Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (1) : 31-42    https://doi.org/10.1007/s11783-012-0463-2
RESEARCH ARTICLE
A new procedure combining GC-MS with accelerated solvent extraction for the analysis of phthalic acid esters in contaminated soils
Tingting MA1,2, Ying TENG1,2, Peter CHRISTIE3, Yongming LUO1,2(), Yongshan CHEN4, Mao YE2,5, Yujuan HUANG1
1. Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; 2. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China; 3. Agri-Environment Branch, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX, United Kingdom; 4. State Key Laboratory of Environment Simulation and Pollution Control (Joint), Tsinghua University, Beijing 100084, China; 5. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
 Download: PDF(270 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An optimized procedure based on gas chromatography-mass spectrometry (GC-MS) combined with accelerated solvent extraction (ASE) is developed for the analysis of six phthalic acid esters (PAEs), which are priority soil pollutants nominated by United States Environmental Protection Agency (USEPA). Quantification of PAEs in soil employs ultrasonic extraction (UE) (USEPA 3550) and ASE (USEPA 3545), followed by clean up procedures involving three different chromatography columns and two combined elution methods. GC-MS conditions under selected ion monitoring (SIM) mode are described and quality assurance and quality control (QA/QC) criteria with high accuracy and sensitivity for target analytes were achieved. Method reliability is assured with the use of an isotopically labeled PAE, di-n-butyl phthalate-d4 (DnBP-D4), as a surrogate, and benzyl benzoate (BB) as an internal standard, and with the analysis of certified reference materials (CRM). QA/QC for the developed procedure was tested in four PAE-spiked soils and one PAE-contaminated soil. The four spiked soils were originated from typical Chinese agricultural fields and the contaminated soil was obtained from an electronic waste dismantling area. Instrument detection limits (IDLs) for the six PAEs ranged 0.10–0.31 μg·L-1 and method detection limits (MDLs) of the four spiked soils varied from a range of 20–70 μg·kg-1 to a range of 90– 290 μg·kg-1. Linearity of response between 20 μg·L-1 and 2 mg·L-1 was also established and the correlation coefficients (R) were all>0.998. Spiked soil matrix showed relative recovery rates between 75 and 120% for the six target compounds and about 93% for the surrogate substance. The developed procedure is anticipated to be highly applicable for field surveys of soil PAE pollution in China.

Keywords phthalic acid esters      quality assurance and quality control      soil type      accelerated solvent extraction      certified reference materials     
Corresponding Author(s): LUO Yongming,Email:ymluo@yic.ac.cn   
Issue Date: 01 February 2013
 Cite this article:   
Ying TENG,Peter CHRISTIE,Yongming LUO, et al. A new procedure combining GC-MS with accelerated solvent extraction for the analysis of phthalic acid esters in contaminated soils[J]. Front Envir Sci Eng, 2013, 7(1): 31-42.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0463-2
https://academic.hep.com.cn/fese/EN/Y2013/V7/I1/31
Fig.1  Chromatogram of the six PAEs and the internal standard at 1 mg·L
Fig.1  Chromatogram of the six PAEs and the internal standard at 1 mg·L
methodpacking materials (from bottom to top)elution solutions
one2 g Na2SO4 + 5 g florisil15 mL hexane for pre-washing+ sample loading+ 40 mL hexane
two2 g Na2SO4 + 5 g florisil+ 0.5 g activated carbon+ 1 g Na2SO415 mL hexane+ 15 mL acetone:hexane (1∶4 v/v) for pre-washing+ sample loading+ 40 mL acetone:hexane (1∶4 v/v)
three2 g Na2SO4 + 6 g neutral Al2O3 + 12 g neutral silica gel15 mL hexane for pre-washing+ sample loading+ 40 mL hexane
four2 g Na2SO4 + 5 g florisil15 mL hexane+ 15 mL acetone:hexane (1∶4 v/v) for pre-washing+ sample loading+ 40 mL acetone:hexane (1∶4 v/v)
five2 g Na2SO4 + 5 g florisil+ 0.5 g activated carbon+ 1 g Na2SO415 mL hexane for pre-washing+ sample loading+ 40 mL hexane
six2 g Na2SO4 + 6 g neutral Al2O3 + 12 g neutral silica gel15 mL hexane+ 15 mL acetone:hexane (1∶4 v/v) for pre-washing+ sample loading+ 40 mL acetone:hexane (1∶4 v/v)
Tab.1  Clean-up methods using columns and elution solutions specified
compoundlinear equationm/z of characteristic ionscorrelation coefficient (R)RRF (RSD, n = 7)
DMPy = 127.9x + 87.52163.0, 77.0, 194.00.99870.02713
DEPy = 402.9x + 139.3149.0, 77.0, 222.00.99940.01820
DnBPy = -527.5x + 128.6149.0, 223.0, 278.00.99810.07516
BBPy = -2319x + 88.91149.0, 91.0, 206.00.99840.07543
DEHPy = -2372x + 59.75149.0, 167.0, 249.10.99970.08395
DnOPy = -309.5x + 58.04149.0, 167.0, 279.10.99930.1154
Tab.2  Average relative response factors (RRF) and linearity for the six target compounds based on internal standard
soil typeorganic matter/(g·kg-1)available potassium/(mg·kg-1)available nitrogen/(mg·kg-1)Available phosphorus/(mg·kg-1)clay content/(% v·v-1)pH
red soil9.1114.864.317.951.44.7
brown yellow soil14.6102.896.814.416.77.4
brown soil17.6125.7132.318.410.48.6
black soil48.7123.1239.717.634.97.2
paddy soil (from Taizhou)36.5118.6177.515.138.85.8
Tab.3  Some physico-chemical properties of the five experimental soils
compoundS/Na)IDL /(μg·L-1)
DMP195.270.31
DEP260.730.23
DnBP315.070.19
BBP283.090.21
DEHP226.490.26
DnOP630.740.10
Tab.4  Noise-to- signal ratios and IDLs
Fig.2  Comparison between ASE and UE for extraction of the six PAEs. Each point is the mean value of quadruplicates; error bars denote SEM values
Fig.2  Comparison between ASE and UE for extraction of the six PAEs. Each point is the mean value of quadruplicates; error bars denote SEM values
Fig.3  Comparisons among six combined column chromatography clean-up methods
Fig.3  Comparisons among six combined column chromatography clean-up methods
Fig.4  Average recovery of the six target compounds in method six. Each point is the mean value of quadruplicates, error bars are SEM values
Fig.4  Average recovery of the six target compounds in method six. Each point is the mean value of quadruplicates, error bars are SEM values
soil typeDMPDEPDnBPBBPDEHPDnOP
red soil0.040.060.070.030.030.02
yellow brown soil0.060.050.080.070.100.11
brown soil0.120.050.080.090.120.10
black soil0.090.110.120.130.290.19
Tab.5  MDLs of the six PAEs in the four soils/(mg·kg)
Fig.5  Quantity of the six PAEs in the whole procedure blanks. Each point is the mean value of septuplicates, error bars are SEM values
Fig.5  Quantity of the six PAEs in the whole procedure blanks. Each point is the mean value of septuplicates, error bars are SEM values
compoundred soilbrown yellow soilbrown soilblack soil
Ca) /(μg·kg-1)SEMC /(μg·kg-1)SEMC /(μg·kg-1)SEMC /(μg·kg-1)SEM
DMP39.43.232.10.650.02.727.53.3
DEP3.90.217.30.34.90.111.80.3
DnBP104.41.6142.62.1126.82.049.21.7
BBP-b)-------
DEHP152.32.2194.50.6182.57.2427.07.5
DnOP10.01.610.81.09.62.47.61.9
Tab.6  Soil matrix blanks of six PAEs
compoundallowable concentration/(mg·kg-1)cleanup objective value/(mg·kg-1)
DMP0.022.00
DEP0.077.10
DnBP0.088.10
BBP1.2250.00
DEHP4.3550.00
DnOP1.2050.00
Tab.7  Soil allowable concentrations and cleanup objectives of six PAE compounds in the United States
soil typeDMPDEPDnBPBBPDEHPDnOP
Ra)/%RSD/%R/ %RSD/%R/%RSD/%R/%RSD/%R/%RSD/%R/%RSD/%
red80.33.981.53.390.45.3101.92.8111.52.7119.22.8
brown yellow75.01.876.52.280.91.994.91.1104.30.9112.70.9
brown80.33.784.92.699.11.898.61.2109.32.6108.21.0
black81.114.179.814.889.016.698.014.2105.519.9109.513.2
EPA-8270a)93.295.890.891.294.289.9
Tab.8  QA/QC report of matrix samples spiked with PAEs/(0.1 mg·kg)
compoundgiven confidence interval/(mg·kg-1)determined value/(mg·kg-1)a)
119-100136-100119-100136-100
DMP8.29-11.172.85-3.428.64±0.082.93±0.06
DEP4.21-5.261.29-1.644.55±0.091.49±0.09
DnBPNeb)0.64-0.80NDc)0.73±0.08
BBP12.06-16.346.61-8.3213.75±0.106.84±0.07
DEHP7.65-9.940.82-0.969.38±0.170.92±0.11
DnOP4.93-6.544.78-5.716.31±0.145.47±0.12
Tab.9  Comparison between CRM assigned values and determined values
1 Guo B Y, Wen B, Shan X Q, Zhang S Z, Lin J M. Separation and determination of phthalates by micellar electrokinetic chromatography. Journal of Chromatography A , 2005, 1095(1-2): 189-192
doi: 10.1016/j.chroma.2005.09.075 pmid:16225882
2 Hu X Y, Wen B, Shan X Q. Survey of phthalate pollution in arable soils in China. Journal of Environmental Monitoring , 2003, 5(4): 649-653
doi: 10.1039/b304669a pmid:12948243
3 Jin X C. Organic Compound Pollution and Chemistry — Toxic Organic Compound Pollution and Chemistry. Beijing: Tsinghua University Press, 1990 (in Chinese)
4 Liu H, Liang H C, Liang Y, Zhang D, Wang C, Cai H S, Shvartsev S L. Distribution of phthalate esters in alluvial sediment: a case study at JiangHan Plain, Central China. Chemosphere , 2010, 78(4): 382-388
doi: 10.1016/j.chemosphere.2009.11.009 pmid:20006896
5 Wang F, Xia X H, Sha Y J. Distribution of phthalic acid esters in Wuhan section of the Yangtze River, China. Journal of Hazardous Materials , 2008, 154(1-3): 317-324
doi: 10.1016/j.jhazmat.2007.10.028 pmid:18037235
6 Wang P, Wang S L, Fan C Q. Atmospheric distribution of particulate- and gas-phase phthalic esters (PAEs) in a Metropolitan City, Nanjing, East China. Chemosphere , 2008, 72(10): 1567-1572
doi: 10.1016/j.chemosphere.2008.04.032 pmid:18547606
7 Xu G, Li F H, Wang Q H. Occurrence and degradation characteristics of dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) in typical agricultural soils of China. The Science of the Total Environment , 2008, 393(2-3): 333-340
doi: 10.1016/j.scitotenv.2008.01.001 pmid:18258283
8 Zeng F, Lin Y J, Cui K Y, Wen J X, Ma Y Q, Chen H L, Zhu F, Ma Z L, Zeng Z X. Atmospheric deposition of phthalate esters in a subtropical city. Atmospheric Environment , 2010, 44(6): 834-840
doi: 10.1016/j.atmosenv.2009.11.029
9 Zhang D, Liu H, Liang Y, Wang C, Liang H C, Cai H S. Distribution of phthalate esters in the groundwater of Jianghan plain, Hubei, China. Frontiers of Earth Science in China , 2009, 3(1): 73-79
doi: 10.1007/s11707-009-0017-5 pmid: (in Chinese)
10 Chee K K, Wong M K, Lee H K. Optimization of microwave-assisted solvent extraction of polycyclic aromatic hydrocarbons in marine sediments using a microwave extraction system with high-performance liquid chromatography-fluorescence detection and gas chromatography-mass spectrometry. Journal of Chromatography. A , 1996, 723(2): 259-271
doi: 10.1016/0021-9673(95)00882-9
11 Chen Y S. Analytical methods modification, pollution characteristics, environmental risks dissipation of phthalate esters and antibiotics in soils and water bodies of a typical basin. Dissertation for the Doctoral Degree . Beijing: Graduate School of the Chinese Academy of Sciences, 2010, 43-45 (in Chinese)
12 Li X H, Ma L L, Liu X F, Fu S, Cheng H X, Xu X B. Phthalate ester pollution in urban soil of Beijing, People’s Republic of China. Bulletin of Environmental Contamination and Toxicology , 2006, 77(2): 252-259
doi: 10.1007/s00128-006-1057-0 pmid:16977527
13 Mo C H, Cai Q Y, Tang S R, Zeng Q Y, Wu Q T. Polycyclic aromatic hydrocarbons and phthalic acid esters in vegetables from nine farms of the Pearl River Delta, South China. Archives of Environmental Contamination and Toxicology , 2009, 56(2): 181-189
doi: 10.1007/s00244-008-9177-7 pmid:18491175
14 Zeng F, Cui K Y, Xie Z Y, Wu L N, Liu M, Sun G Q, Lin Y J, Luo D L, Zeng Z X. Occurrence of phthalate esters in water and sediment of urban lakes in a subtropical city, Guangzhou, South China. Environmental Pollution , 2008, 156(2): 425-434
doi: 10.1016/j.envpol.2008.01.045 pmid:18343547
15 Fisher J A, Scarlett M J, Stott A D. Accelerated solvent extraction: an evaluation for screening of soils for selected U.S. EPA semivolatile organic priority pollutants. Environmental Science & Technology , 1997, 31(4): 1120-1127
doi: 10.1021/es9606283
16 Reid A M, Brougham C A, Fogarty A M, Roche J J. Accelerated solvent-based extraction and enrichment of selected plasticisers and 4-nonylphenol, and extraction of tin from organotin sources in sediments, sludges and leachate soils. Analytica Chimica Acta , 2009, 634(2): 197-204
doi: 10.1016/j.aca.2008.12.032 pmid:19185120(in Chinese )
17 Luo C H, Guo Z S, Sun J. Determination of phthalate esters in sediment by accelerated solvent extraction and gas chromatography-triple quadrupole mass spectrometry. Chinese Journal of Chromatography , 2010, 28(5): 487-490
pmid:20812626 (in Chinese )
18 Cai Q Y, Mo C H, Wu Q T, Zeng Q Y. Polycyclic aromatic hydrocarbons and phthalic acid esters in the soil-radish (Raphanus sativus) system with sewage sludge and compost application. Bioresource Technology , 2008, 99(6): 1830-1836
doi: 10.1016/j.biortech.2007.03.035 pmid:17502135
19 Vikels?e J, Thomsen M, Carlsen L. Phthalates and nonylphenols in profiles of differently dressed soils. The Science of the Total Environment , 2002, 296(1-3): 105-116
doi: 10.1016/S0048-9697(02)00063-3 pmid:12398330
20 Peijnenburg W J G M, Struijs J. Rapid communication occurrence of phthalate esters in the environment of the Netherlands . Ecotoxicology and Environmental Safety , 2006, 63(2): 204-215
doi: 10.1016/j.ecoenv.2005.07.023 pmid:16168482
21 Zhang Y H, Chen X D, Li Z S, Lei Z H, Liang X M. GC/MS analysis of PAEs in lake sediments. Journal of Instrumental Analysis , 1995, 14(5): 17-21 (in Chinese)
22 Wang S J, Jian Z H, Luo J. Soil heavy metal pollution character and remove technique in Luqiao District, Taizhou of Zhejiang Province. Earth and Environment , 2006, 34(1): 35-43 1672-9250(2006)01-0035-09 pmid: (in Chinese)
23 Chen D H, Li L P, Bi X H, Zhao J P, Sheng G Y, Fu J M. PBDEs pollution in the atmosphere of a typical e-waste dismantling region. Environmental Science , 2008, 29(8): 2105-2110
pmid:18839557 (in Chinese)
24 Li Y M, Jiang G B, Wang Y W, Wang P, Zhang Q H. Pollution level and phase partition regulation of PCDD/Fs, PCBs and PBDEs in atmosphere of e-waste recycling sites. Chinese Science Bulletin , 2008, 53(4): 165-171 (in Chinese)
25 Ni J Z, Luo Y M, Wei R, Li X H, Qian W. Reasearch on soil environmental quality and remediation of the Yangtze River delta region V. polycyclic aromatic hydrocarbons (PAHs) contamination status and source apportionment in agricultural soils of typical areas. Acta Pedologica Sinica , 2008, 45 (2): 234-239 (in Chinese)
26 USEPA. Ultrasonic Extraction, Organic extraction and sample preparation. Method USEPA 3550 . Washington, DC: USEPA, 1996
27 USEPA. Accelerated Solvent Extraction, Test Methods for Evaluating Solid Waste. Method USEPA 3545 . Washington, DC: USEPA, 1995
28 USEPA. Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS). Method USEPA 8270C . Washington, DC: USEPA, 1996
29 USDA. USDA Soil Texture Calculator. Washington, DC: USDA, 2011
30 Kim S C, Carlson K. Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices. Environmental Science & Technology , 2007, 41(1): 50 -57
31 Shao C M, Zhu W P. ASE-GPC purification-GC/MS for PAEs analysis in soil. Arid Environmental Monitoring , 2009, 23(2): 73-76 (in Chinese)
32 Petrovicè M, Eljarrat E, López de Alda M J, Barceló D. Analysis and environmental levels of endocrine disrupting compounds in freshwater sediments. TrAC Trends in Analytical Chemistry , 2001, 20(11): 637-648
doi: 10.1016/S0165-9936(01)00118-2
33 Lou J. Determination of phthalate esters in plastic tablecloth by accelerated solvent extraction and gas chromatography-mass spectrometry. Chemical Research , 2011, 2(18): 65-67 (in Chinese)
34 Li B P, Lin Q B, Song H, Li L L. Determination of DEHP and DNOP in PVC Film by ASE-RP-HPLC. Chinese Journal of Applied Chemistry , 2008, 25(01): 63-66 (in Chinese)
35 Huang P C, Tien C J, Sun Y M, Hsieh C Y, Lee C C. Occurrence of phthalates in sediment and biota: relationship to aquatic factors and the biota-sediment accumulation factor. Chemosphere , 2008, 73(4): 539-544
doi: 10.1016/j.chemosphere.2008.06.019 pmid:18687453
36 Wang M L, Kou L J, Zhang Y Q, Shi Y X. Matrix solid-phase dispersion and gas chromatography/mass spectrometry for the determination of phthalic acid esters in vegetables. Chinese Journal of Chromatography , 2007, 25(4): 577-580
pmid:17970124 (in Chinese)
37 Zeng F, Chen L X, Cui K Y, Zhang Q. PAEs analysis in sediments by silicon gel-alumina-GC. FENXIHUAXUE Chinese Journal of Analytical Chemistry , 2005, 33(8): 1063-1067 (in Chinese)
38 Jiang Y X, Ye L, Tang M R. Simultaneously residual analysis of seven organophosphorus pesticides in tea. Chinese Journal of Analysis Laboratory , 2007, 26(1): 97-101 (in Chinese)
39 Tienpont B, DavidF, DewulfE, SandraP. Pitfalls and solutions for the trace determination of phthalates in water samples. Chromatographia , 2005, 61(7-8): 365-370
doi: 10.1365/s10337-005-0516-9
40 Giam C S, Chan H S, Neff G S. Sensitive method for determination of phthalate ester plasticizers in open-ocean biota samples. Analytical Chemistry , 1975, 47(13): 2225-2229
doi: 10.1021/ac60363a059 pmid:1238033
41 Cai Q Y, Mo C H, Li Y H, Zeng Q Y, Wang B G, Xiao K E, Li H Q, Xu G S. The study of PAEs in soils from typical vegetable fields in areas of Guangzhou and Shenzhen, South China. Acta Ecologica Sinica , 2005, 25(2): 283-288 (in Chinese)
42 MacMillan D K, Dalton S R, Bednar A J, Waisner S A, Arora P N. Influence of soil type and extraction conditions on perchlorate analysis by ion chromatography. Chemosphere , 2007, 67(2): 344-350
doi: 10.1016/j.chemosphere.2006.09.040 pmid:17092539
43 Zhang Z H, Jin S W, Duan J M, Li M, Huang Y. Phthalates levels in soil samples from the e-waste disassembly sites. Journal of Wuhan Institute of Chemical Technology , 2010, 32(7): 28-32 (in Chinese)
44 Liu W L, Shen C F, Zhang Z, Zhang C B. Distribution of phthalate esters in soil of e-waste recycling sites from Taizhou City in China. Bulletin of Environmental Contamination and Toxicology , 2009, 82(6): 665-667
doi: 10.1007/s00128-009-9699-3 pmid:19290451
45 Tu C, Teng Y, Luo Y M, Pan C, Sun X H, Li Z G. Phytoremediation of polychlorinated biphenyls contaminated soil by leguminosae-gramineae intercropping: a field trial. Environmental Science , 2010, 31(12): 3062-3066
pmid:21360900 (in Chinese)
46 Cai Q Y, Mo C H, Zhu X Z, Wu Q T, Wang B G, Jiang C A, Li H Q. Effect of municipal sludge and chemical fertilizers on phthalic acid esters (PAEs) contents in Ipomoea aquatica grown on paddy soils. Chinese Journal of Applied Ecology , 2003, 14(11): 2001-2005
pmid:14997666 (in Chinese)
47 Cong H F, Wang L X, Shao L. Determination of phthalates in vegetables by liquid chromatography-electrospray ionization mass spectrometry. Food Science and Technology , 2008, (8): 222-224 (in Chinese)
[1] Xiaoli CHAI, Yongxia HAO, Xin ZHAO, Guixiang LIU, Ying ZHU, Rong JI, Jun WU, Huanhuan TONG, Youcai ZHAO. Abiotic association of phthalic acid esters with humic acid of a sludge landfill[J]. Front Envir Sci Eng, 2012, 6(6): 778-783.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed