Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (5) : 912-918    https://doi.org/10.1007/s11783-015-0789-7
RESEARCH ARTICLE
Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms
Zhaoyi SHEN,Zhuo CHEN,Zhen HOU,Tingting LI,Xiaoxia LU()
Laboratory for Earth Surface Processes (Ministry of Education), College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
 Download: PDF(364 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The widespread production and use of zinc oxide nanoparticles (ZnO-NPs) in recent years have posed potential threat to the ecosystem. This study aimed to investigate the ecotoxicological effect of ZnO-NPs on soil microorganisms using laboratory microcosm test. Respiration, ammonification, dehydrogenase (DH) activity, and fluorescent diacetate hydrolase (FDAH) activity were used as ecotoxicological parameters. The results showed that in the neutral soil treated with 1 mg ZnO-NPs per g soil (fresh, neutral), ammonification was significantly inhibited during the study period of three months, but the inhibition rate decreased over increasing time. Inhibition in respiration was observed in the first month of the test. In various ZnO-NPs treatments (1 mg, 5 mg, and 10 mg ZnO-NPs per g soil), DH activity and FDAH activity were inhibited during the study period of one month. For both enzyme activities, there were positive dose–response relationships between the concentration of ZnO-NPs and the inhibition rates, but the curves changed over time due to changes of ZnO-NPs toxicity. Soil type affected the toxicity of ZnO-NPs in soil. The toxicity was highest in the acid soil, followed by the neutral soil. The toxicity was relatively low in the alkaline soil. The toxicity was not accounted for by the Zn2+ released from the ZnO-NPs. Direct interaction of ZnO-NPs with biologic targets might be one of the reasons. The adverse effect of ZnO-NPs on soil microorganisms in neutral and acid soils is worthy of attention.

Keywords zinc oxide nanoparticles (ZnO-NPs)      soil microorganisms      respiration      ammonification      dehydrogenase (DH) activity      fluorescent diacetate hydrolase (FDAH) activity     
Corresponding Author(s): Xiaoxia LU   
Online First Date: 12 May 2015    Issue Date: 08 October 2015
 Cite this article:   
Zhen HOU,Tingting LI,Xiaoxia LU, et al. Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms[J]. Front. Environ. Sci. Eng., 2015, 9(5): 912-918.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0789-7
https://academic.hep.com.cn/fese/EN/Y2015/V9/I5/912
properties soil type a)
acid (red soil) neutral (brown soil) alkaline (salty soil)
pH 5.5±0.1 7.1±0.3 8.5±0.3
TOC 1.2±0.1% 1.4±0.1% 0.6±0.1%
available-N 85±4.5 mg?kg−1 67.4±3.4 mg?kg−1 30.5±2.0 mg?kg−1
available-P 10.4±0.6 mg?kg−1 20.2±1.1 mg?kg−1 8.0±0.5 mg?kg−1
water content 11.8±1.2% 4.9±0.3% 10.5±1.0%
bacterial density 106 CFU g−1 soil 107 CFU g−1 soil 106 CFU g−1 soil
Tab.1  The physicochemical and biologic properties of the studied soils
Fig.1  TEM images of the studied ZnO-NPs ((a) is for size of 100 nm, (b) is for size of 0.5 µm)
Fig.2  Changes of respiration over time in the ZnO-NPs treatment and the control soil sample (neutral soil)
Fig.3  Changes of ammonification over time in the ZnO-NPs treatment and the control soil sample (neutral soil)
Fig.4  Changes of DH activity over time in various ZnO-NPs treatments and the control soil sample (neutral soil)
Fig.5  Changes of FDAH activity over time in the various ZnO-NPs treatments and the control soil sample (neutral soil)
Fig.6  Comparison of DH activity in the various ZnO-NPs treatments and the controls soil samples
1 Li  J H, Liu  X R, Zhang  Y, Tian  F F, Zhao  G Y, Yu  Q L Y, Jiang  F L, Liu  Y. Toxicity of nano zinc oxide to mitochondria. Toxicological Reviews, 2012, 1(2): 137–144
2 Borm  P, Klaessig  F C, Landry  T D, Moudgil  B, Pauluhn  J, Thomas  K, Trottier  R, Wood  S. Research strategies for safety evaluation of nanomaterials, Part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicological Sciences, 2006, 90(1): 23–32
https://doi.org/10.1093/toxsci/kfj084 pmid: 16396841
3 Boxall  A, Chaudhry  Q, Sinclair  C, Jones  A, Aitken  R, Jefferson  B, Watts  C. Current and Future Predicted Environmental Exposure to Engineered Nanoparticles. Central Science Laboratory, York, UK, 2007
4 Applerot  G, Lipovsky  A, Dror  R, Perkas  N, Nitzan  Y, Lubart  R, Gedanken  A. Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Advanced Functional Materials, 2009, 19(6): 842–852
https://doi.org/10.1002/adfm.200801081
5 Jin  T, Sun  D, Su  J Y, Zhang  H, Sue  H J. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. Journal of Food Science, 2009, 74(1): M46–M52
https://doi.org/10.1111/j.1750-3841.2008.01013.x pmid: 19200107
6 Liu  Y, He  L, Mustapha  A, Li  H, Hu  Z Q, Lin  M. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. Journal of Applied Microbiology, 2009, 107(4): 1193–1201
https://doi.org/10.1111/j.1365-2672.2009.04303.x pmid: 19486396
7 Xie  Y, He  Y, Irwin  P L, Jin  T, Shi  X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Applied and Environmental Microbiology, 2011, 77(7): 2325–2331
https://doi.org/10.1128/AEM.02149-10 pmid: 21296935
8 Adams  L K, Lyon  D Y, Alvarez  P J J. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Research, 2006, 40(19): 3527–3532
https://doi.org/10.1016/j.watres.2006.08.004 pmid: 17011015
9 Gajjar  P, Pettee  B, Britt  D W, Huang  W, Johnson  W P, Anderson  A J. Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. Journal of Biological Engineering, 2009, 3(1): 9
https://doi.org/10.1186/1754-1611-3-9 pmid: 19558688
10 Jones  N, Ray  B, Ranjit  K T, Manna  A C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiology Letters, 2008, 279(1): 71–76
https://doi.org/10.1111/j.1574-6968.2007.01012.x pmid: 18081843
11 Wu  B, Wang  Y, Lee  Y H, Horst  A, Wang  Z, Chen  D R, Sureshkumar  R, Tang  Y J. Comparative eco-toxicities of nano-ZnO particles under aquatic and aerosol exposure modes. Environmental Science & Technology, 2010, 44(4): 1484–1489
https://doi.org/10.1021/es9030497 pmid: 20102184
12 Ma  H, Williams  P L, Diamond  S A. Ecotoxicity of manufactured ZnO nanoparticles—a review. Environmental Pollution, 2013, 172: 76–85
https://doi.org/10.1016/j.envpol.2012.08.011 pmid: 22995930
13 Li  M, Zhu  L, Lin  D. Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environmental Science & Technology, 2011, 45(5): 1977–1983
https://doi.org/10.1021/es102624t pmid: 21280647
14 Collins  D, Luxton  T, Kumar  N, Shah  S, Walker  V K, Shah  V. Assessing the impact of copper and zinc oxide nanoparticles on soil: a field study. PLoS ONE, 2012, 7(8): e42663
https://doi.org/10.1371/journal.pone.0042663 pmid: 22905159
15 Du  W, Sun  Y, Ji  R, Zhu  J, Wu  J, Guo  H. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. Journal of Environmental Monitoring, 2011, 13(4): 822–828
https://doi.org/10.1039/c0em00611d pmid: 21267473
16 Ge  Y, Schimel  J P, Holden  P A. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environmental Science & Technology, 2011, 45(4): 1659–1664
https://doi.org/10.1021/es103040t pmid: 21207975
17 Rousk  J, Ackermann  K, Curling  S F, Jones  D L. Comparative toxicity of nanoparticulate CuO and ZnO to soil bacterial communities. PLoS ONE, 2012, 7(3): e34197
https://doi.org/10.1371/journal.pone.0034197 pmid: 22479561
18 Li  Z G, Luo  Y M, Teng  Y. Research Methods on Soil and Environmental Microorganisms. Beijing: Science Press, 2008
19 Hund-Rinke  K, Schlich  K, Klawonn  T. Influence of application techniques on the ecotoxicological effects of nanomaterials in soil. Environmental Science Europe, 2012, 24(1): 30
https://doi.org/10.1186/2190-4715-24-30
20 Hund-Rinke  K, Simon  M. Bioavailability assessment of contaminants in soils via respiration and nitrification tests. Environmental Pollution, 2008, 153(2): 468–475
https://doi.org/10.1016/j.envpol.2007.08.003 pmid: 17920739
21 Waalewijn-Kool  P L, Diez Ortiz  M, van Straalen  N M, van Gestel  C A M. Sorption, dissolution and pH determine the long-term equilibration and toxicity of coated and uncoated ZnO nanoparticles in soil. Environmental Pollution, 2013, 178: 59–64
https://doi.org/10.1016/j.envpol.2013.03.003 pmid: 23542444
22 Voegelin  A, Pfister  S, Scheinost  A C, Marcus  M A, Kretzschmar  R. Changes in zinc speciation in field soil after contamination with zinc oxide. Environmental Science & Technology, 2005, 39(17): 6616–6623
https://doi.org/10.1021/es047962g pmid: 16190219
23 Dick  R P. Soil enzyme activities as integrative indicators of soil health. In: Pankhurst  C E, Doube  B M, Gupta  V V S R, eds. Biological Indicators of Soil Health CAB International, New York, 1997
24 Shin  Y J, Kwak  J I, An  Y J. Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere, 2012, 88(4): 524–529
https://doi.org/10.1016/j.chemosphere.2012.03.010 pmid: 22513336
25 Kool  P L, Ortiz  M D, van Gestel  C A M. Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil. Environmental Pollution, 2011, 159(10): 2713–2719
https://doi.org/10.1016/j.envpol.2011.05.021 pmid: 21724309
26 Scheckel  K G, Luxton  T P, El Badawy  A M, Impellitteri  C A, Tolaymat  T M. Synchrotron speciation of silver and zinc oxide nanoparticles aged in a kaolin suspension. Environmental Science & Technology, 2010, 44(4): 1307–1312
https://doi.org/10.1021/es9032265 pmid: 20078035
27 Crout  N M J, Tye  A M, Zhang  H, McGrath  S P, Young  S D. Kinetics of metal fixation in soils: measurement and modeling by isotopic dilution. Environmental Toxicology and Chemistry, 2006, 25(3): 659–663
https://doi.org/10.1897/05-069R.1 pmid: 16566149
28 Voegelin  A, Pfister  S, Scheinost  A C, Marcus  M A, Kretzschmar  R. Changes in zinc speciation in field soil after contamination with zinc oxide. Environmental Science & Technology, 2005, 39(17): 6616–6623
https://doi.org/10.1021/es047962g pmid: 16190219
[1] FSE-15016-OF-SZY_suppl_1 Download
[1] Hallvard Ødegaard. A road-map for energy-neutral wastewater treatment plants of the future based on compact technologies (including MBBR)[J]. Front. Environ. Sci. Eng., 2016, 10(4): 2-.
[2] Hong ZHANG, Jialong LU, Shiwei ZHAO, . Response of soil microorganisms to vegetational succession in Ziwuling Forest[J]. Front.Environ.Sci.Eng., 2009, 3(4): 421-427.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed