Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (4) : 549-558    https://doi.org/10.1007/s11783-012-0414-y
RESEARCH ARTICLE
An uncertain energy planning model under carbon taxes
Hongkuan ZANG1, Yi XU2, Wei LI1(), Guohe HUANG1, Dan LIU1
1. MOE Key Laboratory of Regional Energy Systems Optimization, S-C Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206, China; 2. Chinese Academy for Environmental Planning, Ministry of Environmental Protection, Beijing 100012, China
 Download: PDF(243 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study, an interval fuzzy mixed-integer energy planning model (IFMI-EPM) is developed under considering the carbon tax policy. The developed IFMI-EPM incorporates techniques of interval-parameter programming, fuzzy planning and mixed-integer programming within a general energy planning model. The IFMI-EPM can not only be used for quantitatively analyzing a variety of policy scenarios that are associated with different levels of carbon tax policy, but also tackle uncertainties expressed as discrete intervals and fuzzy sets in energy and environment systems. Considering low, medium and high carbon tax rates, the model is applied to an ideal energy and environment system. The results indicate that reasonable solutions have been generated. They can be used for generating decision alternatives and thus help decision makers identify desired carbon tax policy.

Keywords energy      carbon tax      planning      uncertainty      fuzzy     
Corresponding Author(s): LI Wei,Email:weili819@yahoo.com.cn   
Issue Date: 01 August 2012
 Cite this article:   
Hongkuan ZANG,Yi XU,Wei LI, et al. An uncertain energy planning model under carbon taxes[J]. Front Envir Sci Eng, 2012, 6(4): 549-558.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0414-y
https://academic.hep.com.cn/fese/EN/Y2012/V6/I4/549
technologies and sectorst = 1t = 2t = 3
GHG emission intensity of generation technology k in period t (kilotones·GWh–1)
coal-fired power[0.93, 0.98][0.92,0.97][0.91,0.96]
gas-fired power[0.60,0.75][0.59,0.74][0.58,0.73]
hydropower000
wind power000
solar power000
nuclear power000
GHG emission intensity of sectors in period t (kilotones·PJ-1)
agricultural[28.6, 31.5][28.4, 31.3][28.2,31.1]
transportation[25.3,29.6][25.1,29.4][24.8,29.2]
industrial[18.9,23.2][18.7,23.0][18.6,22.8]
municipal[17.4,21.9][17.3,21.7][17.1,21.5]
commercial[15.4,17.6][15.2,17.5][14.0,17.2]
Tab.1  GHG emission intensity under different conversion technologies and sectors
Fig.1  Study system
casecoalnature gascrude oilDieselgasolineheat from coal-firedheat from gas-fired
case 1t = 1[544.5, 802.5][133.4, 157.1][142.4, 198.6][44.4, 76.4][71.2, 75.4][25.8, 44.6][29.2, 33.7]
t = 2[539.2, 789.6][145.6, 169.7][132.6, 187.8][43.0, 67.3][68.4, 70.1][21.7, 41.7][32.4, 38.9]
t = 3[527.3, 780.1][176.1, 211.6][120.4, 174.8][41.9, 61.6][63.0, 66.0][19.2, 40.2][34.9,41.3]
case 2t = 1[524.9, 796.3][154.3, 166.5][144.8, 200.4][34.1, 59.1][57.0, 73.3][15.3, 36.3][38.2, 51.7]
t = 2[515.7, 788.6][188.8, 192.5][135.4, 190.2][31.5, 57.5][54.1, 68.4][11.1, 31.1][46.4, 47.7]
t = 3[502.3, 761.9][202.2, 234.4][123.2, 177.2][27.3, 50. 0][52.2, 59.9][7.9, 27.9]48.9
case 3t = 1[510.1, 782.0][173.4, 179.6][157.7, 213.3][31.7, 55.1][57.3, 71.7][14.3, 34.7][40.9, 53.5]
t = 2[489.0, 752.4][199.0, 205.7][147.6, 202.4][27.1, 50.5][51.1, 59.5][13.1, 29.5][48.2, 48.9]
t = 3[478.2, 711.9][221.2, 246.4][135.1, 189.1][22.2, 42.6][46.9, 52.3][8.9, 26.3]49.1
Tab.2  Energy supply under different carton tax rates/PJ
CPGPHPWPSPNPPP
case 1t = 1[18.72, 19.94][5.44, 5.66][0.69, 0.79][0.21, 0.15][0.17, 0.14][0.85, 0.84][1.62, 3.54]
t = 2[15.54, 16.94][4.83, 4.61][0.87, 1.20][0.17, 0.33][0.21, 0.27][1.02, 1.24][5.93, 8.15]
t = 3[13.67, 14.57][4.72, 3.78][1.28, 1.26][0.32, 0.35][0.25, 0.30][1.31, 1.53][9.56, 12.83]
case 2t = 1[17.8, 19.14][6.64, 6.66][0.97, 1.08][0.32, 0.26][0.31, 0.28][1.15, 1.14][0.49, 2.50]
t = 2[13.12, 14.54][5.83, 5.58][1.15, 1.48][0.28, 0.44][0.35, 0.37][1.32, 1.54][6.52, 8.79]
t = 3[11.59, 12.67][5.52, 4.78][1.56, 1.54][0.50, 0.53][0.49, 0.54][1.61, 1.83][9.84, 12.73]
case 3t = 1[16.13, 17.54][6.14, 6.16][1.22, 1.33][0.38, 0.32][0.34, 0.31][1.35, 1.34][2.12, 4.06]
t = 2[11.47, 12.84][5.03, 4.77][1.40, 1.73][0.34, 0.54][0.38, 0.40][1.52, 1.74][8.43, 10.72]
t = 3[10.24, 11.37][4.82, 4.08][1.81, 1.79][0.60, 0.63][0.54, 0.62][1.81, 2.03][11.29, 14.10]
Tab.3  Power generation under different carton taxes rates/(10GWh)
Fig.2  Facility expansion schemes under different carbon tax rates: (a) lower bound and (b) upper bound
Fig.3  Amount of GHG emissions under different carbon tax rates: (a) lower bound and (b) upper bound
Fig.4  Costs under different carbon tax rate (symbols “C-L” denotes the “lower bound of carbon taxes cost”, “C-U” denotes the “upper bound of carbon taxes cost”, “S-L” denotes the “lower bound of system cost”, “S-U” denotes the “lower bound of system cost”)
1 Ling B. An interval stochastic two-stage linear programming approach for managing CO2 emission quota in power generation sector. Dissertation for the Doctoral Degree, University of Regina, Regina , 2006
2 Chen B. Climate change and pesticide loss in watershed systems: a simulation modeling study. Journal of Environmental Informatics , 2007, 10(2): 55–67
doi: 10.3808/jei.200700100
3 Baranzini A, Goldemberg J, Speck S. A future for carbon taxes. Ecological Economics , 2000, 32(3): 395–412
doi: 10.1016/S0921-8009(99)00122-6
4 Kambo N S, Handa B R, Bose R K. A linear goal programming model for urban energy-economy-environment interaction. Energy and Building , 1991, 16(1-2): 537–551
doi: 10.1016/0378-7788(91)90022-U
5 Fujii Y, Yamaji K. Assessment of technological options in the global energy system for limiting the atmospheric CO2 concentration. Environmental Economics and Policy Studies , 1998, 1(2): 113–139
6 Copeland B R, Taylor M S. Free trade and global warming: a trade theory view of the Kyoto protocol. Journal of Environmental Economics and Management , 2005, 49(2): 205–234
doi: 10.1016/j.jeem.2004.04.006
7 Lin Q G, Huang G H, Bass B, Chen B, Zhang B Y. CCEM: a city-cluster energy systems planning model. Energy Sources , 2009, 31(4): 273–286
8 Gnansounou E, Dauriat A, Villegas J, Panichelli L. Life cycle assessment of biofuels: energy and greenhouse gas balances. Bioresource Technology , 2009, 100(21): 4919–4930
9 Kaygusuz K. Energy and environmental issues relating to greenhouse gas emissions for sustainable development in Turkey. Renewable and Sustainable Energy Reviews , 2009, 13(1): 253–270
10 Ichinohe M, Endo E. Analysis of the vehicle mix in the passenger-car sector in Japan for CO2 emissions reduction by a MARKAL model. Applied Energy , 2006, 83(10): 1047–1061
doi: 10.1016/j.apenergy.2005.08.002
11 Cherubini F, Bird N D, Cowie A, Jungmeier G, Schlamadinger B, Woess-Gallasch S. Energy and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resources, Conservation and Recycling , 2009, 53(8), 434–447
12 Heinrich G, Howells M, Basson L, Petrie J. Electricity supply industry modelling for multiple objectives under demand growth uncertainty. Energy , 2007, 32(11): 2210–2229
doi: 10.1016/j.energy.2007.05.007
13 Cai Y P, Huang G H, Yang Z F, Lin Q G, Bass B, Tan Q. Development of an optimization model for energy systems planning in the region of Waterloo. International Journal of Energy Research , 2008, 32(11): 988–1005
doi:10.1002/er.1407
14 Nasiri F, Huang G. Integrated capacity planning for electricity generation: a fuzzy environmental policy analysis approach. Energy Sources , 2008, 3(3): 259–279
15 Rosenthal D H, Edmonds J A, Richards K R, Wise M A. Stabilizing US net carbon emissions by planting trees. Energy Conversion and Management , 1993, 34(9-11): 881–887
doi: 10.1016/0196-8904(93)90032-6
16 Kemfert C, Lise W, Tol R S J. Games of climate change with international trade. Environmental and Resource Economics , 2004, 28(2): 209–232
doi: 10.1023/B:EARE.0000029920.33102.10
17 Lin Q G, Huang G H. Planning of energy system management and GHG-emission control in the Municipality of Beijing—an inexact-dynamic stochastic programming model. Energy Policy , 2009, 37(11): 4463–4473
doi: 10.1016/j.enpol.2009.05.066
18 Nahorski Z, Horabik J. Greenhouse gas emission permit trading with different uncertainties in emission sources. Journal of Energy Engineering , 2008, 134(2): 47–52
19 Mao J, Du Y, Xu L, Zeng Y. Quantification of energy related industrial eco-efficiency of China. Frontiers of Environmental Science & Engineering in China , 2011, 5(4): 1–12
20 Wang W, Luo Y, Deng Z. Bioenergy recovery from landfill gas: a case study in China. Frontiers of Environmental Science & Engineering in China , 2009, 3(1): 20–31
21 Manne A S, Richels R G. The EC proposal for combining carbon and energy taxes: the implications for future CO2 emissions. Energy Policy , 1993, 21(1): 5–12
doi: 10.1016/0301-4215(93)90203-R
22 Roughgarden T, Schneider S H. Climate change policy: quantifying uncertainties for damages and optimal carbon taxes. Energy Policy , 1999, 27(7): 415–429
doi: 10.1016/S0301-4215(99)00030-0
23 Callan T, Lyons S, Scott S, Tol R S J, Verde S. The distributional implications of a carbon tax in Ireland. Energy Policy , 2009, 37(2): 407–412
doi: 10.1016/j.enpol.2008.08.034
24 Popp M, Nalley L. Funding agricultural carbon offset abatements with carbon tax revenue to reduce net greenhouse gas emissions. In: AAEA & NAREA Joint Annual Meeting 2011. Agricultural and Applied Economics Association, Pittsburgh , 2011, 1–2
25 Shrestha R M, Pradhan S, Migara H L. Effects of carbon tax on greenhouse gas mitigation in Thailand. Climate Policy , 2008, 8(S1): 140–155
26 Mongelli I, Tassielli G, Notarnicola B. Carbon tax and its short-term effects in Italy: an evaluation through the input-output model. Handbook of Input-Output Economics in Industrial Ecology , 2009, 23(V): 357–377
27 Metcalf G E. Designing a carbon tax to reduce US greenhouse gas emissions. Review of Environmental Economics and Policy , 2009, 3(1): 63–83
doi: 10.1093/reep/ren015
28 Amano Y, Ito K, Yoshida S, Matsuoa K, Hashizumea T, Favratc D, Maréchal F. Impact analysis of carbon tax on the renewal planning of energy supply system for an office building. Energy , 2010, 35(2): 1040–1046
doi: 10.1016/j.energy.2009.06.023
29 Winkler H, Marquard A. Analysis of the Economic Implications of a Carbon Tax. Cape Town: Energy Research Centre , 2009
30 Xie Y L, Li Y P, Huang G H, Li Y F. An interval fixed-mix stochastic programming method for greenhouse gas mitigation in energy systems under uncertainty. Energy , 2010, 35(12): 4627–4644
doi: 10.1016/j.energy.2010.09.045
31 Huang G H, Brian W B, Gilles G P. A grey linear programming approach for municipal solid waste management planning under uncertainty. Civil Engineering Systems , 1992, 9(4): 319–335
doi: 10.1080/02630259208970657
32 Lin Q G, Huang G H, Bass B, Qin X S. IFTEM: an interval-fuzzy two-stage stochastic optimization model for regional energy systems planning under uncertainty. Energy Policy , 2009, 37(3): 868–878
doi: 10.1016/j.enpol.2008.10.038
33 Zimmermann H J. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and systems , 1978, 1(1): 45–55
34 Xu Y, Huang G H, Qin X S, Huang Y. SRFILP: a stochastic robust fuzzy interval linear programming model for municipal solid waste management under uncertainty. Journal of Environmental Informatics , 2009, 14(2): 72–82
doi: 10.3808/jei.200900155
35 Xu Y, Huang G H, Qin X S. An inexact fuzzy-chance-constrained air quality management model. Journal of the Air & Waste Management Association , 2010, 60(7): 805–819
36 Huang G H, Baetz B W, Patry G G. A grey fuzzy linear programming approach for municipal solid waste management planning under uncertainty. Civil Engineering Systems , 1993, 10(2): 123–146
doi: 10.1080/02630259308970119
37 Huang G H, Baetz B W, Patry G G. Grey integer programming: an application to waste management planning under uncertainty. European Journal of Operational Research , 1995, 83(3): 594–620
doi: 10.1016/0377-2217(94)00093-R
38 Huang G H, Baetz B W, Patry G G. Grey fuzzy integer programming: an application to regional waste management planning under uncertainty. Socio-Economic Planning Sciences , 1995, 29(1): 17–38
doi: 10.1016/0038-0121(95)98604-T
39 Wang C, Chen J. Parameter uncertainty in CGE modeling of the macroeconomic impact of carbon reduction in China. Tsinghua Science & Technology , 2006, 11(5): 617–624
[1] Yanxiao Si, Fang Zhang, Hong Chen, Guanghe Li, Haichuan Zhang, Dun Liu. Effect of current density on groundwater arsenite removal performance using air cathode electrocoagulation[J]. Front. Environ. Sci. Eng., 2021, 15(6): 112-.
[2] Yingdan Zhang, Na Liu, Wei Wang, Jianteng Sun, Lizhong Zhu. Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(6): 103-.
[3] An Ding, Yingxue Zhao, Huu Hao Ngo, Langming Bai, Guibai Li, Heng Liang, Nanqi Ren, Jun Nan. Metabolic uncoupler, 3,3′,4′,5-tetrachlorosalicylanilide addition for sludge reduction and fouling control in a gravity-driven membrane bioreactor[J]. Front. Environ. Sci. Eng., 2020, 14(6): 96-.
[4] An Ding, Yingxue Zhao, Zhongsen Yan, Langming Bai, Haiyang Yang, Heng Liang, Guibai Li, Nanqi Ren. Co-application of energy uncoupling and ultrafiltration in sludge treatment: Evaluations of sludge reduction, supernatant recovery and membrane fouling control[J]. Front. Environ. Sci. Eng., 2020, 14(4): 59-.
[5] Songwei Lin, Yaobin Lu, Bo Ye, Cuiping Zeng, Guangli Liu, Jieling Li, Haiping Luo, Renduo Zhang. Pesticide wastewater treatment using the combination of the microbial electrolysis desalination and chemical-production cell and Fenton process[J]. Front. Environ. Sci. Eng., 2020, 14(1): 12-.
[6] Luxi Zou, Huaibo Li, Shuo Wang, Kaikai Zheng, Yan Wang, Guocheng Du, Ji Li. Characteristic and correlation analysis of influent and energy consumption of wastewater treatment plants in Taihu Basin[J]. Front. Environ. Sci. Eng., 2019, 13(6): 83-.
[7] Zunaira Asif, Zhi Chen. An integrated optimization and simulation approach for air pollution control under uncertainty in open-pit metal mine[J]. Front. Environ. Sci. Eng., 2019, 13(5): 74-.
[8] Giovanni Cagnetta, Kunlun Zhang, Qiwu Zhang, Jun Huang, Gang Yu. Augmented hydrogen production by gasification of ball milled polyethylene with Ca(OH)2 and Ni(OH)2[J]. Front. Environ. Sci. Eng., 2019, 13(1): 11-.
[9] Xuejiao Wang, Xiang Feng, Jing Shang. Efficient photoelectrochemical oxidation of rhodamine B on metal electrodes without photocatalyst or supporting electrolyte[J]. Front. Environ. Sci. Eng., 2018, 12(6): 11-.
[10] Yaobin Lu, Songli He, Dantong Wang, Siyuan Luo, Aiping Liu, Haiping Luo, Guangli Liu, Renduo Zhang. A pulsed switching peroxi-coagulation process to control hydroxyl radical production and to enhance 2,4-Dichlorophenoxyacetic acid degradation[J]. Front. Environ. Sci. Eng., 2018, 12(5): 9-.
[11] Jiping Jiang, Feng Han, Yi Zheng, Nannan Wang, Yixing Yuan. Inverse uncertainty characteristics of pollution source identification for river chemical spill incidents by stochastic analysis[J]. Front. Environ. Sci. Eng., 2018, 12(5): 6-.
[12] Akshay Jain, Zhen He. “NEW” resource recovery from wastewater using bioelectrochemical systems: Moving forward with functions[J]. Front. Environ. Sci. Eng., 2018, 12(4): 1-.
[13] Taro Miyoshi, Thanh Phong Nguyen, Terumi Tsumuraya, Hiromu Tanaka, Toru Morita, Hiroki Itokawa, Toshikazu Hashimoto. Energy reduction of a submerged membrane bioreactor using a polytetrafluoroethylene (PTFE) hollow-fiber membrane[J]. Front. Environ. Sci. Eng., 2018, 12(3): 1-.
[14] Mengqian Lu, Bin-Le Lin, Kazuya Inoue, Zhongfang Lei, Zhenya Zhang, Kiyotaka Tsunemi. PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan[J]. Front. Environ. Sci. Eng., 2018, 12(2): 13-.
[15] Ozan Capraz, Olcay Polat, Askiner Gungor. Performance evaluation of waste electrical and electronic equipment disassembly layout configurations using simulation[J]. Front. Environ. Sci. Eng., 2017, 11(5): 5-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed