Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (2) : 269-278    https://doi.org/10.1007/s11783-014-0672-y
RESEARCH ARTICLE
The effect of texture and irrigation on the soil moisture vertical-temporal variability in an urban artificial landscape: a case study of Olympic Forest Park in Beijing
Xiaofeng ZHANG,Xu ZHANG,Guanghe LI()
School of Environment, Tsinghua University, Beijing 100084, China
 Download: PDF(1845 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Soil moisture variability in natural landscapes has been widely studied; however, less attention has been paid to its variability in the urban landscapes with respect to the possible influence of texture stratification and irrigation management. Therefore, a case study was carried out in the Beijing Olympic Forest Park to continuously monitor the soil in three typical profiles from 26 April to 11 November 2010. The texture stratification significantly affected the vertical distribution of moisture in the non-irrigated profile where moisture was mostly below field capacity. In the profile where irrigation was sufficient to maintain moisture above field capacity, gravity flow led to increased moisture with depth and thus eliminated the influence of texture. In the non-irrigated sites, the upper layer (above 80 cm) exhibited long-term moisture persistence with the time scale approximating the average rainfall interval. However, a coarse-textured layer weakened the influence of rainfall, and a fine-textured layer weakened the influence of evapotranspiration, both of which resulted in random noise-like moisture series in the deeper layers. At the irrigated site, frequent irrigation neutralized the influence of evapotranspiration in the upper layer (above 60 cm) and overshadowed the influence of rainfall in the deeper layer. As a result, the moisture level in the upper layer also behaved as a random noise-like series; whereas due to deep transpiration, the moisture of the deep layer had a persistence time-scale longer than a month, consistent with characteristic time-scales found for deep transpiration.

Keywords moisture vertical distribution      moisture temporal variation      texture stratification      irrigation      meteorological forcing      urban landscape     
Corresponding Author(s): Guanghe LI   
Online First Date: 18 March 2014    Issue Date: 13 February 2015
 Cite this article:   
Xiaofeng ZHANG,Xu ZHANG,Guanghe LI. The effect of texture and irrigation on the soil moisture vertical-temporal variability in an urban artificial landscape: a case study of Olympic Forest Park in Beijing[J]. Front. Environ. Sci. Eng., 2015, 9(2): 269-278.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0672-y
https://academic.hep.com.cn/fese/EN/Y2015/V9/I2/269
Fig.1  The map of monitoring sites in the Olympic Forest Park of Beijing, where the background patterns of sites A, B and C refer to the undisturbed woodland, constructed woodland and constructed grassland, respectively
Fig.2  Soil textural profiles of monitoring sites
Fig.3  Temporal average soil moisture profiles of monitoring sites. PWP, permanent wilting point; FC, field capacity; SAT, saturated moisture content
Fig.4  The soil moisture vertical–temporal distribution as affected by rainfall and evapotranspiration in profiles (a) A, (b) B, and (c) C
Fig.5  Soil moisture temporal autocorrelation at multiple depths of monitored profiles. Dashed line is the approximately two standard error bounds within which the autocorrelation is not significantly different from zero at the 5% significance level
Fig.6  Phase lag corresponding to the maximum cross-correlation between the moisture of the respective layer (a) with rainfall, (b) with evapotranspiration, (c) with the 20-cm layer moisture, respectively, in profile A
Fig.7  Phase lag corresponding to the maximum cross-correlation between the moisture of the respective layer (a) with rainfall, (b) with evapotranspiration, (c) with the 20-cm layer moisture, respectively, in profile B
Fig.8  Phase lag corresponding to the maximum cross-correlation between the moisture of the respective layer (a) with rainfall, (b) with evapotranspiration, (c) with the 20-cm layer moisture, respectively, in profile C
1 Famiglietti J, Rudnicki J, Rodell M. Variability in surface soil moisture content along a hillslope transect: Rattlesnake Hill, Texas. Journal of Hydrology (Amsterdam), 1998, 210(1–4): 259–281
https://doi.org/10.1016/S0022-1694(98)00187-5
2 Nyberg L. Spatial variability of water content in the covered catchment at Gardsjon, Sweden. Hydrological Processes, 1996, 10(1): 89–103
https://doi.org/10.1002/(SICI)1099-1085(199601)10:1<89::AID-HYP303>3.0.CO;2-W
3 de Lannoy G J M, Verhoest N E C, Houser P R, Gish T J, Meirvenne M V. Spatial and temporal characteristics of soil moisture in an intensively monitored agricultural field (OPE3). Journal of Hydrology (Amsterdam), 2006, 331(3–4): 719–730
https://doi.org/10.1016/j.jhydrol.2006.06.016
4 Hawley M E, Jackson T J, McCuen R H. Surface soil moisture variation on small agricultural watersheds. Journal of Hydrology (Amsterdam), 1983, 62(1–4): 179–200
https://doi.org/10.1016/0022-1694(83)90102-6
5 Arora V K, Bore G J. The temporal variability of soil moisture and surface hydrological quantities in a climate model. Journal of Climate, 2006, 19(22): 5875–5888
https://doi.org/10.1175/JCLI3926.1
6 Craul P J. Urban Soil in Landscape Design. New York: John Wiley & Sons, 1992
7 Scheyer J M, Hipple K W. Urban Soil Primer. United States Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center, Lincoln, Nebraska, 2005
8 Tenenbaum D E, Band L E, Kenworthy S T, Tague C L. Analysis of soil moisture patterns in forested and suburban catchments in Baltimore, Maryland, using high-resolution photogrammetric and LIDAR digital elevation datasets. Hydrological Processes, 2006, 20(2): 219–240
https://doi.org/10.1002/hyp.5895
9 Huang J L, Tu Z S, Du P F, Li Q S. L J. Analysis of rainfall runoff characteristics from a subtropical urban lawn catchment in South-east China. Frontiers of Environmental Science & Engineering in China, 2010, 6(4): 531–539
https://doi.org/10.1007/s11783-010-0287-x
10 Pickett S T A, Cadenasso M L, Grove J M, Boone C G, Groffman P M, Irwin E, Kaushal S S, Marshall V, McGrath B P, Nilon C H, Pouyat R V, Szlavecz K, Troy A, Warren P. Urban ecological systems: scientific foundations and a decade of progress. Journal of Environmental Management, 2011, 92(3): 331–362
https://doi.org/10.1016/j.jenvman.2010.08.022 pmid: 20965643
11 Hydrogeological investigation report for the proposed construction site of the Beijing Olympic Forest Park. Project No. 2003S037. Beijing Geotechnical Institute, 2003 (in Chinese)
12 Walter I A, Allen R G, Elliott R. The ASCE standardized reference evapotranspiration equation. Rep. Task Com. on Standardized Reference Evapotranspiration , EWRI- American Society of Civil Engineers, Reston, VA,USA, 2002
13 Wu S F, Wu P T, Feng H, Merkley G P. Effects of alfalfa coverage on runoff, erosion and hydraulic characteristics of overland flow on loess slope plots. Frontiers of Environmental Science & Engineering in China, 2011, 5(1): 76–83
https://doi.org/10.1007/s11783-011-0282-x
14 Saxton K E, Rawls W J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal, 2006, 70(5): 1569–1578
https://doi.org/10.2136/sssaj2005.0117
15 Jenkins G M, Watts D G. Spectral Analysis and Its Applications. Holden-day Series in Time Series Analysis. London: Holden-Day, 1968
16 Reynolds S G. The gravimetric method of soil moisture determination, III: an examination of factors influencing soil moisture variability. Journal of Hydrology (Amsterdam), 1970, 11(3): 288–300
https://doi.org/10.1016/0022-1694(70)90068-5
17 Robinson M, Dean T. Measurement of near surface soil water content using a capacitance probe. Hydrological Processes, 1993, 7(1): 77–86
https://doi.org/10.1002/hyp.3360070108
18 Zhang J Y, Wang W C, Wei J F. Assessing land-atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation. Journal of Geophysical Research, 2008, 113, D17119
https://doi.org/10.1029/ 2008JD009807
19 Amenu G G, Kumar P, Liang X. Interannual variability of deep-layer hydrologic memory and mechanisms of its influence on surface energy fluxes. Journal of Climate, 2005, 18(23): 5024–5045
https://doi.org/10.1175/JCLI3590.1
20 Wu W, Dickinson R E. Time scales of layered soil moisture memory in the context of land–atmosphere interaction. Journal of Climate, 2004, 17(14): 2752–2764
https://doi.org/10.1175/1520-0442(2004)017<2752:TSOLSM>2.0.CO;2
21 Dickinson R E, Wang G L, Zeng X B, Zeng Q C. How does the partitioning of evapotranspiration and runoff between different processes affect the variability and predictability of soil moisture and precipitation? Advances in Atmospheric Sciences, 2003, 20(3): 475–478
https://doi.org/10.1007/BF02690805
22 Savenjie H G H. The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrological Processes, 2004, 18(8): 1507–1511
https://doi.org/10.1002/hyp.5563
23 Entekhabi D, Rodriguez-Iturbe I, Bras R L. Variability in large-scale water balance with land surface-atmosphere interaction. Journal of Climate, 1992, 5(8): 798–813
https://doi.org/10.1175/1520-0442(1992)005<0798:VILSWB>2.0.CO;2
24 Entekhabi D, Rodriguez-Iturbe I. Analytical framework for the characterization of the space-time variability of soil moisture. Advances in Water Resources, 1994, 17(1–2): 35–45
https://doi.org/10.1016/0309-1708(94)90022-1
25 Wu W, Geller M A, Dickinson R E. Soil moisture profile variability in response to long-term precipitation. Journal of Hydrometeorology, 2002, 3: 604–613
https://doi.org/10.1175/1525-7541(2002)003<0604:TROSMT>2.0.CO;2
[1] Wenyan LIANG,Lili SUI,Yuan ZHAO,Feizhen LI,Lijun LIU,Di XIE. Ecotoxicity assessment of soil irrigated with domestic wastewater using different extractions[J]. Front. Environ. Sci. Eng., 2015, 9(4): 685-693.
[2] Hong YAO, Shichao ZHANG, Xiaobo XUE, Jie YANG, Kelin HU, Xiaohua YU. Influence of the sewage irrigation on the agricultural soil properties in Tongliao City, China[J]. Front Envir Sci Eng, 2013, 7(2): 273-280.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed