Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (1) : 114-128    https://doi.org/10.1007/s11783-014-0669-6
RESEARCH ARTICLE
Dynamic simulation of urban water metabolism under water environmental carrying capacity restrictions
Weihua ZENG1,2,*(),Bo WU2,Ying CHAI2
1. State Key Laboratory of Water Environmental Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
2. School of Environment, Beijing Normal University, Beijing 100875, China
 Download: PDF(1997 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A revised concept for urban water metabolism (UWM) is presented in this study to address the inadequacies in current research on UWM and the problems associated with the traditional urban water metabolic process. Feedback loops can be analyzed to increase the water environmental carrying capacity (WECC) of the new urban water metabolism system (UWMS) over that of a traditional UWMS. An analysis of the feedback loops of an UWMS was used to construct a system dynamics (SD) model for the system under a WECC restriction. Water metabolic processes were simulated for different scenarios using the Tongzhou District in Beijing as an example. The results for the newly developed UWM case showed that a water environment of Tongzhou District could support a population of 1.1926 × 106, an irrigation area of 375.521 km2, a livestock of 0.7732 × 106, and an industrial value added of ¥193.14 × 109 (i.e. about US$28.285× 109) in 2020. A sensitivity analysis showed that the WECC could be improved to some extent by constructing new sewage treatment facilities or by expanding the current sewage treatment facilities, using reclaimed water and improving the water circulation system.

Keywords urban water metabolism system (UWMS)      system dynamic simulation      water environmental carrying capacity (WECC)      feedback loops      bilateral control     
Corresponding Author(s): Weihua ZENG   
Issue Date: 03 December 2015
 Cite this article:   
Weihua ZENG,Bo WU,Ying CHAI. Dynamic simulation of urban water metabolism under water environmental carrying capacity restrictions[J]. Front. Environ. Sci. Eng., 2016, 10(1): 114-128.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0669-6
https://academic.hep.com.cn/fese/EN/Y2016/V10/I1/114
Fig.1  Traditional UWMS
Fig.2  New UWMS
Fig.3  Bilateral control measures for the new UWMS
Fig.4  Schematic showing three feedback loops
Fig.5  Feedback loop I
Fig.6  Feedback loop II
Fig.7  Feedback loop III
Fig.8  Structure of UWMS
Fig.9  UWM model for water supply system
Fig.10  UWM model for water use system of domestic
Fig.11  UWM model for water use system of agricultural
Fig.12  UWM model for water use system of industry
Fig.13  UWM model for water treatment and water reclamation system
urban life rural life
water consumption C c = E c × P c C r = E r × P r
Cc—water consumption from urban daily activities, m3; Cr—water consumption from rural daily activities, m3;
Ec—per capita water consumption of urban residents, m3; Er—per capita water consumption of rural residents, m3;
Pc—urban population, dmnl Pr—rural population, dmnl
water withdrawals C c = C c × ( 1 R r r ) C r = C r
C c —water withdrawal for urban daily activities, m3; C r —water withdrawal for rural daily activities, m3;
Rrr—return reuse rate of reclaimed water for district, dmnl
sewage output G c = P c × E c × [ R c ( 1 R c r ) ] G r = C r × ( 1 R r )
Gc—sewage output from urban daily activities, m3; Gr—sewage output from rural daily activities, m3;
Rcr— rate of high-quality water for domestic water use, dmnl; Rr—coefficient of rural water use, dmnl
Rc—coefficient of urban water use, dmnl
quantity of pollutants generated G c C O D = P c × E c C O D G r C O D = P r × E r C O D
GcCOD—amount of COD generated from urban daily activities, kg; GrCOD—amount of COD generated from rural daily activities, kg;
EcCOD—coefficient of COD generated from urban daily activities, kg ErCOD—coefficient of COD generated from rural daily activities, kg
Tab.1  Correlation formulas for a domestic water system in the UWM model
Fig.14  Logical structure for quantitative urban WECC models of water metabolism
adjustment factors calculation formulas
adjustment factors for the quantity of fresh water (quantity of high-quality water supply-fresh water withdrawal) / fresh water withdrawal
adjustment factors for the quantity of depth stage reclaimed water (quantity of depth stage reclaimed water supply-available quantity of depth stage reclaimed water) / available quantity of depth stage reclaimed water
adjustment factors for the quantity of second stage reclaimed water (quantity of second stage reclaimed water supply-available quantity of second stage reclaimed water) / available quantity of second stage reclaimed water
COD adjustment factor (allowable COD discharge-COD discharge)/ COD discharge
Tab.2  Formulas for calculating the adjustment factors
Fig.15  Solution procedure for an urban WECC model of an UWMS
Fig.16  Population served (a), irrigation area (b), number of livestock (c) and industrial value added (d) that the water environment of Tongzhou District can support
Fig.17  Population served (a), irrigation area (b), number of livestock (c) and industrial value added (d) that the water environment of Tongzhou District can support
parameter variation population irrigation area number of livestock industrial value added
2020prediction alteration rate 2020Prediction alteration rate 2020prediction alteration rate 2020prediction alteration rate
10% increase 123.24 6.47% 63.71 23.41% 76.36 −2.40% 199.59 6.47%
original value 119.26 56.30 77.32 193.14
10% decrease 115.52 50.53 78.21 187.09
Tab.3  Results of sensitivity analysis for the relevant parameters in reclaimed water use
1 Chai  Y. Study on WECC based on water metabolism system—Tongzhou district as an example. Dissertation for the Master Degree. Beijing: Beijing Normal University, 2009. (in Chinese)
2 Hermanowicz  W S, Takashi  A. Abel wolman’s ‘The Metabolism of Cities’ revisited: a case for water recycling and reuse. Water Science and Technology, 1999, 40(4–5): 29–36
https://doi.org/10.1016/S0273-1223(99)00482-5
3 Tambo  N. Hydrological cycle and urban metabolic system of water. Water Wastewater Engineering, 2002, 28(6): 1–5
4 Yan  J S, Wang  M Z. The problems of water environment in the urban and their eco-essence. Modern Urban Research, 2005, (4): 7–9 (in Chinese)
5 Xiong  J Q, Yan  T, Wang  X C. The mechanism and model of immunity  on the  urban  water  system.  Journal  of  Xi’an University of Architecture and Technology, 2006, 38(6): 746–750 (in Chinese)
6 Song  X S, Wang  C S, Wang  Y H. Problems of water environment in China’s urbanization process. Science and Technology Review, 2004, 6(2): 29–32 (in Chinese)
7 Newman  P W G. Sustainability and cities: extending the metabolism model. Landscape and Urban Planning, 1999, 44(4): 219–226
https://doi.org/10.1016/S0169-2046(99)00009-2
8 Fischer-Kowalski  M. Society’s metabolism the intellectual history of materials flow analysis. Part I: 1860–1970. Journal of Industrial Ecology, 1998, 2(1): 61–78
https://doi.org/10.1162/jiec.1998.2.1.61
9 Huang  S L, Lee  C L, Chen  C W. Socioeconomic metabolism in Taiwan: emergy synthesis versus material flow analysis. Resources, Conservation and Recycling, 2006, 48(2): 166–196
https://doi.org/10.1016/j.resconrec.2006.01.005
10 Kennedy  C A, Cuddihy  J, Engel Yan  J. The changing metabolism of cities. Journal of Industrial Ecology, 2007, 11(2): 43–59
https://doi.org/10.1162/jie.2007.1107
11 Kennedy  C, Pincetl  S, Bunje  P. The study of urban metabolism and its applications to urban planning and design. Environmental Pollution, 2011, 159(8–9): 1965–1973
https://doi.org/10.1016/j.envpol.2010.10.022 pmid: 21084139
12 Newcombe  K, Kalma  J D, Aston  A R. The metabolism of a city: the case of Hong Kong. Ambio, 1978, 7(1): 3–15
13 Warren-Rhodes  K, Koenig  A. Escalating trends in the urban metabolism of Hong Kong: 1971–1997. Ambio, 2001, 30(7): 429–438
pmid: 11795217
14 Zhang  Y, Yang  Z F, Yu  X Y. Evaluation of urban metabolism based on emergy synthesis: a case study for Beijing (China). Ecological Modelling, 2009, 220(13–14): 1690–1696
https://doi.org/10.1016/j.ecolmodel.2009.04.002
15 Caffrey  J M. Production, respiration and net ecosystem metabolism in U.S. estuaries. Environmental Monitoring and Assessment, 2003, 81(1–3): 207–219
https://doi.org/10.1023/A:1021385226315 pmid: 12620017
16 Caffrey  J M. Factors controlling net ecosystem metabolism in U.S. estuaries. Estuarie, 2004, 27(1): 90–101
https://doi.org/10.1007/BF02803563
17 Hall  M H P. A preliminary assessment of socio-ecological metabolism for three neighborhoods within a rust belt urban ecosystem. Ecological Modelling, 2011, 223(1): 20–31
18 Marc  J R, Paul  A M, Richard  D K. The effect of freshwater inflow on net ecosystem metabolism in Lavaca Bay, Texas. Estuarine, Coastal and Shelf Science, 2006, 68(1–2): 231–244
https://doi.org/10.1016/j.ecss.2006.02.005
19 Mead  L  H,  Wiegner   T  N.  Surface  water  metabolism  potential  in a  tropical  estuary,  Hilo  Bay, Hawai’i,  USA,  during  storm  and non-storm conditions. Estuaries and Coasts, 2010, 33(5): 1099–1112
https://doi.org/10.1007/s12237-010-9317-y
20 Zhang  Y, Yang  Z F, Fath  B D. Ecological network analysis of an urban water metabolic system: model development, and a case study for Beijing. Science of the Total Environment, 2010, 408(20): 4702–4711
https://doi.org/10.1016/j.scitotenv.2010.06.019 pmid: 2062133
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed