Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (3) : 388-394    https://doi.org/10.1007/s11783-012-0475-y
RESEARCH ARTICLE
A Pt-Bi bimetallic nanoparticle catalyst for direct electro-oxidation of formic acid in fuel cells
Shu-Hong LI1, Yue ZHAO1, Jian CHU1, Wen-Wei LI1, Han-Qing YU1(), Gang LIU2, Yang-Chao TIAN2
1. Department of Chemistry, University of Science and Technology of China, Hefei 230026, China; 2. National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
 Download: PDF(452 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Direct formic acid fuel cells are a promising portable power-generating device, and the development of efficient anodic catalysts is essential for such a fuel cell. In this work Pt-Bi nanoparticles supported on micro-fabricated gold wire array substrate were synthesized using an electrochemical deposition method for formic acid oxidation in fuel cells. The surface morphology and element components of the Pt-Bi/Au nanoparticles were characterized, and the catalytic activities of the three Pt-Bi/Au nanoparticle electrodes with different Pt/Bi ratios for formic acid oxidation were evaluated. It was found that Pt4Bi96/Au had a much higher catalytic activity than Pt11Bi89/Au and Pt13Bi87/Au, and Pt4Bi96/Au exhibited a current density of 2.7 mA·cm-2, which was 27-times greater than that of Pt/Au. The electro-catalytic activity of the Pt-Bi/Au electrode for formic acid oxidation increased with the increasing Bi content, suggesting that it would be possible to achieve an efficient formic acid oxidation on the low Pt-loading. Therefore, the Pt-Bi/Au electrode offers a promising catalyst with a high activity for direct oxidation of formic acid in fuel cells.

Keywords catalyst      electrochemical deposition      formic acid oxidation      fuel cell      gold wire array      microfabrication     
Corresponding Author(s): YU Han-Qing,Email:hqyu@ustc.edu.cn   
Issue Date: 01 June 2013
 Cite this article:   
Shu-Hong LI,Yue ZHAO,Jian CHU, et al. A Pt-Bi bimetallic nanoparticle catalyst for direct electro-oxidation of formic acid in fuel cells[J]. Front Envir Sci Eng, 2013, 7(3): 388-394.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0475-y
https://academic.hep.com.cn/fese/EN/Y2013/V7/I3/388
Fig.1  Images of the gold wire array substrate: (a) 10× optical zoom; and (b) 50× optical zoom
Fig.2  CVs of the gold wire array substrate in the electrochemical deposition solution (scan rate: 50 mV·s,0.002 mol·L HPtCl, 0.02 mol·L Bi(NO), 40 mL·L triethanolamine, dimethyl sulfoxide)
Fig.3  XPS of the Pt-Bi NPs supported on gold wire array substrate: (a) PtBi/Au; and (b) three different Pt-Bi/Au catalysts
catalystratio of atomic wt.% of Pt and Bistoichiometrymolar ratio of Pt and Bi in deposition solutions
Pt4Bi96/Au3.98∶96.02PtBi24.1/Au1∶10
Pt11Bi89/Au10.61∶89.39PtBi8.43/Au1∶5
Pt13Bi87/Au12.71∶87.29PtBi6.87/Au1∶2
Tab.1  Structural parameters of the Pt-Bi/Au catalysts
Fig.4  SEM images of the Pt-Bi NPs. (a) PtBi/Au; (b) PtBi/Au; and (c) PtBi/Au
Fig.5  CVs of the three electrodes at a scan rate of 10 mV·s in 0.1 mol·L HSO, 0.25 mol·L HCOOH aqueous solution: (A) PtBi/Au; (B) PtBi/Au; and (C) PtBi/Au. The inset is the magnified CV of Pt/Au
Fig.6  Chronoamperograms of the three electrodes at a scan rate of 0.4 V·s in 0.1 mol·L HSO, 0.25 mol·L HCOOH aqueous solution: (A) PtBi/Au; (B) PtBi/Au; (C) PtBi/Au; and (D) Pt/Au
Fig.7  CVs of PtBi/Au, Pt-Bi/Au-film and Pt-Bi/ITO electrodes at a scan rate of 10 mV·s in 0.1 mol·L HSO, 0.25 mol·L HCOOH aqueous solution
1 Wasmus S, Küver A. Methanol oxidation and direct methanol fuel cells: a selective review. Journal of Electroanalytical Chemistry , 1999, 461(1-2): 14–31
doi: 10.1016/S0022-0728(98)00197-1
2 Antolini E. Palladium in fuel cell catalysis. Energy and Environmental Science , 2009, 2(9): 915–931
doi: 10.1039/b820837a
3 Youn D H, Bae G, Ham D J, Lee J S. Electrocatalysts for electrooxidation of methyl formate. Applied Catalysis A: General , 2011, 393(1-2): 309–316
doi: 10.1016/j.apcata.2010.12.014
4 Fang B Z, Kim M, Yu J S. Hollow core/mesoporous shell carbon as a highly efficient catalyst support in direct formic acid fuel cell. Applied Catalysis B: Environmental , 2008, 84(1-2): 100–105
doi: 10.1016/j.apcatb.2008.03.005
5 Wang X, Hu J M, Hsing I M. Electrochemical investigation of formic acid electro-oxidation and its crossover through a Nafion? membrane. Journal of Electroanalytical Chemistry , 2004, 562(1): 73–80
doi: 10.1016/j.jelechem.2003.08.010
6 Weber M, Wang J T, Wasmus S, Savinell R F. Formic acid oxidation in a polymer electrolyte fuel cell: a real-time mass-spectrometry study. Journal of the Electrochemical Society , 1996, 143(7): L158–L160
doi: 10.1149/1.1836961
7 Liu Z L, Hong L, Tham M P, Lim T H, Jiang H X. Nanostructured Pt/C and Pd/C catalysts for direct formic acid fuel cells. Journal of Power Sources , 2006, 161(2): 831–835
doi: 10.1016/j.jpowsour.2006.05.052
8 Xu C X, Liu Y Q, Wang J P, Geng H R, Qiu H J. Nanoporous PdCu alloy for formic acid electro-oxidation. Journal of Power Sources , 2012, 199(1): 124–131
doi: 10.1016/j.jpowsour.2011.10.075
9 Xu J B, Zhao T S, Liang Z X. Carbon supported platinum-gold alloy catalyst for direct formic acid fuel cells. Journal of Power Sources , 2008, 185(2): 857–861
doi: 10.1016/j.jpowsour.2008.09.039
10 Ha S, Larsen R, Zhu Y, Masel R I. Direct formic acid fuel cells with 600 mA·cm-2 at 0.4 V and 22℃. Fuel Cells (Weinheim) , 2004, 4(4): 337–343
doi: 10.1002/fuce.200400052
11 Yu X W, Pickup P G. Codeposited PtSb/C catalysts for direct formic acid fuel cells. Journal of Power Sources , 2011, 196(19): 7951–7956
doi: 10.1016/j.jpowsour.2011.05.051
12 Waszczuk P, Barnard T M, Rice C, Masel R I, Wieckowski A. A nanoparticle catalyst with superior activity for electrooxidation of formic acid. Electrochemistry Communications , 2002, 4(7): 599–603
doi: 10.1016/S1388-2481(02)00386-7
13 Rice C, Ha S, Masel R I, Wieckowski A. Catalysts for direct formic acid fuel cells. Journal of Power Sources , 2003, 115(2): 229–235
doi: 10.1016/S0378-7753(03)00026-0
14 Choi J H, Jeong K J, Dong Y, Han J, Lim T H, Lee J S, Sung Y E. Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells. Journal of Power Sources , 2006, 163(1): 71–75
doi: 10.1016/j.jpowsour.2006.02.072
15 Uhm S Y, Chung S T, Lee J Y. Activity of Pt anode catalyst modified by underpotential deposited Pb in a direct formic acid fuel cell. Electrochemistry Communications , 2007, 9(8): 2027–2031
doi: 10.1016/j.elecom.2007.05.029
16 Zhou X C, Xing W, Liu C P, Lu T H. Platinum-macrocycle co-catalyst for electro-oxidation of formic acid. Electrochemistry Communications , 2007, 9(7): 1469–1473
doi: 10.1016/j.elecom.2007.01.045
17 Herrero E, Fernández-Vega A, Feliu J M, Aldez A. Poison formation reaction from formic acid and methanol on Pt(111) electrodes modified by irreversibly adsorbed Bi and As. Journal of Electroanalytical Chemistry , 1993, 350(1-2): 73–88
doi: 10.1016/0022-0728(93)80197-P
18 Xia X, Iwasita T. Influence of underpotential deposited lead upon the oxidation of HCOOH in HClO4 at platinum electrodes. Journal of the Electrochemical Society , 1993, 140(9): 2559–2565
doi: 10.1149/1.2220862
19 Casado-Rivera E, Volpe D J, Alden L, Lind C, Downie C, Vázquez-Alvarez T, Angelo A C D, DiSalvo F J, Abru?a H D. Electrocatalytic activity of ordered intermetallic phases for fuel cell applications. Journal of the American Chemical Society , 2004, 126(12): 4043–4049
doi: 10.1021/ja038497a pmid:15038758
20 Tripkovi A V?, Popovic K D, Stevanovic R M, Socha R, Kowal A. Activity of a PtBi alloy in the electrochemical oxidation of formic acid. Electrochemistry Communications , 2006, 8(9): 1492–1498
doi: 10.1016/j.elecom.2006.07.005
21 Larsen R, Ha S, Zakzeski J, Masel R I. Unusally active palldaium-based catalysts for the electrooxidation of formic acid. Journal of Power Sources , 2006, 157(1): 78–84
doi: 10.1016/j.jpowsour.2005.07.066
22 Li X G, Hsing I M. Electrooxidation of formic acid on carbon supported PtxPd1-x(x = 0-1) nanocatalysts. Electrochimica Acta , 2006, 51(17): 3477–3483
doi: 10.1016/j.electacta.2005.10.005
23 Liu H S, Song C J, Zhang L, Zhang J J, Wang H J, Wilkinson D P. A review of anode catalysts in the direct methanol fuel cell. Journal of Power Sources , 2006, 155(2): 95–110
doi: 10.1016/j.jpowsour.2006.01.030
24 Yi Q F, Chen A C, Huang W, Zhang J J, Liu X P, Xu G R, Zhou Z H. Titanium-supported nanoporous bimetallic Pt-Ir electrocatalysts for formic acid oxidation. Electrochemistry Communications , 2007, 9(7): 1513–1518
doi: 10.1016/j.elecom.2007.02.014
25 Larsen R, Zakzeski J, Masel R I. Unexpected activity of palladium on Vandia catalysts for formic acid electro-oxidation. Electrochemical and Solid-State Letters , 2005, 8(6): A291–A293
doi: 10.1149/1.1904464
26 Lee J M, Han S B, Song Y J, Kim J Y, Roh B, Hwang I, Choi W, Park K W. Methanol electrooxidation of Pt catalyst on titanium nitride nanostructured support. Applied Catalysis A: General , 2010, 375(1): 149–155
doi: 10.1016/j.apcata.2009.12.037
27 Umeda M, Ojima H, Mohamedi M, Uchida I. Methanol electrooxidation at Pt-Ru-W sputter deposited on Au substrate. Journal of Power Sources , 2004, 136(1): 10–15
doi: 10.1016/j.jpowsour.2004.05.013
28 Jin C C, Sun X J, Dong R L, Chen Z D. Electrocatalytic oxidation of allyl alcohol on Pd and Pd-modified Au electrodes in alkaline solution. Applied Catalysis A: General , 2012, 431-432: 57–61
doi: 10.1016/j.apcata.2012.04.017
29 Chen Y P, Zhao Y, Qiu K Q, Chu J, Lu R, Sun M, Liu X W, Sheng G P, Yu H Q, Chen J, Li W J, Liu G, Tian Y C, Xiong Y. An innovative miniature microbial fuel cell fabricated using photolithography. Biosensors & Bioelectronics , 2011, 26(6): 2841–2846
doi: 10.1016/j.bios.2010.11.016 pmid:21169010
30 Zach M P, Ng K H, Penner R M. Molybdenum nanowires by electrodeposition. Science , 2000, 290(5499): 2120–2123
doi: 10.1126/science.290.5499.2120 pmid:11118141
31 Penner R M. Mesoscopic metal particles and wires by electrodeposition. Journal of Physical Chemistry B , 2002, 106(13): 3339–3353
doi: 10.1021/jp013219o
32 Sanabria-Chinchilla J, Abe H, DiSalvo F J, Abru?a H D. Surface characterization of ordered intermetallic PtBi(001) surfaces by ultra-high vacuum-electrochemistry. Surface Science , 2008, 602(10): 1830–1836
doi: 10.1016/j.susc.2008.03.040
[1] Qiuzhun Chen, Xiang Zhang, Bing Li, Shengli Niu, Gaiju Zhao, Dong Wang, Yue Peng, Junhua Li, Chunmei Lu, John Crittenden. Insight into the promotion mechanism of activated carbon on the monolithic honeycomb red mud catalyst for selective catalytic reduction of NOx[J]. Front. Environ. Sci. Eng., 2021, 15(5): 92-.
[2] Ting Wang, Renxian Zhou. PM-support interfacial effect and oxygen mobility in Pt, Pd or Rh-loaded (Ce,Zr,La)O2 catalysts[J]. Front. Environ. Sci. Eng., 2021, 15(4): 76-.
[3] Xinyi Liu, Caichao Wan, Xianjun Li, Song Wei, Luyu Zhang, Wenyan Tian, Ken-Tye Yong, Yiqiang Wu, Jian Li. Sustainable wood-based nanotechnologies for photocatalytic degradation of organic contaminants in aquatic environment[J]. Front. Environ. Sci. Eng., 2021, 15(4): 54-.
[4] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[5] Chen Wang, Jun Wang, Jianqiang Wang, Meiqing Shen. Promotional effect of ion-exchanged K on the low-temperature hydrothermal stability of Cu/SAPO-34 and its synergic application with Fe/Beta catalysts[J]. Front. Environ. Sci. Eng., 2021, 15(2): 30-.
[6] Yan Zhang, Yuyan Zhang, Xue Li, Xiaohan Zhao, Cosmos Anning, John Crittenden, Xianjun Lyu. Photocatalytic water splitting of ternary graphene-like photocatalyst for the photocatalytic hydrogen production[J]. Front. Environ. Sci. Eng., 2020, 14(4): 69-.
[7] Jing Gu, Hongtao Yu, Xie Quan, Shuo Chen, Junfeng Niu. Utilizing transparent and conductive SnO2 as electron mediator to enhance the photocatalytic performance of Z-scheme Si-SnO2-TiOx[J]. Front. Environ. Sci. Eng., 2020, 14(4): 72-.
[8] Xingguo Guo, Qiuying Wang, Ting Xu, Kajia Wei, Mengxi Yin, Peng Liang, Xia Huang, Xiaoyuan Zhang. One-step ball milling-prepared nano Fe2O3 and nitrogen-doped graphene with high oxygen reduction activity and its application in microbial fuel cells[J]. Front. Environ. Sci. Eng., 2020, 14(2): 30-.
[9] Jianzhi Huang, Huichun Zhang. Oxidant or catalyst for oxidation? The role of manganese oxides in the activation of peroxymonosulfate (PMS)[J]. Front. Environ. Sci. Eng., 2019, 13(5): 65-.
[10] Shicheng Wei, Cuiping Zeng, Yaobin Lu, Guangli Liu, Haiping Luo, Renduo Zhang. Degradation of antipyrine in the Fenton-like process with a La-doped heterogeneous catalyst[J]. Front. Environ. Sci. Eng., 2019, 13(5): 66-.
[11] Xiaoxue Mei, Heming Wang, Dianxun Hou, Fernanda Leite Lobo, Defeng Xing, Zhiyong Jason Ren. Shipboard bilge water treatment by electrocoagulation powered by microbial fuel cells[J]. Front. Environ. Sci. Eng., 2019, 13(4): 53-.
[12] Hang Zhang, Shuo Chen, Haiguang Zhang, Xinfei Fan, Cong Gao, Hongtao Yu, Xie Quan. Carbon nanotubes-incorporated MIL-88B-Fe as highly efficient Fenton-like catalyst for degradation of organic pollutants[J]. Front. Environ. Sci. Eng., 2019, 13(2): 18-.
[13] Zhen Li, Zhaofu Qiu, Ji Yang, Benteng Ma, Shuguang Lu, Chuanhui Qin. Investigation of phosphate adsorption from an aqueous solution using spent fluid catalytic cracking catalyst containing lanthanum[J]. Front. Environ. Sci. Eng., 2018, 12(6): 15-.
[14] Xuejiao Wang, Xiang Feng, Jing Shang. Efficient photoelectrochemical oxidation of rhodamine B on metal electrodes without photocatalyst or supporting electrolyte[J]. Front. Environ. Sci. Eng., 2018, 12(6): 11-.
[15] Jie Mao, Xie Quan, Jing Wang, Cong Gao, Shuo Chen, Hongtao Yu, Yaobin Zhang. Enhanced heterogeneous Fenton-like activity by Cu-doped BiFeO3 perovskite for degradation of organic pollutants[J]. Front. Environ. Sci. Eng., 2018, 12(6): 10-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed