|
|
|
SolidEarth: a new Digital Earth system for the modeling and visualization of the whole Earth space |
Liangfeng ZHU1,*( ),Jianzhong SUN2,Changling LI3,Bing ZHANG1,4 |
1. Key Laboratory of Geographic Information Science for Ministry of Education, East China Normal University, Shanghai 200241, China. 2. Center for Earth System Science, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China. 3. School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, China. 4. College of Geomatics Engineering, Nanjing University of Technology, Nanjing 211816, China. |
|
|
|
|
Abstract Although many of the first-generation Digital Earth systems have proven to be quite useful for the modeling and visualization of geospatial objects relevant to the Earth’s surface and near-surface, they were not designed for the purpose of modeling and application in geological or atmospheric space. There is a pressing need for a new Digital Earth system that can process geospatial information with full dimensionality. In this paper, we present a new Digital Earth system, termed SolidEarth, as an alternative virtual globe for the modeling and visualization of the whole Earth space including its surface, interior, and exterior space. SolidEarth consists of four functional components: modeling in geographical space, modeling in geological space, modeling in atmospheric space, and, integrated visualization and analysis. SolidEarth has a comprehensive treatment to the third spatial dimension and a series of sophisticated 3D spatial analysis functions. Therefore, it is well-suited to the volumetric representation and visual analysis of the inner/outer spheres in Earth space. SolidEarth can be used in a number of fields such as geoscience research and education, the construction of Digital Earth applications, and other professional practices of Earth science.
|
| Keywords
Digital Earth
Earth space
full dimensionality
visualization
|
|
Corresponding Author(s):
Liangfeng ZHU
|
|
Online First Date: 06 June 2014
Issue Date: 13 January 2015
|
|
| 1 |
Bailey J E, Chen A (2011). The role of Virtual Globes in geoscience. Comput Geosci, 37(1): 1–2
https://doi.org/10.1016/j.cageo.2010.06.001
|
| 2 |
Bernardin T, Cowgill E, Kreylos O, Bowles C, Gold P, Hamann B, Kellogg L (2011). Crusta: a new virtual globe for real-time visualization of sub-meter digital topography at planetary scales. Comput Geosci, 37(1): 75–85
https://doi.org/10.1016/j.cageo.2010.02.006
|
| 3 |
Bilitza D (2001). International Reference Ionosphere 2000. Radio Sci, 36(2): 261–275
https://doi.org/10.1029/2000RS002432
|
| 4 |
Butler D (2006). Virtual globes: the web-wide world. Nature, 439(7078): 776–778
https://doi.org/10.1038/439776a
pmid: 16482123
|
| 5 |
Calcagno P, Chilès J P, Courrioux G, Guillen A (2008). Geological modelling from field data and geological knowledge: part I. Modelling method coupling 3D potential-field interpolation and geological rules. Phys Earth Planet Inter, 171(1–4): 147–157
https://doi.org/10.1016/j.pepi.2008.06.013
|
| 6 |
Craglia M, de Bie K, Jackson D, Pesaresi M, Remetey-Fül?pp G, Wang C, Annoni A, Bian L, Campbell F, Ehlers M, van Genderen J, Goodchild M, Guo H, Lewis A, Simpson R, Skidmore A, Woodgate P (2012). Digital Earth 2020: towards the vision for the next decade. Int J Digital Earth, 5(1): 4–21
https://doi.org/10.1080/17538947.2011.638500
|
| 7 |
Craglia M, Goodchild M F, Annoni A, Camara G, Gould M, Kuhn W, Mark D, Masser I, Maguire D, Liang S, Parsons E (2008). Next-generation Digital Earth: a position paper from the Vespucci Initiative for the advancement of Geographic Information Science. Int J Spatial Data Infrastructures Res, 3: 146–167
|
| 8 |
de Floriani L, Falcidieno B (1988). A hierarchical boundary model for solid object representation. ACM Trans Graph, 7(1): 42–60
https://doi.org/10.1145/42188.46164
|
| 9 |
De Paor D G, Whitmeyer S J (2011). Geological and geophysical modeling on virtual globes using KML, COLLADA, and Javascript. Comput Geosci, 37(1): 100–110
https://doi.org/10.1016/j.cageo.2010.05.003
|
| 10 |
Denver L F, Phillips D C (1990). Stratigraphic geocellular modeling. Geobyte, 5: 45–47
|
| 11 |
Dong S, Li T, Gao R, Hou H, Li Q, Li Y, Zhang S, Keller G R, Liu M (2011). A multidisciplinary Earth science research program in China. Eos Trans AGU, 92(38): 313–314
https://doi.org/10.1029/2011EO380001
|
| 12 |
Dziewonski A M, Anderson D L (1981). Preliminary reference Earth model. Phys Earth Planet Inter, 25(4): 297–356
https://doi.org/10.1016/0031-9201(81)90046-7
|
| 13 |
Fowler C M R (2005). The Solid Earth: An Introduction to Global Geophysics (2nd ed). Cambridge: Cambridge University Press, 685
|
| 14 |
Goodchild M F (2008). The use cases of digital earth. Int J Digital Earth, 1(1): 31–42
https://doi.org/10.1080/17538940701782528
|
| 15 |
Goodchild M F (2012). Discrete global grids: retrospect and prospect. Geography and Geo-Information Science, 28(1): 1–6
|
| 16 |
Goodchild M F, Guo H, Annoni A, Bian L, de Bie K, Campbell F, Craglia M, Ehlers M, van Genderen J, Jackson D, Lewis A J, Pesaresi M, Remetey-Fül?pp G, Simpson R, Skidmore A, Wang C, Woodgate P (2012). Next-generation Digital Earth. Proc Natl Acad Sci USA, 109(28): 11088–11094
https://doi.org/10.1073/pnas.1202383109
pmid: 22723346
|
| 17 |
Gore A (1999). The Digital Earth: Understanding our planet in the 21st Century. Photogramm Eng Remote Sensing, 65: 528–530
|
| 18 |
Guillen A, Calcagno P, Courrioux G, Joly A, Ledru P (2008). Geological modelling from field data and geological knowledge: part II. Modelling validation using gravity and magnetic data inversion. Phys Earth Planet Inter, 171(1–4): 158–169
https://doi.org/10.1016/j.pepi.2008.06.014
|
| 19 |
Guo H (2012). Digital Earth: a new challenge and new vision. Int J Digital Earth, 5(1): 1–3
https://doi.org/10.1080/17538947.2012.646005
|
| 20 |
Hack R, Orlic B, Ozmutlu S, Zhu S, Rengers N (2006). Three and more dimensional modeling in geo-engineering. Bull Eng Geol Environ, 65(2): 143–153
https://doi.org/10.1007/s10064-005-0021-2
|
| 21 |
Jones C B (1989). Data structures for three-dimensional spatial information systems in geology. Int J Geogr Inform Syst, 3: 15–31
|
| 22 |
Kennett B L N, Engdahl E R, Buland R (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophys J Int, 122(1): 108–124
https://doi.org/10.1111/j.1365-246X.1995.tb03540.x
|
| 23 |
Li J, Wu H, Yang C, Wong D W, Xie J (2011). Visualizing dynamic geosciences phenomena using an octree-based view-dependent LOD strategy within virtual globes. Comput Geosci, 37(9): 1295–1302
https://doi.org/10.1016/j.cageo.2011.04.003
|
| 24 |
Li Z, Openshaw S (1993). A natural principle for the objective generalization of digital maps. Cartography and Geographic Information Systems, 20(1): 19–29
https://doi.org/10.1559/152304093782616779
|
| 25 |
Martínez-Gra?a A M, Goy J L, Cimarra C A (2013). A virtual tour of geological heritage: valourising geodiversity using Google Earth and QR code. Comput Geosci, 61: 83–93
https://doi.org/10.1016/j.cageo.2013.07.020
|
| 26 |
Mooney W D, Laske G, Masters T G (1998). CRUST 5.1: a global crustal model at 5°×5°. J Geophys Res, 103(B1): 727–747
https://doi.org/10.1029/97JB02122
|
| 27 |
Navin J, de Hoog M (2011). Presenting geoscience using virtual globes. AusGeo News, 104: 15–19
|
| 28 |
Picone J M, Hedin A E, Drob D P, Aikin A C (2002). NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res, 107(A12): 1468–1483
https://doi.org/10.1029/2002JA009430
|
| 29 |
Postpischl L, Danecek P, Morelli A, Pondrelli S (2011). Standardization of seismic tomographic models and earthquake focal mechanisms data sets based on web technologies, visualization with keyhole markup language. Comput Geosci, 37(1): 47–56
https://doi.org/10.1016/j.cageo.2010.05.006
|
| 30 |
Royse K R, Rutter H K, Entwisle D C (2009). Property attribution of 3D geological models in the Thames Gateway, London: new ways of visualising geoscientific information. Bull Eng Geol Environ, 68(1): 1–16
https://doi.org/10.1007/s10064-008-0171-0
|
| 31 |
Shen D, Wong D W, Camelli F, Liu Y (2013). An ArcScene plug-in for volumetric data conversion, modeling and spatial analysis. Comput Geosci, 61: 104–115
https://doi.org/10.1016/j.cageo.2013.08.004
|
| 32 |
Turner A K (2006). Challenges and trends for geological modelling and visualization. Bull Eng Geol Environ, 65(2): 109–127
https://doi.org/10.1007/s10064-005-0015-0
|
| 33 |
Wang P, Xu Q, Li J S (2005). 3D modeling and visualization simulation of near-earth space environment elements. Journal of System Simulation, 17: 2957–2960 (in Chinese)
|
| 34 |
Wang Y, Huynh G, Williamson C (2013). Integration of Google Maps/Earth with microscale meteorology models and data visualization. Comput Geosci, 61: 23–31
https://doi.org/10.1016/j.cageo.2013.07.016
|
| 35 |
Wu L X (2004). Topological relations embodied in a generalized tri-prism (GTP) model for a 3D geoscience modeling system. Comput Geosci, 30(4): 405–418
https://doi.org/10.1016/j.cageo.2003.06.005
|
| 36 |
Wu Q, Xu H (2004). On three-dimensional geological modeling and visualization. Sci China Earth Sci, 47(8): 739–748
https://doi.org/10.1360/02yd0475
|
| 37 |
Wu Q, Xu H, Zou X (2005). An effective method for 3D geological modeling with multi-source data integration. Comput Geosci, 31(1): 35–43
https://doi.org/10.1016/j.cageo.2004.09.005
|
| 38 |
Yang C, Raskin R, Goodchild M, Gahegan M (2010). Geospatial cyberinfrastructure: past, present and future. Comput Environ Urban Syst, 34(4): 264–277
https://doi.org/10.1016/j.compenvurbsys.2010.04.001
|
| 39 |
Yu J Q, Wu L X, Zi G J, Guo Z Z (2012). SDOG-based multi-scale 3D modeling and visualization on global lithosphere. Sci China Earth Sci, 55(6): 1012–1020
https://doi.org/10.1007/s11430-012-4387-2
|
| 40 |
Yu L, Gong P (2012). Google Earth as a virtual globe tool for Earth science applications at the global scale: progress and perspectives. Int J Remote Sens, 33(12): 3966–3986
https://doi.org/10.1080/01431161.2011.636081
|
| 41 |
Zhang L Q, Guo Z F, Kang Z Z, Zhang L X, Zhang X M, Yang L (2009). Web-based visualization of spatial objects in 3DGIS. Sci China Inform. Sci., 52: 1588–1597
|
| 42 |
Zhu L, Wang X, Zhang B (2014). Modeling and visualizing borehole information on virtual globes using KML. Comput Geosci, 62: 62–70
https://doi.org/10.1016/j.cageo.2013.09.016
|
| 43 |
Zhu L, Zhang C, Li M, Pan X, Sun J (2012). Building 3D solid models of sedimentary stratigraphic systems from borehole data: an automatic method and case studies. Eng Geol, 127: 1–13
https://doi.org/10.1016/j.enggeo.2011.12.001
|
| 44 |
Zhu L, Zhuang Z (2010). Framework system and research flow of uncertainty in 3D geological structure models. Min Sci Technol, 20: 306–311
|
| 45 |
Zhu Q, Gong J, Zhang Y (2007). An efficient 3D R-tree spatial index method for virtual geographic environments. ISPRS J Photogramm Remote Sens, 62(3): 217–224
https://doi.org/10.1016/j.isprsjprs.2007.05.007
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|