Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2014, Vol. 8 Issue (3) : 394-404    https://doi.org/10.1007/s11783-013-0602-4
RESEARCH ARTICLE
Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings
YANG Shengxiang1,2,3,LIANG Shichu2,(),YI Langbo,XU Bibo3,CAO Jianbing4,GUO Yifeng,ZHOU Yu
College of Bio-resources and Environmental Science and Key Laboratory of Plant Resources Conservation and Utilization, Jishou University, Jishou 416000, China
Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education of China, Guilin 541000, China
College of Environmental Science & Engineering, Hunan University, Changsha 410082, China
Huayuan Environmental Protection Bureau, Huayuan 416000, China
 Download: PDF(173 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Screening plants that are hypertolerant to and excluders of certain heavy metals plays a fundamental role in a remediation strategy for metalliferous mine tailings. A field survey of terrestrial higher plants growing on Mn mine tailings at Huayuan, Hunan Province, China was conducted to identify candidate species for application in phytostabilization of the tailings in this region. In total, 51 species belonging to 21 families were recorded and the 12 dominant plants were investigated for their potential in phytostabilization of heavy metals. Eight plant species, Alternanthera philoxeroides, Artemisia princeps, Bidens frondosa, Bidens pilosa, Cynodon dactylon, Digitaria sanguinalis, Erigeron canadensis, and Setaria plicata accumulated much lower concentrations of heavy metals in shoots and roots than the associated soils and bioconcentration factors (BFs) for Cd, Mn, Pb and Zn were all<1, demonstrating a high tolerance to heavy metals and poor metals translocation ability. The field investigation also found that these species grew fast, accumulated biomass rapidly and developed a vegetation cover in a relatively short time. Therefore, they are good candidates for phytostabilization purposes and could be used as pioneer species in phytoremediation of Mn mine tailings in this region of South China.

Keywords Mn mine tailings      heavy metal accumulation      phytostabilization     
Corresponding Author(s): LIANG Shichu   
Issue Date: 19 May 2014
 Cite this article:   
YANG Shengxiang,LIANG Shichu,YI Langbo, et al. Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings[J]. Front.Environ.Sci.Eng., 2014, 8(3): 394-404.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0602-4
https://academic.hep.com.cn/fese/EN/Y2014/V8/I3/394
parameterstailingscapped soil
ZX[I]ZX[II]GK[I]XY[II]
area/hm2158510ND
cover/%50805080ND
pH5.99±0.115.41±0.315.80±0.216.62±0.085.34±0.09
EC/(dS·m-1)2.57±0.523.33±0.672.43±0.772.99±0.470.22±0.01
OM/%0.13±0.030.23±0.010.18±0.020.31±0.060.89±0.09
TN/(mg·kg-1)0.83±0.001.41±0.010.69±0.001.06±0.022.28±0.03
TP/(mg·kg-1)20.69±2.3232.44±3.4339.46±2.9128.08±1.34276.35±25.09
TK/(mg·kg-1)482.28±14.42520.89±21.18503.17±30.08468.41±19.30852.46±38.34
total Cd/(mg·kg-1)16.20±3.8320.15±4.0426.05±3.1218.65±2.901.87±0.05
DTPA-Cd/(mg·kg-1)0.63±0.201.24±0.130.58±0.091.43±0.230.21±0.00
total Mn/(mg·kg-1)8591.75±676.379006.95±499.256832.19±501.827044.46±756.551588.73±63.48
DTPA-Mn/(mg·kg-1)782.44±56.32703.85±56.21807.47±49.24831.62±42.3838.79±2.94
total Pb/(mg·kg-1)850.50±150.09813.51±266.61750.60±244.66936.36±241.42127.46±6.63
DTPA-Pb/(mg·kg-1)59.26±11.8465.38±17.2185.46±15.1670.84±20.0616.33±3.92
total Zn/(mg·kg-1)1024.25±321.74956.45±289.51990.50±461.881111.25±356.19359.47±26.25
DTPA-Zn/(mg·kg-1)202.69±28.36219.58±32.69156.07±36.19192.42±22.0528.34±6.92
Tab.1  
familyspeciesabundancelife form
ZX[I]ZX[II]GK[I]XY[II]
AmaranthaceaeAlternanthera philoxeroides (Mart.) Griseb.DDOPerennial grass
Amaranthus hybridus Linn.OFAnnual grass
AnacardiaceaeRhus chinensis Mill.FFShurb
AsteraceaeArtemisia princeps Pamp.FFDFPerennial grass
Bidens frondosa Linn.DFFFAnnual grass
B. pilosa Linn.DDFDAnnual grass
Chrysanthemum indicum (Linn.) Des Moul.ODRDPerennial grass
Erigeron Canadensis (Linn.) Cronq.DDDDBiennial grass
Gnaphalium affine D. Don.FFBiennial grass
Hemistepta lyrata (Bunge) BungeROOBiennial grass
Ixeris sonchifolia (Maxium). ShihOFFBiennial grass
Senecio scandens Buch.-Ham. Ex D. DonROPerennial grass
Xanthium sibiricum Patrin ex WidderFFFFAnnual grass
BetulaceaeAlnus cremastogyne Burk.OFTree
CaryophyllaceaeArenaria serpyllifolia Linn.OFAnnual grass
Myosoton aquaticum (Linn.) Cyr.OFRPerennial grass
Stellaria media (Linn.) Cyr.FFFFAnnual grass
CommelinaceaeCommelina communis Linn.FDFFAnnual grass
ConvolvulaceaeCalystegia hederacea Wall.ROFAnnual grass
EuphorbiaceaeAcalypha australi Linn.OFRAnnual grass
Alchornea trewioides (Benth.) Muell. Arg.OFShurb
Discocleidion rufescens Franch.ROShurb
Mallotus apelta (Lour.) Muell. Arg.OFShurb
FabaceaeRobinia pseudoacacia Linn.OFTree
Medicago hispida Linn.OOOBiennial grass
MalvaceaeUrena lobata Linn.OFRFShurb
MoraceaeBroussonetia kazinoki Sieb.FFFShurb
OxalidaceaeOxalis acetosella Linn.FFFFPerennial grass
PhytolaccaceaePhytolacca acinosa Roxb.DDDDPerennial grass
PoaceaeAlopecurus japonicus Steud.FDFDAnnual grass
Cynodon dactylon Pers.FDDDPerennial grass
Digitaria sanguinalis (Linn.) Scop.DFFDAnnual grass
Imperata cylindrical (Linn.) Beauv.FFFFPerennial grass
Lolium perenne Linn.RFOFPerennial grass
Miscanthus sinensi Anderss.FFFFPerennial grass
Roegneria kamoji Ohwi.OFRFPerennial grass
Setaria plicata (Lam.) T. Cooke.FFDDAnnual grass
PolygonaceaePolygonum perfoliatum Linn.FFOFPerennial grass
Rumex japonicus Houtt.FFOFPerennial grass
R. maritimus Linn.OORAnnual grass
PteridiaceaePteridium aquilinum Linn.FFFOPerennial grass
Pteris multifida Poir.RFRFPerennial grass
RanunculaceaeAnemone hupehensis Lem.FROPerennial grass
Ranunculus sieboldii Miq.RFFPerennial grass
RosaceaeRubus coreanus Miq.FFShurb
Rubus innominatus S. Moore.OFShurb
Rubus tephrodes Hance.FFShurb
RubiaceaePaederia scandens (Lour.) Merr.OFliane
ScrophulariaceaePaulownia kawakamii Ito.ROTree
SolanaceaeSolanum lyratum Thunb.FFFFliane
Solanum photeinocarpum Nakamura.FFOFAnnual grass
total: 21 families46 genus, 51 species34493148
Tab.2  
Fig.1  DTPA-extractable metal concentrations at different soil depths for the four Mn tailings (n = 27 in each soil depth for ZX[I]; n = 18 in each soil depth for ZX[II]; n = 21 in each soil depth for GK[I]; n = 22 in each soil depth for XY[II]): (a) DTPA-Cd; (b) DTPA-Mn; (c) DTPA-Pb; (d) DTPA-Zn. Different letters in the same group indicate significant differences at P&lt;0.05 according to a LSD test
sitesspeciesshootrootassociated soil
CdMnPbZnCdMnPbZnCdMnPbZn
ZX[I]A. philoxeroides0.80±0.08223.38±48.4214.32±3.6181.13±16.421.47±0.26436.65±351423.33±2.92139.39±16.083.23±0.122234.34±127.12247.47±51.15533.31±13.10
B. frondosa0.72±0.77528.54±70.6320.08±1.5287.42±6.132.15±0.2798.73±10.2211.15±2.1033.34±6.325.94±0.343017.63±303.09166.08±41.12451.20±44.08
B. pilosa0.90±0.04192.36±14.157.83±0.9040.84±4.900.97±0.10211.56±11.3010.08±1.3238.28±6.515.55±0.402047.45±430.06269.14±64.52610.16±57.35
D. sanguinalis1.71±0.11484.72±80.3412.54±0.98106.07±5.621.56±0.62670.24±11.4515.24±0.81244.41±5.603.16±0.563085.54±320.38173.64±31.31513.44±18.12
E. canadensis0.47±0.13114.47±14.565.27±0.8540.23±4.848.34±2.11684.72±62.2115.18±2.4066.52±30.033.47±0.131927.26±185.50299.18±55.24481.18±39.09
P. acinosa2.83±0.595253.64±431.2517.72±1.485.54±11.361.58±0.26501.36±57.4014.42±0.4332.23±3.844.72±0.373539.31±222.20347.74±36.33400.69±22.22
GK[I]A. princeps7.42±0.82374.38±136.2427.46±4.2161.17±10.0410.69±1.08414.67±102.1848.64±8.51103.30±9.123.41±0.651142.42±350.15187.37±22.02364.46±25.13
C. dactylon0.89±0.19380.57±71.626.45±1.6858.33±10.521.21±0.11244.16±52.256.72±1.5330.02±2.901.93±0.253875.57±327.02363.23±51.15339.34±13.43
E. canadensis2.64±0.2394.74±17.326.84±1.2579.65±7.145.34±0.26668.86±71.1920.34±1.8577.74±9.293.08±0.472122.84±154.46270.02±24.42382.56±31.31
P. acinosa3.15±0.793021.63±582.548.26±0.63101.34±11.272.95±0.52261.15±55.054.06±0.9542.24±3.422.36±0.372733.39±232.23285.55±32.32513.38±46.14
S. plicata0.89±0.13205.81±19.447.91±0.8179.56±12.080.51±0.0690.24±68.317.07±0.1935.35±1.901.84±0.172330.08±104.44284.46±41.14358.24±44.12
ZX[II]A. japonicus2.36±0.462869.57±305.2134.44±1.75129.34±9.721.56±0.451854.13±218.3442.42±15.15122.23±14.146.66±0.453530.56±227.31215.17±11.64291.19±13.13
A. philoxeroides0.73±0.14154.62±37.548.61±1.5491.18±21.462.58±0.10632.46±70.1926.52±3.73174.55±31.314.48±0.204531.25±186.14348.39±55.15254.46±19.08
B. pilosa1.64±0.21238.36±21.136.97±0.7645.55±5.353.17±0.45405.54±49.2314.14±1.0173.37±6.945.82±0.243989.87±230.17285.54±24.42387.27±57.36
C. communis2.45±0.256290.42±654.3952.24±2.92255.64±21.174.62±1.102046.21±63.0447.71±8.30352.33±70.077.71±0.576181.28±150.49330.46±32.23444.25±35.35
C. dactylon1.54±0.06299.55±70.3222.24±2.2848.33±4.822.53±0.66714.09±83.2540.04±6.5096.16±6.135.94±0.344127.72±432.24454.67±21.19517.44±16.16
Ch. indicum5.28±0.282235.50±255.1841.45±5.54214.87±13.655.24±0.591611.54±203.0730.23±4.35288.48±19.196.26±0.322126.59±120.50407.72±41.14307.37±29.21
E. canadensis2.43±0.50124.56±29.2869.35±6.94105.55±11.0413.68±1.72966.61±158.3461.16±27.0990.38±37.218.75±0.233162.26±223.34348.48±16.24341.55±22.22
P. acinosa6.24±1.068044.83±624.357.47±0.65244.32±28.233.85±0.56828.43±87.123.62±0.8048.40±7.756.28±0.465720.34±254.41300.67±24.13266.61±21.19
XY[II]A. japonicus3.57±0.363224.83±397.3231.36±5.34101.19±16.612.08±0.322690.56±347.3524.31±3.93130.55±16.235.78±0.432821.21±123.23330.50±16.61345.34±34.14
B. pilosa1.38±0.24263.44±16.136.18±0.9552.56±6.934.36±0.28430.04±78.7419.19±2.5280.34±5.154.33±0.372641.64±130.18251.14±34.35498.38±27.72
C. dactylon2.42±0.54492.71±89.6335.54±3.8384.47±8.642.57±0.30807.36±58.5536.64±7.62104.47±9.745.91±0.214288.45±150.55461.16±101.55298.23±15.15
Ch. indicum1.16±0.081377.54±29.318.75±0.3186.54±2.720.43±0.051202.36±27.244.21±0.4328.82±3.526.65±0.403148.83±186.11347.37±25.51431.31±39.42
D. sanguinalis1.27±0.51604.58±136.2941.68±15.54114.72±19.381.35±0.13294.15±43.3134.43±1.7279.45±12.124.82±0.263875.57±154.42358.64±34.23284.55±31.62
E. canadensis2.74±0.47124.72±29.2484.44±10.06149.67±26.2420.24±2.52716.84±257.4666.62±4.3979.37±36.067.09±0.345476.67±304.43253.35±21.21366.33±24.18
P. acinosa6.45±0.866033.19±600.5120.71±1.34332.55±34.253.63±0.65692.29±81.185.62±0.9493.39±11.106.84±0.226181.29±220.59458.35±31.13420.36±22.20
S. plicata2.06±0.59465.56±114.3418.86±3.51146.48±22.220.99±0.1682.54±16.2315.15±2.7297.50±10.265.25±0.445476.64±233.11347.43±42.34341.68±26.31
Tab.3  
sitesspeciesCdMnPbZn
BFTFBFTFBFTFBFTF
ZX[I]A. philoxeroides0.250.570.100.510.060.620.150.59
B. frondosa0.720.340.185.370.121.710.192.64
B. pilosa0.160.930.090.910.030.750.071.06
D. sanguinalis0.541.100.160.720.070.790.210.44
E. canadensis0.140.060.060.170.020.350.080.61
P. acinosa0.621.931.4810.490.054.070.212.68
GK[I]A. princeps0.700.790.330.900.150.570.170.59
C. dactylon0.450.750.101.560.020.950.171.92
E. canadensis0.870.490.040.140.030.340.211.02
P. acinosa1.331.061.1111.590.032.020.202.43
S. plicata0.491.740.092.280.031.130.222.24
ZX[II]A. japonicus0.351.560.811.550.160.820.441.06
A. philoxeroides0.160.280.030.240.020.330.360.52
B. pilosa0.270.520.060.590.020.500.120.62
C. communis0.310.521.023.070.161.110.570.73
C. dactylon0.250.580.070.420.050.550.090.50
Ch. indicum0.200.291.051.390.101.390.700.75
E. canadensis0.280.190.040.130.201.150.311.16
P. acinosa1.001.621.419.720.022.020.925.04
XY[II]A. japonicus0.611.751.141.200.091.300.290.78
B. pilosa0.310.310.100.610.020.330.110.65
C. dactylon0.410.950.110.610.080.980.280.81
Ch. indicum0.170.260.441.150.032.080.203.07
D. sanguinalis0.250.940.162.050.121.210.401.44
E. canadensis0.380.130.020.170.331.290.411.89
P. acinosa0.941.760.988.710.053.700.793.56
S. plicata0.382.010.085.640.051.230.431.50
Tab.4  
plants0–15 cm15–30 cm30–50 cm
DTPA-CdDTPA-MnDTPA-PbDTPA-ZnDTPA-CdDTPA-MnDTPA-PbDTPA-ZnDTPA-CdDTPA-MnDTPA-PbDTPA-Zn
ZX[I]Cd0.073-0.3230.393-0.3870.616*0.1650.1450.2050.081-0.3110.1430.290
Mn-0.186-0.0250.092-0.3580.377-0.0220.1330.330-0.195-0.3640.2390.130
Pb-0.2170.288-0.3810.1090.1700.3100.3800.242-0.2350.2420.4370.299
Zn-0.008-0.0850.0570.2780.2320.0670.0150.0440.0750.3120.2560.570
GK[I]Cd-0.212-0.383-0.2580.163-0.1690.171-0.3060.145-0.121-0.352-0.3960.504
Mn-0.225-0.2770.274-0.192-0.2020.726*-0.429-0.4610.2470.229-0.451-0.340
Pb-0.178-0.356-0.1830.3260.1620.082-0.1010.117-0.164-0.472-0.3140.476
Zn-0.4570.0000.210-0.467-0.3060.362-0.014-0.3070.3420.543-0.263-0.475
ZX[II]Cd0.272-0.1000. 3680.202-0.3240.442-0.4720.260
Mn0.3880.3160.271-0.2950.0780.094-0.2760.359
Pb-0.381-0.373-0.0050.3840. 2640.0250.0780.205
Zn0.1580.2220.505-0.1310.2460.226-0.3890.291
XY[II]Cd-0.063-0.080-0.140-0.2300.399-0.2300.1770.286
Mn-0.001-0.007-0.274-0.4770.427-0.4270.4100.102
Pb0.253-0.0630.3470.432-0.1150.125-0.0520.341
Zn-0.136-0.2940.087-0.2400.496-0.2620.5560.314
Tab.5  
1 Conesa H M, Faz Á, Arnaldos R. Initial studies for the phytostabilization of a mine tailing from the Cartagena-La Union Mining District (SE Spain). Chemosphere, 2007, 66(1): 38–44
doi: 10.1016/j.chemosphere.2006.05.041 pmid: 16820188
2 Tordoff G M, Baker A J M, Willis A J. Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere, 2000, 41(1): 219–228
doi: 10.1016/S0045-6535(99)00414-2 pmid: 10819204
3 Mendez M O, Maier R M. Phytoremediation of mine tailings in temperate and arid environments. Reviews in Environmental Science and Biotechnology, 2008, 7(1): 47–59
doi: 10.1007/s11157-007-9125-4
4 Wong M H. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 2003, 50(6): 775–780
doi: 10.1016/S0045-6535(02)00232-1 pmid: 12688490
5 Zu Y Q, Li Y, Christian S, Laurent L, Liu F. Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China. Environment International, 2004, 30(4): 567–576
doi: 10.1016/j.envint.2003.10.012 pmid: 15031017
6 Mendez M O, Glenn E P, Maier R M. Phytostabilization potential of quailbush for mine tailings: growth, metal accumulation, and microbial community changes. Journal of Environmental Quality, 2007, 36(1): 245–253
doi: 10.2134/jeq2006.0197 pmid: 17215233
7 Shu W S, Zhao Y L, Yang B, Xia H P, Lan C Y. Accumulation of heavy metals in four grasses grown on lead and zinc mine tailings. Journal of Environmental Sciences–China, 2004, 16(5): 730–734
pmid: 15559800
8 Nelson D W, Sommers L E. Total carbon, organic carbon and organic matter. In: Page A L, editor. Methods of Soil Analysis: Part 2, Agronomy Monograph, 2nd ed. Madison: American Society of Agronomy and Soil Science Society of America, 1982, 9: 539–579
9 Bremner J M, Mulvaney C S. Total nitrogen. In: Page A L, ed. Methods of Soil Analysis: Part 2, Agronomy Monograph, 2nd ed. Madison: American Society of Agronomy and Soil Science Society of America, 1982, 9: 595–624
10 Bray R H, Kurtz L T. Determination of total, organic and available forms of phosphorus in soil. Soil Science, 1945, 59(1): 39–45
doi: 10.1097/00010694-194501000-00006
11 McGrath S P, Cunliffe C H. A simplified method for the extraction of the metals Fe, Zn, Cu, Ni, Cd, Pb, Cr, Co and Mn from soils and sewage sludges. Journal of the Science of Food and Agriculture, 1985, 36(9): 794–798
doi: 10.1002/jsfa.2740360906
12 Lindsay W L, Norvell W A. Development of a DTPA test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 1978, 42(3): 421–428
doi: 10.2136/sssaj1978.03615995004200030009x
13 Allen S E. Chemical Analysis of Ecological Materials, 2nd ed. Oxford: Blackwell Scientific Publications, 1989
14 Brunetti G, Soler-Rovira P, Farrag K, Senesi N. Tolerance and accumulation of heavy metals by wild plant species grown in contaminated soils in Apulia region, Southern Italy. Plant and Soil, 2009, 318(1–2): 285–298
doi: 10.1007/s11104-008-9838-3
15 Baker A J M. Accumulators and excluders–strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 1981, 3(1–5): 643–654
doi: 10.1080/01904168109362867
16 Wei S H, Zhou Q X, Wang X. Identification of weed plants excluding the uptake of heavy metals. Environment International, 2005, 31(6): 829–834
doi: 10.1016/j.envint.2005.05.045 pmid: 16002142
17 Xue S G, Chen Y X, Reeves R D, Baker A J M, Lin Q, Fernando D R. Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb (Phytolaccaceae). Environmental Pollution, 2004, 131(3): 393–399
doi: 10.1016/j.envpol.2004.03.011 pmid: 15261402
18 NRC (National Research Council). Mineral Tolerance of Animals. Washington: National Academies Press, 2005
19 Clemente R, Paredes C, Bernal M P. A field experiment investigating the effects of olive husk and cow manure on heavy metal availability in a contaminated calcareous soil from Murcia (Spain). Agriculture, Ecosystems &amp; Environment, 2007, 118(1–4): 319–326
doi: 10.1016/j.agee.2006.06.002
20 Lee S H, Lee J S, Choi Y J, Kim J G. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere, 2009, 77(8): 1069–1075
doi: 10.1016/j.chemosphere.2009.08.056 pmid: 19786291
21 Yang S X, Liao B, Li J T, Guo T, Shu W S. Acidification, heavy metal mobility and nutrient accumulation in the soil-plant system of a revegetated acid mine wasteland. Chemosphere, 2010, 80(8): 852–859
doi: 10.1016/j.chemosphere.2010.05.055 pmid: 20580409
22 Ruttens A, Colpaert J V, Mench M, Boisson J, Carleer R, Vangronsveld J. Phytostabilization of a metal contaminated sandy soil.II: influence of compost and/or inorganic metal immobilizing soil amendments on metal leaching. Environmental Pollution, 2006, 144(2): 533–539
doi: 10.1016/j.envpol.2006.01.021 pmid: 16530308
23 Deng H, Ye Z H, Wong M H. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environmental Pollution, 2004, 132(1): 29–40
doi: 10.1016/j.envpol.2004.03.030 pmid: 15276271
24 Alvarenga P, Gonçalves A P, Fernandes R M, de Varennes A, Vallini G, Duarte E, Cunha-Queda A C. Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. Science of the Total Environment, 2008, 406(1–2): 43–56
doi: 10.1016/j.scitotenv.2008.07.061 pmid: 18799197
25 Shu W S, Ye Z H, Zhang Z Q, Lan C Y, Wong M H. Natural colonization of plants on five lead/zinc mine tailings in Southern China. Restoration Ecology, 2005, 13(1): 49–60
doi: 10.1111/j.1526-100X.2005.00007.x
26 Wang X, Liu Y G, Zeng G M, Chai L Y, Xiao X, Song X C, Min Z Y. Pedological characteristics of Mn mine tailings and metal accumulation by native plants. Chemosphere, 2008, 72(9): 1260–1266
doi: 10.1016/j.chemosphere.2008.05.001 pmid: 18555510
27 Li M S, Luo Y P, Su Z Y. Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, South China. Environmental Pollution, 2007, 147(1): 168–175
doi: 10.1016/j.envpol.2006.08.006 pmid: 17014941
28 Bolan N S, Duraisamy V P. Role of inorganic and organic soil amendments on immobilization and phytoavailability of heavy metals: a review involving specific case studies. Australian Journal of Soil Research, 2003, 41(3): 533–555
doi: 10.1071/SR02122
29 Kumpiene J, Lagerkvist A, Maurice C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Management (New York, N.Y.), 2008, 28(1): 215–225
doi: 10.1016/j.wasman.2006.12.012 pmid: 17320367
30 Li M S. Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: a review of research and practice. Science of the Total Environment, 2006, 357(1–3): 38–53
doi: 10.1016/j.scitotenv.2005.05.003 pmid: 15992864
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed