s10064-005-0015-0
33 Wang P, Xu Q, Li J S (2005). 3D modeling and visualization simulation of near-earth space environment elements. Journal of System Simulation, 17: 2957–2960 (in Chinese)
34 Wang Y, Huynh G, Williamson C (2013). Integration of Google Maps/Earth with microscale meteorology models and data visualization. Comput Geosci, 61: 23–31
https://doi.org/10.1016/j.cageo.2013.07.016
35 Wu L X (2004). Topological relations embodied in a generalized tri-prism (GTP) model for a 3D geoscience modeling system. Comput Geosci, 30(4): 405–418
https://doi.org/10.1016/j.cageo.2003.06.005
36 Wu Q, Xu H (2004). On three-dimensional geological modeling and visualization. Sci China Earth Sci, 47(8): 739–748
https://doi.org/10.1360/02yd0475
37 Wu Q, Xu H, Zou X (2005). An effective method for 3D geological modeling with multi-source data integration. Comput Geosci, 31(1): 35–43
https://doi.org/10.1016/j.cageo.2004.09.005
38 Yang C, Raskin R, Goodchild M, Gahegan M (2010). Geospatial cyberinfrastructure: past, present and future. Comput Environ Urban Syst, 34(4): 264–277
https://doi.org/10.1016/j.compenvurbsys.2010.04.001
39 Yu J Q, Wu L X, Zi G J, Guo Z Z (2012). SDOG-based multi-scale 3D modeling and visualization on global lithosphere. Sci China Earth Sci, 55(6): 1012–1020
https://doi.org/10.1007/s11430-012-4387-2
40 Yu L, Gong P (2012). Google Earth as a virtual globe tool for Earth science applications at the global scale: progress and perspectives. Int J Remote Sens, 33(12): 3966–3986
https://doi.org/10.1080/01431161.2011.636081
41 Zhang L Q, Guo Z F, Kang Z Z, Zhang L X, Zhang X M, Yang L (2009). Web-based visualization of spatial objects in 3DGIS. Sci China Inform. Sci., 52: 1588–1597
42 Zhu L, Wang X, Zhang B (2014). Modeling and visualizing borehole information on virtual globes using KML. Comput Geosci, 62: 62–70
https://doi.org/10.1016/j.cageo.2013.09.016
43 Zhu L, Zhang C, Li M, Pan X, Sun J (2012). Building 3D solid models of sedimentary stratigraphic systems from borehole data: an automatic method and case studies. Eng Geol, 127: 1–13
https://doi.org/10.1016/j.enggeo.2011.12.001
44 Zhu L, Zhuang Z (2010). Framework system and research flow of uncertainty in 3D geological structure models. Min Sci Technol, 20: 306–311
45 Zhu Q, Gong J, Zhang Y (2007). An efficient 3D R-tree spatial index method for virtual geographic environments. ISPRS J Photogramm Remote Sens, 62(3): 217–224
https://doi.org/10.1016/j.isprsjprs.2007.05.007
[1] Jing SUN, Xiang LI. A pyramid-based approach to visual exploration of a large volume of vehicle trajectory data[J]. Front Earth Sci, 2012, 6(4): 345-353.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed