Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (1) : 63-72    https://doi.org/10.1007/s11783-014-0754-x
RESEARCH ARTICLE
A spectrometer for measuring particle size distributions in the range of 3 nm to 10 μm
Jieqiong LIU1,Jingkun JIANG1,2,*(),Qiang ZHANG1,Jianguo DENG1,Jiming HAO1,2
1. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
2. State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
 Download: PDF(666 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A spectrometer combining electrical mobility sizing and aerodynamic sizing was developed to measure aerosol size distributions in the range of 3 nm to 10 μm. It includes three instruments which cover different size ranges (a nano scanning mobility particle sizer (NSMPS, 3 – 60 nm), a regular scanning mobility particle sizer (RSMPS, 40 – 700 nm), and an aerodynamic particle sizer (APS, 550 nm – 10 μm)). High voltage and sheath flow of the NSMPS and RSMPS were supplied using two home-built control boxes. A LabVIEW program was developed for spectrometer automatic operation. A linear inversion method was applied to correct particle multiple charging effects and to integrate data from the three instruments into a wide-range size distribution. Experiments were conducted to compare distributions in the overlap size ranges measured by three instruments. Good agreement between the NSMPS and RSMPS was achieved after correcting for the difference in counting efficiencies of the two particle counters. Aerodynamic size distributions reported by the APS were converted to mobility size distributions by applying an effective density method. Distributions measured by the RSMPS and APS were consistent in the overlap size range of 550 – 700 nm. A full spectrum in the size range of 3 nm to 10 μm was demonstrated by measuring aerosol generated using a mixture of different sized polystyrene latex spheres.

Keywords spectrometer      particle size distribution      electrical mobility      linear inversion      aerodynamic diameter     
Corresponding Author(s): Jingkun JIANG   
Online First Date: 24 October 2014    Issue Date: 03 December 2015
 Cite this article:   
Jieqiong LIU,Jingkun JIANG,Qiang ZHANG, et al. A spectrometer for measuring particle size distributions in the range of 3 nm to 10 μm[J]. Front. Environ. Sci. Eng., 2016, 10(1): 63-72.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0754-x
https://academic.hep.com.cn/fese/EN/Y2016/V10/I1/63
Fig.1  Schematic diagram of the spectrometer for measuring wide-range particle size distributions
Fig.2  Schematic diagram of the spectrometer automatic control program
Fig.3  Size-dependent particle counting efficiencies in the UCPC and CPC, penetration efficiencies in the nano DMA and the long DMA, bipolar charging efficiencies (fractions of negatively charged particles carrying a single charge)
Fig.4  Schematic diagram of experimental tests conducted to evaluate the spectrometer: (a) comparing the CPC used in the RSMPS to an aerosol electrometer; (b) comparing the UCPC used in the NSMPS to the CPC used in the RSMPS; (c) comparing the APS to the RSMPS
Fig.5  Comparing particle concentrations measured by the CPC to those measured by the aerosol electrometer (a) and to those measured by the UCPC (b)
Fig.6  Particle size distributions reported by the NSMPS and RSMPS when measuring aerosolized 50 nm PSL. The solid line is the size distribution after the linear inversion
Fig.7  Sodium chloride (a) and ammonium sulfate (b) size distributions measured by the RSMPS and APS. Dark green triangles show the mobility size distribution of particles greater than 400 nm measured by the RSMPS. Blue circles show the aerodyanmic size distribution measured by the APS. Red squares show the mobility size distribution converted from the aerodynamic size distribution using the effective density method. Green crosses show the mobility size distibution corrected with the reported APS counting efficiencies
Fig.8  Particle size distribution in the range of 3 nm to 10 μm measured by the spectrometer. The green square, red triangle, and blue circle represent the size distribution measured by the NSMPS, the RSMPS, and the APS, respectively. The solid line is the size distribution after the linear inversion. Inset shows size distribution ranging from 0.55 to 10 μm
1 Brook  R D, Franklin  B, Cascio  W, Hong  Y, Howard  G, Lipsett  M, Luepker  R, Mittleman  M, Samet  J, Smith  S C Jr, Tager  I. Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation, 2004, 109(21): 2655–2671
https://doi.org/10.1161/01.CIR.0000128587.30041.C8 pmid: 15173049
2 Nel  A. Atmosphere. Air pollution-related illness: effects of particles. Science, 2005, 308(5723): 804–806
https://doi.org/10.1126/science.1108752 pmid: 15879201
3 Pope  C A 3rd, Dockery  D W. Health effects of fine particulate air pollution: lines that connect. Journal of the Air & Waste Management Association (1995), 2006, 56(6): 709–742
https://doi.org/10.1080/10473289.2006.10464485 pmid: 16805397
4 Oberdörster  G, Stone  V, Donaldson  K. Toxicology of nanoparticles: a historical perspective. Nanotoxicology, 2007, 1(1): 2–25
https://doi.org/10.1080/17435390701314761
5 Shah  J J, Watson  J G, Cooper  J A, Huntzicker  J J. Aerosol chemical composition and light scattering in Portland, Oregon: the role of carbon. Atmospheric Environment (1967), 1984, 18(1): 235–240
6 Sloane  C S, Watson  J, Chow  J, Pritchett  L, Willard Richards  L. Size-segregated fine particle measurements by chemical species and their impact on visibility impairment in Denver. Atmospheric Environment. Part A, General Topics, 1991, 25(5–6): 1013–1024
https://doi.org/10.1016/0960-1686(91)90143-U
7 Patterson  E, Gillette  D, Grams  G. The relation between visibility and the size-number distribution of airborne soil particles. Journal of Applied Meteorology, 1976, 15(5): 470–478
https://doi.org/10.1175/1520-0450(1976)015<0470:TRBVAT>2.0.CO;2
8 McMurry  P H, Shepherd  M F, Vickery  J S. Particulate Matter Science for Policy Makers: A NARSTO Assessment. Cambridge: Cambridge University Press, 2004
9 Hao  J, He  K, Duan  L, Li  J, Wang  L. Air pollution and its control in China. Frontiers of Environmental Science & Engineering in China, 2007, 1(2): 129–142
https://doi.org/10.1007/s11783-007-0024-2
10 IPCC. Climate Change 2007: IPCC Fourth Assessment Report (AR4). Cambridge: Cambridge University Press, 2007
11 Shi  X, He  K, Zhang  J, Ma  Y, Ge  Y, Tan  J. A comparative study of particle size distribution from two oxygenated fuels and diesel fuel. Frontiers of Environmental Science & Engineering in China, 2010, 4(1): 30–34
https://doi.org/10.1007/s11783-010-0011-x
12 Wang  S C, Flagan  R C. Scanning electrical mobility spectrometer. Aerosol Science and Technology, 1990, 13(2): 230–240
https://doi.org/10.1080/02786829008959441
13 Knutson  E O, Whitby  K T. Aerosol classification by electric mobility: apparatus, theory, and applications. Journal of Aerosol Science, 1975, 6(6): 443–451
https://doi.org/10.1016/0021-8502(75)90060-9
14 Baron  P A, Mazumder  M K, Cheng  Y S, Peters  T M. Real-time Techniques for Aerodynamic Size Measurement, in Aerosol Measurement, 3rd ed. New York: John Wiley & Sons, 2011, 313–338
15 Sorensen  C M, Gebhart  J, O’Hern  T, Rader  D J. Optical Measurement Techniques: Fundamentals and Applications, in Aerosol Measurement, 3rd ed. New York: John Wiley & Sons, 2011, 269–312
16 Khlystov  A, Stanier  C, Pandis  S N. An algorithm for combining electrical mobility and aerodynamic size distributions data when measuring ambient aerosol special issue of aerosol science and technology on findings from the fine particulate matter supersites program. Aerosol Science and Technology, 2004, 38(S1): 229–238
17 Shen  S, Jaques  P A, Zhu  Y, Geller  M D, Sioutas  C. Evaluation of the SMPS–APS system as a continuous monitor for measuring PM2.5, PM10 and coarse (PM2.5−10) concentrations. Atmospheric Environment, 2002, 36(24): 3939–3950
https://doi.org/10.1016/S1352-2310(02)00330-8
18 Shi  J P, Harrison  R M, Evans  D. Comparison of ambient particle surface area measurement by epiphaniometer and SMPS/APS. Atmospheric Environment, 2001, 35(35): 6193–6200
https://doi.org/10.1016/S1352-2310(01)00382-X
19 Hand  J L, Kreidenweis  S M. A new method for retrieving particle refractive index and effective density from aerosol size distribution data. Aerosol Science and Technology, 2002, 36(10): 1012–1026
https://doi.org/10.1080/02786820290092276
20 Birmili  W, Stratmann  F, Wiedensohler  A. Design of a DMA-based size spectrometer for a large particle size range and stable operation. Journal of Aerosol Science, 1999, 30(4): 549–553
https://doi.org/10.1016/S0021-8502(98)00047-0
21 Karlsson  M N A, Martinsson  B G. Methods to measure and predict the transfer function size dependence of individual DMAs. Journal of Aerosol Science, 2003, 34(5): 603–625
https://doi.org/10.1016/S0021-8502(03)00020-X
22 Woo  K S, Chen  D R, Pui  D Y H, McMurry  P H. Measurement of Atlanta aerosol size distributions: observations of ultrafine particle events. Aerosol Science and Technology, 2001, 34(1): 75–87
https://doi.org/10.1080/02786820120056
23 Shi  Q. Aerosol size distribution (3nm to 2 μm) measured at the St. Louis Supersite (4/1/01–4/30/02). Dissertation for the Master Degree. Twin Cities: University of Minnesota, 2003
24 Wiedensohler  A, Birmili  W, Nowak  A, Sonntag  A, Weinhold  K, Merkel  M, Wehner  B, Tuch  T, Pfeifer  S, Fiebig  M, Fjäraa  A M, Asmi  E, Sellegri  K, Depuy  R, Venzac  H, Villani  P, Laj  P, Aalto  P, Ogren  J A, Swietlicki  E, Williams  P, Roldin  P, Quincey  P, Hüglin  C, Fierz-Schmidhauser  R, Gysel  M, Weingartner  E, Riccobono  F, Santos  S, Grüning  C, Faloon  K, Beddows  D, Harrison  R, Monahan  C, Jennings  S G, O’Dowd  C D, Marinoni  A, Horn  H G, Keck  L, Jiang  J, Scheckman  J, McMurry  P H, Deng  Z, Zhao  C S, Moerman  M, Henzing  B, de Leeuw  G, Löschau  G, Bastian  S. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmospheric Measurement Techniques, 2012, 5: 657–685
https://doi.org/10.5194/amt-5-657-2012
25 Stolzenburg  M R, McMurry  P H. Equations governing single and tandem dma configurations and a new lognormal approximation to the transfer function. Aerosol Science and Technology, 2008, 42(6): 421–432
https://doi.org/10.1080/02786820802157823
26 Jiang  J, Chen  M, Kuang  C, Attoui  M, McMurry  P H. Electrical mobility spectrometer using a diethylene glycol condensation particle counter for measurement of aerosol size distributions down to 1 nm. Aerosol Science and Technology, 2011, 45(4): 510–521
https://doi.org/10.1080/02786826.2010.547538
27 TSI. Model 3772 Condensation Particle Counter Manual. TSI Incorporated, St. Paul, MN, 2007
28 TSI. Model 3776 Ultrafine Condensation Particle Counter Manual. TSI Incorporated, St. Paul, MN, 2007
29 Jiang  J, Attoui  M, Heim  M, Brunelli  N A, McMurry  P H, Kasper  G, Flagan  R C, Giapis  K, Mouret  G. Transfer functions and penetrations of five differential mobility analyzers for sub-2 nm particle classification. Aerosol Science and Technology, 2011, 45(4): 480–492
https://doi.org/10.1080/02786826.2010.546819
30 Kulkarni  P, Baron  P A, Willeke  K. Aerosol Measurement: Principles, Techniques, and Applications. New York: John Wiley & Sons, 2011
31 Reineking  A, Porstendörfer  J. Measurements of particle loss functions in a differential mobility analyzer (TSI, model 3071) for different flow rates. Aerosol Science and Technology, 1986, 5(4): 483–486
https://doi.org/10.1080/02786828608959112
32 Brockmann  J E. Aerosol Transport in Sampling Lines and Inlets, in Aerosol Measurement. New York: John Wiley & Sons, 2011, 68–105
33 Fuchs  N. On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere. Pure Applied Geophsics, 1963, 56(1): 185–193
https://doi.org/10.1007/BF01993343
34 Hoppel  W A, Frick  G M. Ion—aerosol attachment coefficients and the steady-state charge distribution on aerosols in a bipolar ion environment. Aerosol Science and Technology, 1986, 5(1): 1–21
https://doi.org/10.1080/02786828608959073
35 Wiedensohler  A. An approximation of the bipolar charge distribution for particles in the submicron size range. Journal of Aerosol Science, 1988, 19(3): 387–389
https://doi.org/10.1016/0021-8502(88)90278-9
36 Hagen  D E, Alofs  D J. Linear inversion method to obtain aerosol size distributions from measurements with a differential mobility analyzer. Aerosol Science and Technology, 1983, 2(4): 465–475
https://doi.org/10.1080/02786828308958650
37 Mai  H J, Jiang  J K, He  Z X, Hao  J M. Design and evaluation of an aerosol nanoparticle generation system. Environmental Science, 2013, 34(8): 2950–2954 (in Chinese)
pmid: 24191534
38 Liu  B Y H, Pui  D Y H. A submicron aerosol standard and the primary, absolute calibration of the condensation nuclei counter. Journal of Colloid and Interface Science, 1974, 47(1): 155–171
https://doi.org/10.1016/0021-9797(74)90090-3
39 Hudson  P K, Gibson  E R, Young  M A, Kleiber  P D, Grassian  V H. A newly designed and constructed instrument for coupled infrared extinction and size distribution measurements of aerosols. Aerosol Science and Technology, 2007, 41(7): 701–710
https://doi.org/10.1080/02786820701408509
40 TSI. Model 3068B Aerosol Electrometer Manual. TSI Incorporated, St. Paul, MN, 2006
41 Park  J Y, McMurry  P H, Park  K. Production of residue-free nanoparticles by atomization of aqueous solutions. Aerosol Science and Technology, 2012, 46(3): 354–360
https://doi.org/10.1080/02786826.2011.631614
42 Armendariz  A J, Leith  D. Concentration measurement and counting efficiency for the aerodynamic particle sizer 3320. Journal of Aerosol Science, 2002, 33(1): 133–148
https://doi.org/10.1016/S0021-8502(01)00152-5
43 Peters  T M, Leith  D. Concentration measurement and counting efficiency of the aerodynamic particle sizer 3321. Journal of Aerosol Science, 2003, 34(5): 627–634
https://doi.org/10.1016/S0021-8502(03)00030-2
44 Hinds  W C, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 1999
45 DeCarlo  P F, Slowik  J G, Worsnop  D R, Davidovits  P, Jimenez  J L. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory. Aerosol Science and Technology, 2004, 38(12): 1185–1205
https://doi.org/10.1080/027868290903907
46 Zelenyuk  A, Cai  Y, Imre  D. From agglomerates of spheres to irregularly shaped particles: determination of dynamic shape factors from measurements of mobility and vacuum aerodynamic diameters. Aerosol Science and Technology, 2006, 40(3): 197–217
https://doi.org/10.1080/02786820500529406
47 Weis  D D, Ewing  G E. Water content and morphology of sodium chloride aerosol particles. Journal of Geophysical Research, 1999, 104(D17): 21275–21285
48 Rose  D, Gunthe  S S, Mikhailov  E, Frank  G P, Dusek  U, Andreae  M O, Pöschl  U. Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment. Atmospheric Chemistry and Physics, 2008, 8: 1153–1179
https://doi.org/10.5194/acp-8-1153-2008
49 Weast  R C, Astle  M J. CRC Handbook of Chemistry and Physics, 63rd ed. Florida: CRC Press, 1982
[1] Can DONG, Lingxiao YANG, Chao YAN, Qi YUAN, Yangchun YU, Wenxing WANG. Particle size distributions, PM2.5 concentrations and water-soluble inorganic ions in different public indoor environments: a case study in Jinan, China[J]. Front Envir Sci Eng, 2013, 7(1): 55-65.
[2] Zhaoheng GONG, Zijuan LAN, Lian XUE, Liwu ZENG, Lingyan HE, Xiaofeng HUANG. Characterization of submicron aerosols in the urban outflow of the central Pearl River Delta region of China[J]. Front Envir Sci Eng, 2012, 6(5): 725-733.
[3] Shikang TAO, Xinning WANG, Hong CHEN, Xin YANG, Mei LI, Lei LI, Zhen ZHOU. Single particle analysis of ambient aerosols in Shanghai during the World Exposition, 2010: two case studies[J]. Front Envir Sci Eng Chin, 2011, 5(3): 391-401.
[4] Xiaoyan SHI, Kebin HE, Jie ZHANG, Yongliang MA, Yunshan GE, Jianwei TAN, . A comparative study of particle size distribution from two oxygenated fuels and diesel fuel[J]. Front.Environ.Sci.Eng., 2010, 4(1): 30-34.
[5] Yuxuan WANG, Yuqiang ZHANG, Jiming HAO, . Review on the applications of Tropospheric Emissions Spectrometer to air-quality research: Perspectives for China[J]. Front.Environ.Sci.Eng., 2010, 4(1): 12-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed