|
|
Enhanced dewatering characteristics of waste activated sludge with Fenton pretreatment: effectiveness and statistical optimization |
Guangyin ZHEN1,3, Xueqin LU2,3, Baoying WANG4, Youcai ZHAO1( ), Xiaoli CHAI1, Dongjie NIU1, Tiantao ZHAO1 |
1. The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; 2. School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; 3. Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan; 4. Shanghai Tongji Construction Co., Ltd, Shanghai 200092, China |
|
|
Abstract In this work, the enhanced dewaterabing characteristics of waste activated sludge using Fenton pretreatment was investigated in terms of effectiveness and statistical optimization. Response surface method (RSM) and central composite design (CCD) were applied to evaluate and optimize the effectiveness of important operational parameters, i.e., H2O2 concentrations, Fe2+ concentrations and initial pH values. A significant quadratic polynomial model was obtained (R2= 0.9189) with capillary suction time (CST) reduction efficiency as the response. Numerical optimization based on desirability function was carried out. The optimum values for H2O2, Fe2+, and initial pH were found to be 178 mg·g-1 VSS (volatile suspended solids), 211 mg·g-1 VSS and 3.8, respectively, at which CST reduction efficiency of 98.25% could be achieved. This complied well with those predicted by the established polynomial model. The results indicate that Fenton pretreatment is an effective technique for advanced waste activated sludge dewatering. The enhancement of sludge dewaterability by Fenton’s reagent lies in the migration of sludge bound water due to the disintegration of sludge flocs and microbial cells lysis.
|
Keywords
Fenton pretreatment
response surface methodology (RSM)
capillary suction time (CST)
dewaterabilty
molecular weight distribution
|
Corresponding Author(s):
ZHAO Youcai,Email:zhaoyoucai@tongji.edu.cn
|
Issue Date: 01 April 2014
|
|
1 |
Feng X, Deng J C, Lei H Y, Bai T, Fan Q J, Li Z X. Dewaterability of waste activated sludge with ultrasound conditioning. Bioresource Technology , 2009, 100(3): 1074–1081 doi: 10.1016/j.biortech.2008.07.055 pmid:18783942
|
2 |
Sakohara S, Ochiai E, Kusaka T. Dewatering of activated sludge by thermosensitive polymers. Separation and Purification Technology , 2007, 56(3): 296–302 doi: 10.1016/j.seppur.2007.02.004
|
3 |
Lee C H, Liu J C. Sludge dewaterability and floc structure in dual polymer conditioning. Advances in Environmental Research , 2001, 5(2): 129–136 doi: 10.1016/S1093-0191(00)00049-6
|
4 |
Watanabe Y, Kubo K, Sato S. Application of amphoteric polyelectrolytes for sludge dewatering. Langmuir , 1999, 15(12): 4157–4164 doi: 10.1021/la981130c
|
5 |
Li H, Jin Y Y, Nie Y F. Application of alkaline treatment for sludge decrement and humic acid recovery. Bioresource Technology , 2009, 100(24): 6278–6283 doi: 10.1016/j.biortech.2009.07.022 pmid:19651507
|
6 |
Yuan H P, Zhu N W, Song F Y. Dewaterability characteristics of sludge conditioned with surfactants pretreatment by electrolysis. Bioresource Technology , 2011, 102(3): 2308–2315 doi: 10.1016/j.biortech.2010.10.065 pmid:21041078
|
7 |
Pei H Y, Hu W R, Liu Q H. Effect of protease and cellulase on the characteristic of activated sludge. Journal of Hazardous Materials , 2010, 178(1–3): 397–403 doi: 10.1016/j.jhazmat.2010.01.094 pmid:20138701
|
8 |
Yu Q, Lei H L, Yu G W, Feng X, Li Z X, Wu Z C. Influence of microwave irradiation on sludge dewaterability. Chemical Engineering Journal , 2009, 155(1–2): 88–93 doi: 10.1016/j.cej.2009.07.010
|
9 |
Lu M C, Lin C J, Liao C H, Ting W P, Huang R Y. Influence of pH on the dewatering of activated sludge by Fenton’s reagent. Water Science and Technology , 2001, 44(10): 327–332 pmid:11794674
|
10 |
Lu M C, Lin C J, Liao C H. Huang R Y, Ting W P. Dewatering of activated sludge by Fenton’s reagent. Advances in Environmetal Research , 2003, 7(3): 667–670
|
11 |
Neyens E, Baeyens J, Dewil R, de heyder B. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. Journal of Hazardous Materials , 2004, 106(2–3): 83–92 doi: 10.1016/j.jhazmat.2003.11.014 pmid:15177096
|
12 |
Kwon J H, Park K Y, Park J H, Lee S H, Ahn K H. Acidic and hydrogen peroxide treatment of polyaluminum chloride (PACL) sludge from water treatment. Water Science and Technology , 2004, 50(9): 99–105 pmid:15581000
|
13 |
Buyukkamaci N. Biological sludge conditioning by Fenton’s reagent. Process Biochemistry , 2004, 39(11): 1503–1506 doi: 10.1016/S0032-9592(03)00294-2
|
14 |
Wang X, Niu D J, Yang X S, Zhao Y C. Optimization of methane fermentation from effluent of bio-hydrogen fermentation process using response surface methodology. Bioresource Technology , 2008, 99(10): 4292–4299 doi: 10.1016/j.biortech.2007.08.046 pmid:17920883
|
15 |
Mohajeri S, Aziz H A, Isa M H, Zahed M A, Adlan M N. Statistical optimization of process parameters for landfill leachate treatment using electro-Fenton technique. Journal of Hazardous Materials , 2010, 176(1–3): 749–758 doi: 10.1016/j.jhazmat.2009.11.099 pmid:20022166
|
16 |
Benatti C T, Tavares C R, Guedes T A. Optimization of Fenton’s oxidation of chemical laboratory wastewaters using the response surface methodology. Journal of Environmental Management , 2006, 80(1): 66–74 doi: 10.1016/j.jenvman.2005.08.014 pmid:16377070
|
17 |
Kshirsagar A C, Singhal R S. Optimization of starch oleate derivatives from native corn and hydrolyzed corn starch by response surface methodology. Carbohydrate Polymers , 2007, 69(3): 455–461 doi: 10.1016/j.carbpol.2007.01.007
|
18 |
Yuan H P, Zhu N W, Song L J. Conditioning of sewage sludge with electrolysis: effectiveness and optimizing study to improve dewaterability. Bioresource Technology , 2010, 101(12): 4285–4290 doi: 10.1016/j.biortech.2009.12.147 pmid:20153168
|
19 |
Ahmad A L, Ismail S, Bhatia S. Optimization of coagulation-flocculation process for palm oil mill effluent using response surface methodology. Environmental Science & Technology , 2005, 39(8): 2828–2834 doi: 10.1021/es0498080 pmid:15884382
|
20 |
Tony M A, Zhao Y Q, Fu J F, Tayeb A M. Conditioning of aluminium-based water treatment sludge with Fenton’s reagent: effectiveness and optimising study to improve dewaterability. Chemosphere , 2008, 72(4): 673–677 doi: 10.1016/j.chemosphere.2008.03.032 pmid:18457862
|
21 |
Mustranta A, Viikari L. Dewatering of activated sludge by an oxidative treatment. Water Science and Technology , 1993, 28(1): 213–221
|
22 |
APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed. Washington, DC, USA: American Public Health Association Inc., 1998
|
23 |
Neyens E, Baeyens J. A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials , 2003, 98(1–3): 33–50 doi: 10.1016/S0304-3894(02)00282-0 pmid:12628776
|
24 |
Badawy M I, Ali M E M. Fenton’s peroxidation and coagulation processes for the treatment of combined industrial and domestic wastewater. Journal of Hazardous Materials , 2006, 136(3): 961–966 doi: 10.1016/j.jhazmat.2006.01.042 pmid:16540240
|
25 |
Rastogi A, Ai-Abed S R, Dionysiou D D. Sulfate radical-based ferrous peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Applied Catalysis B: Environmental , 2009, 85(3–4): 171–179 doi: 10.1016/j.apcatb.2008.07.010
|
26 |
Zhen G Y, Lu X Q, Zhao Y C, Chai X L, Niu D J. Enhanced dewaterability of sewage sludge in the presence of Fe(II)-activated persulfate oxidation. Bioresource Technology , 2012, 116: 259–265 doi: 10.1016/j.biortech.2012.01.170 pmid:22542138
|
27 |
Adav S S, Lee D J, Tay J H. Extracellular polymeric substances and structural stability of aerobic granule. Water Research , 2008, 42(6–7): 1644–1650 doi: 10.1016/j.watres.2007.10.013 pmid:17977570
|
28 |
Liu X M, Sheng G P, Luo H W, Zhang F, Yuan S J, Xu J, Zeng R J, Wu J G, Yu H Q. Contribution of extracellular polymeric substances (EPS) to the sludge aggregation. Environmental Science & Technology , 2010, 44(11): 4355–4360 doi: 10.1021/es9016766 pmid:20446688
|
29 |
Badireddy A R, Chellam S, Gassman P L, Engelhard M H, Lea A S, Rosso K M. Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions. Water Research , 2010, 44(15): 4505–4516 doi: 10.1016/j.watres.2010.06.024 pmid:20619438
|
30 |
Stumm W, Morgan J J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed. New York: Wiley, 1996
|
31 |
Li X Y, Yang S F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Research , 2007, 41(5): 1022–1030 doi: 10.1016/j.watres.2006.06.037 pmid:16952388
|
32 |
Zhen G Y, Yan X F, Zhou H Y, Chen H, Zhao T T, Zhao Y C. Effects of calcined aluminum salts on the advanced dewatering and solidification/stabilization of sewage sludge. Journal of Environmental Sciences-China , 2011, 23(7): 1225–1232 doi: 10.1016/S1001-0742(10)60539-6 pmid:22125919
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|