Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (3) : 451-456    https://doi.org/10.1007/s11783-013-0509-0
RESEARCH ARTICLE
Catalytic ozonation performance and surface property of supported Fe3O4 catalysts dispersions
Zhendong YANG, Aihua LV, Yulun NIE(), Chun HU()
State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
 Download: PDF(165 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fe3O4 was supported on mesoporous Al2O3 or SiO2 (50 wt.%) using an incipient wetness impregnation method, and Fe3O4/Al2O3 exhibited higher catalytic efficiency for the degradation of 2,4-dichlorophenoxyacetic acid and para-chlorobenzoic acid aqueous solution with ozone. The effect and morphology of supported Fe3O4 on catalytic ozonation performance were investigated based on the characterization results of X-ray diffraction, X-ray photoelectron spectroscopy, BET analysis and Fourier transform infrared spectroscopy. The results indicated that the physical and chemical properties of the catalyst supports especially their Lewis acid sites had a significant influence on the catalytic activity. In comparison with SiO2, more Lewis acid sites existed on the surface of Al2O3, resulting in higher catalytic ozonation activity. During the reaction process, no significant Fe ions release was observed. Moreover, Fe3O4/Al2O3 exhibited stable structure and activity after successive cyclic experiments. The results indicated that the catalyst is a promising ozonation catalyst with magnetic separation in drinking water treatment.

Keywords heterogeneous catalytic ozonation      iron oxides      supports      surface Lewis acid sites     
Corresponding Author(s): NIE Yulun,Email:ylnie@rcees.ac.cn (Y.L. Nie); HU Chun,Email:huchun@rcees.ac.cn (C. Hu)   
Issue Date: 01 June 2013
 Cite this article:   
Zhendong YANG,Aihua LV,Yulun NIE, et al. Catalytic ozonation performance and surface property of supported Fe3O4 catalysts dispersions[J]. Front Envir Sci Eng, 2013, 7(3): 451-456.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0509-0
https://academic.hep.com.cn/fese/EN/Y2013/V7/I3/451
Fig.1  XRD patterns of (a) FeO/AlO, (b) FeO/SiO
Fig.2  XPS spectra of (a) FeO/AlO, (b) FeO/SiO
Fig.3  Room-temperature magnetization loops of FeO/AlO and FeO/SiO
Fig.4  N adsorption-desorption isotherms (A) and pore size distribution (B) of (a) FeO/SiO, (b) FeO/AlO
SampleBET surface area/(m2·g-1)total pore volume/(cm3·g-1)
Al2O3Fe3O4/Al2O3SiO2Fe3O4/SiO2287.0103.6644.1205.20.490.260.850.30
Tab.1  BET area and pore size distribution of different samples
Fig.5  FTIR spectra of pyridine adsorbed on (a) AlO, (b) SiO at 473 K
SampleAcidities/ (μmol·g-1)
Lewis acid (200°C)Lewis acid (350°C)
Al2O30.540.24
SiO20.0360.021
Tab.2  Surface acidities of AlO and SiO
Fig.6  TOC removal during the 2,4-D degradation process in aqueous dispersions of various catalysts with ozone: (a) no catalyst, (b) FeO, (c) FeO/SiO, (d) FeO/AlO. (pH= 6, 2,4-D= 20 mg·L, catalyst= 1 g·L, gaseous ozone concentration= 30 mg·L)
Fig.7  CBA removal under different conditions: (a) adsorption on FeO/AlO, (b) O alone, (c) FeO/AlO with O. (pH= 6, CBA= 10 mg·L, catalyst= 1 g·L, gaseous ozone concentration= 30 mg·L)
Fig.8  TOC removal during multicycle degradation of 2,4-D over FeO/AlO with ozone. (pH= 6, 2,4-D= 20 mg·L, catalyst= 1 g·L, gaseous ozone concentration= 30 mg·L)
Fig.9  XRD patterns of FeO and FeO/AlO before and after reaction: (a) FeO, (b) FeO after reaction, (c) FeO/AlO, (d) FeO/AlO after reaction
1 Kasprzyk-Hordern B, Ziolek M, Nawrocki J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Applied Catalysis B: Environmental , 2003, 46(4): 639–669
doi: 10.1016/S0926-3373(03)00326-6
2 Benner J, Ternes T A. Ozonation of propranolol: formation of oxidation products. Environmental Science & Technology , 2009, 43(13): 5086–5093
doi: 10.1021/es900282c pmid:19673311
3 Nawrocki J, Kasprzyk-Hordern B. The efficiency and mechanisms of catalytic ozonation. Applied Catalysis B: Environmental , 2010, 99(1-2): 27–42
doi: 10.1016/j.apcatb.2010.06.033
4 Song S, Liu Z W, He Z Q, Zhang A L, Chen J M, Yang Y P, Xu X H. Impacts of morphology and crystallite phases of titanium oxide on the catalytic ozonation of phenol. Environmental Science & Technology , 2010, 44(10): 3913–3918
doi: 10.1021/es100456n pmid:20408545
5 Sui M H, Sheng L, Lu K X, Tian F. FeOOH catalytic ozonation of oxalic acid and the effect of phosphate binding on its catalytic activity. Applied Catalysis B: Environmental , 2010, 96(1-2): 94–100
doi: 10.1016/j.apcatb.2010.02.005
6 Yang L, Hu C, Nie Y L, Qu J H. Catalytic ozonation of selected pharmaceuticals over mesoporous alumina-supported manganese oxide. Environmental Science & Technology , 2009, 43(7): 2525–2529
doi: 10.1021/es803253c pmid:19452911
7 Einaga H, Futamura S. Comparative study on the catalytic activities of alumina-supported metal oxides for oxidation of benzene and cyclohexane with ozone. Reaction Kinetics and Catalysis Letters , 2004, 81(1): 121–128
doi: 10.1023/B:REAC.0000016525.91158.c5
8 Liu H N, Qing B J, Ye X S, Li Q, Lee K, Wu Z J. Boron adsorption by composite magnetic particles. Chemical Engineering Journal , 2009, 151(1-3): 235–240
doi: 10.1016/j.cej.2009.03.001
9 Chen H W, Kuo Y L, Chiou C S, You S W, Ma C M, Chang C T. Mineralization of reactive Black 5 in aqueous solution by ozone/H2O2 in the presence of a magnetic catalyst. Journal of Hazardous Materials , 2010, 174(1-3): 795–800
doi: 10.1016/j.jhazmat.2009.09.122 pmid:19854571
10 Lv A H, Hu C, Nie Y L, Qu J H. Catalytic ozonation of toxic pollutants over magnetic cobalt and manganese co-doped γ-Fe2O3. Applied Catalysis B: Environmental , 2010, 100(1-2): 62–67
doi: 10.1016/j.apcatb.2010.07.011
11 Lv A H, Hu C, Nie Y L, Qu J H. Catalytic ozonation of toxic pollutants over magnetic cobalt-doped Fe3O4 suspensions. Applied Catalysis B: Environmental , 2011, 117-118: 246–252
12 Reddy B M, Rao K N, Bharali P. Copper promoted cobalt and nickel catalysts supported on ceria-alumina mixed oxide: Structural characterization and CO oxidation activity. Industrial & Engineering Chemistry Research , 2009, 48(18): 8478–8486
doi: 10.1021/ie900755b
13 Liu L J, Chen Y, Dong L H, Zhu J, Wan H Q, Liu B, Zhao B, Zhu H Y, Sun K Q, Dong L, Chen Y. Investigation of the NO removal by CO on CuO-CoOx binary metal oxides supported on Ce0.67Zr0.33O2. Applied Catalysis B: Environmental , 2009, 90(1-2): 105–114
doi: 10.1016/j.apcatb.2009.02.021
14 Yang L, Hu C, Nie Y L, Qu J H. Surface acidity and reactivity of β-FeOOH/Al2O3 for pharmaceuticals degradation with ozone: In situ ATR-FTIR studies. Applied Catalysis B: Environmental , 2010, 97(3-4): 340–346
doi: 10.1016/j.apcatb.2010.04.014
15 Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science , 1998, 279(5350): 548–552
doi: 10.1126/science.279.5350.548 pmid:9438845
16 Ueda R, Kusakari T, Tomishige K, Fujimoto K. Nature of spilt-over hydrogen on acid sites in zeolites: Observation of the behavior of adsorbed pyridine on zeolite catalysts by means of FTIR. Journal of Catalysis , 2000, 194(1): 14–22
doi: 10.1006/jcat.2000.2906
17 Wandelt K. Photoemission studies of adsorbed oxygen and oxide layers. Surface Science Reports , 1982, 2(1): 1–121
doi: 10.1016/0167-5729(82)90003-6
18 Temesghen W, Sherwood P. Analytical utility of valence band X-ray photoelectron spectroscopy of iron and its oxides, with spectral interpretation by cluster and band structure calculations. Analytical and Bioanalytical Chemistry , 2002, 373(7): 601–608
doi: 10.1007/s00216-002-1362-3 pmid:12185571
19 Bulanin K M, Lavalley J C, Tsyganenko A A. IR spectra of adsorbed ozone. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 1995, 101(2-3): 153–158
doi: 10.1016/0927-7757(95)03130-6
20 Al-Abadleh H A, Grassian V H. FT-IR study of water adsorption on aluminum oxide surfaces. Langmuir , 2003, 19(2): 341–347
doi: 10.1021/la026208a
21 Jung H, Choi H. Catalytic decomposition of ozone and para-chlorobenzoic acid (pCBA) in the presence of nanosized ZnO. Applied Catalysis B: Environmental , 2006, 66(3-4): 288–294
doi: 10.1016/j.apcatb.2006.03.009
[1] Jianzhi Huang, Huichun Zhang. Redox reactions of iron and manganese oxides in complex systems[J]. Front. Environ. Sci. Eng., 2020, 14(5): 76-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed