Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    0, Vol. Issue () : 1056-1065    https://doi.org/10.1007/s11783-015-0796-8
RESEARCH ARTICLE
Development of an integrated policy making tool for assessing air quality and human health benefits of air pollution control
Xuezhen QIU1,Yun ZHU1,*(),Carey JANG2,Che-Jen LIN1,3,Shuxiao WANG4,Joshua FU5,Junping XIE1,Jiandong WANG4,Dian DING1,Shicheng LONG1
1. Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, College of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
2. USEPA/Office of Air Quality Planning & Standards, RTP, NC 27711, USA
3. Department of Civil Engineering, Lamar University, Beaumont, TX 77710-0024, USA
4. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
5. Department of Civil & Environmental Engineering, University of Tennessee, Knoxville, TN 37996-2010, USA
 Download: PDF(1313 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Efficient air quality management is critical to protect public health from the adverse impacts of air pollution. To evaluate the effectiveness of air pollution control strategies, the US Environmental Protection Agency (US EPA) has developed the Software for Model Attainment Test-Community Edition (SMAT-CE) to assess the air quality attainment of emission reductions, and the Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) to evaluate the health and economic benefits of air quality improvement respectively. Since scientific decision-making requires timely and coherent information, developing the linkage between SMAT-CE and BenMAP-CE into an integrated assessment platform is desirable. To address this need, a new module linking SMAT-CE to BenMAP-CE has been developed and tested. The new module streamlines the assessment of air quality and human health benefits for a proposed air pollution control strategy. It also implements an optimized data gridding algorithm which significantly enhances the computational efficiency without compromising accuracy. The performance of the integrated software package is demonstrated through a case study that evaluates the air quality and associated economic benefits of a national-level control strategy of PM2.5. The results of the case study show that the proposed emission reduction reduces the number of nonattainment sites from 379 to 25 based on the US National Ambient Air Quality Standards, leading to more than US$334 billion of economic benefits annually from improved public health. The integration of the science-based software tools in this study enhances the efficiency of developing effective and optimized emission control strategies for policy makers.

Keywords air quality assessment      human health benefit      economic benefit      air quality attainment assessment      air pollution control strategy      decision support system     
Corresponding Author(s): Yun ZHU   
Online First Date: 18 June 2015    Issue Date: 23 November 2015
 Cite this article:   
Xuezhen QIU,Yun ZHU,Carey JANG, et al. Development of an integrated policy making tool for assessing air quality and human health benefits of air pollution control[J]. Front. Environ. Sci. Eng., 0, (): 1056-1065.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0796-8
https://academic.hep.com.cn/fese/EN/Y0/V/I/1056
Fig.1  Development of linkage between SMAT-CE and BenMAP-CE to sequentially evaluate air quality and correlated health and economic benefits of proposed emissions reductions
Fig.2  Comparison of the base-year pollutant concentration generated by the improved algorithm and the standard algorithm (sample= 89308): (a) distribution of the normalized bias, (b) spatial difference of the pollutant concentration
Fig.3  Comparison of the base-year modeled and observational annual PM2.5 concentrations at all the monitoring sites within the US: (a) distribution of the normalized bias, (b) variation patterns of those values at monitoring sites within California
Fig.4  Attainment test results of annual PM2.5 under the proposed air pollution control strategy: (a) distribution of annual PM2.5 concentration at each monitoring site in 2007 (μg·m−3), (b) distribution of annual PM2.5 concentration at each monitoring site in 2020 (μg·m−3); the air pollution control strategy includes 25% NOx reduction, 25% SO2 reduction, 100% reduction on residential wood combustion and 50% PM2.5 reduction from non-EGU (Non-Electric Generating Units) of the emission levels in 2007
Health endpoints start age end age epidemiological study valuation methoda)
mortality, all cause 25 99 Krewski et al. [22] value of statistical life
0 1 pooled estimateb):Woodruff et al. [23]Woodruff et al. [24]
respiratory hospital admissions 65 99 pooled estimateb):Zanobetti et al. [25]Kloog et al. [26] cost of illness
18 64 Moolgavkar [27]
0 17 Babin et al. [28]
cardiovascular hospital admissions 65 99 pooled estimateb):Bell et al. [29]Bell [30]
18 64 Moolgavkar [31]
chronic bronchitis 27 99 Abbey et al. [32]
acute myocardial infarction, non-fatal 18 99 Zanobetti et al. [25]
asthma emergency room visits 0 99 pooled estimateb):Slaughter et al. [33]Mar et al. [34]Glad et al. [35]
acute bronchitis 8 12 Dockery et al. [36] willing to pay
asthma exacerbation 6 18 Ostro et al. [37]
acute respiratory symptoms 18 64 Ostro and Rothschild [38]
Tab.1  Selected PM-related health impact functions for analyses
health endpoints health impacts/(hundred cases) [95% CI] economic values/(million US$)a) [95% CI]
mortality, all cause 376[254−496] 329360[30731−897675]
respiratory hospital admissions 128[-35−231] 367[4−590]
cardiovascular hospital admissions 111[71−152] 435[300−570]
chronic bronchitis 252[7−491] 3051[444−6665]
acute myocardial infarction, non-fatal 39[19−60] 378[181−566]
asthma emergency room visits 205[-78−436] 9[-2−19]
acute bronchitis 534[-133−1157] 25[-1−68]
asthma exacerbation 30630[-616−61736] 173[-5−436]
acute respiratory symptoms 281759[230003−333283] 888[44−1810]
total / 334686[31696−908399]
Tab.2  Total annual monetary valuations of the national air pollution control strategy (health impacts rounded to the nearest integer, and economic values rounded to the nearest million US$) [95% confidence interval]
Fig.5  Distribution of (a) aggregated total economic benefits in states (US$), (b) total economic benefits (US$), (c) air quality benefits (μg·m−3) and (d) population data of 0−99 age range (person) in 12 km × 12 km spatial resolution
Fig.6  Combining the predicted air quality in future year and the science-specific ratio of economic benefits to air quality benefits to improve the air pollution control strategy: (a) predicted concentration distribution of annual PM2.5 in 2020 (μg·m−3); (b) distribution of the ratio of the economic benefits to air quality benefits in each state (billion US$ per μg·m−3)
1 Beelen  R, Raaschou-Nielsen  O, Stafoggia  M, Andersen  Z J, Weinmayr  G, Hoffmann  B, Wolf  K, Samoli  E, Fischer  P, Nieuwenhuijsen  M, Vineis  P, Xun  W W, Katsouyanni  K, Dimakopoulou  K, Oudin  A, Forsberg  B, Modig  L, Havulinna  A S, Lanki  T, Turunen  A, Oftedal  B, Nystad  W, Nafstad  P, de Faire  U, Pedersen  N L, Östenson  C G, Fratiglioni  L, Penell  J, Korek  M, Pershagen  G, Eriksen  K T, Overvad  K, Ellermann  T, Eeftens  M, Peeters  P H, Meliefste  K, Wang  M, Bueno-de-Mesquita  B, Sugiri  D, Krämer  U, Heinrich  J, de Hoogh  K, Key  T, Peters  A, Hampel  R, Concin  H, Nagel  G, Ineichen  A, Schaffner  E, Probst-Hensch  N, Künzli  N, Schindler  C, Schikowski  T, Adam  M, Phuleria  H, Vilier  A, Clavel-Chapelon  F, Declercq  C, Grioni  S, Krogh  V, Tsai  M Y, Ricceri  F, Sacerdote  C, Galassi  C, Migliore  E, Ranzi  A, Cesaroni  G, Badaloni  C, Forastiere  F, Tamayo  I, Amiano  P, Dorronsoro  M, Katsoulis  M, Trichopoulou  A, Brunekreef  B, Hoek  G. Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet, 2014, 383(9919): 785–795
https://doi.org/10.1016/S0140-6736(13)62158-3 pmid: 24332274
2 Kan  H, Wong  C M, Vichit-Vadakan  N, Qian  Z. Short-term association between sulfur dioxide and daily mortality: the Public Health and Air Pollution in Asia (PAPA) study. Environmental Research, 2010, 110(3): 258–264
https://doi.org/10.1016/j.envres.2010.01.006 pmid: 20122685
3 Wan Mahiyuddin  W R, Sahani  M, Aripin  R, Latif  M T, Thach  T Q, Wong  C M. Short-term effects of daily air pollution on mortality. Atmospheric Environment, 2013, 65(0): 69–79
https://doi.org/10.1016/j.atmosenv.2012.10.019
4 Dockery  D W, Stone  P H. Cardiovascular risks from fine particulate air pollution. New England Journal of Medicine, 2007, 356(5): 511–513
https://doi.org/10.1056/NEJMe068274 pmid: 17267912
5 Karakatsani  A, Kapitsimadis  F, Pipikou  M, Chalbot  M C, Kavouras  I G, Orphanidou  D, Papiris  S, Katsouyanni  K. Ambient air pollution and respiratory health effects in mail carriers. Environmental Research, 2010, 110(3): 278–285
https://doi.org/10.1016/j.envres.2009.11.002 pmid: 20047736
6 Tao  Y, Mi  S, Zhou  S, Wang  S, Xie  X. Air pollution and hospital admissions for respiratory diseases in Lanzhou, China. Environmental Pollution, 2014, 185(0): 196–201
https://doi.org/10.1016/j.envpol.2013.10.035 pmid: 24286694
7 World Health Organization. Burden of disease from Ambient Air Pollution for 2012. 2014. Available online at http://www.who.int/phe/health_topics/outdoorair/databases/AAP_BoD_results_March2014.pdf?ua=1 (accessed March 2014)
8 Naiker  Y, Diab  R D, Zunckel  M, Hayes  E T. Introduction of local Air Quality Management in South Africa: overview and challenges. Environmental Science & Policy, 2012, 17(0): 62–71
https://doi.org/10.1016/j.envsci.2011.11.009
9 Ma  G, Wang  J, Yu  F, Zhang  Y, Cao  D. An assessment of the potential health benefits of realizing the goals for PM10 in the updated Chinese Ambient Air Quality Standard. Frontiers of Environmental Science & Engineering, DOI: 10.1007/s11783-014-0738-x
10 Carnevale  C, Finzi  G, Pisoni  E, Volta  M, Guariso  G, Gianfreda  R, Maffeis  G, Thunis  P, White  L, Triacchini  G. An integrated assessment tool to define effective air quality policies at regional scale.  Environmental  Modelling &  Software,  2012,  38(0):  306–315
https://doi.org/10.1016/j.envsoft.2012.07.004
11 Yang  Y, Zhu  Y, Jang  C, Xie  J P, Wang  S X, Fu  J, Lin  C J, Ma  J, Ding  D, Qiu  X Z, Lao  Y W. Research and development of environmental benefits mapping and analysis program: community edition. Acta Scientiae Circumstantiae, 2013, 33(09): 2395–2401 (in Chinese)
12 Wang  H, Zhu  Y, Jang  C, Lin  C J, Wang  S, Fu  J S, Gao  J, Deng  S, Xie  J, Ding  D, Qiu  X, Long  S. Design and demonstration of a next-generation air quality attainment assessment system for PM2.5 and O3. Journal of Environmental Sciences (China), 2015, 29(0): 178–188
https://doi.org/10.1016/j.jes.2014.08.023 pmid: 25766027
13 Lao  Y W, Zhu  Y, Carey  J, Lin  C J, Xing  J, Chen  Z R, Xie  J P, Wang  S X, Fu  J. Research and development of regional air pollution control decision support tool based on response surface model. Acta Scientiae Circumstantiae, 2012, 32(8): 1913–1922 (in Chinese)
14 Sun  J, Schreifels  J, Wang  J, Fu  J S, Wang  S. Cost estimate of multi-pollutant abatement from the power sector in the Yangtze River Delta region of China. Energy Policy, 2014, 69(0): 478–488
https://doi.org/10.1016/j.enpol.2014.02.007
15 Microsoft. DotSpatial. 2013. Available online at http://dotspatial.codeplex.com/SourceControl/latest#Trunk/DotSpatial.Analysis/Voronoi.cs (accessed <Date>March, 2013</Date>)
16 Abt Associates Inc. Modeled Attainment Test Software User's Manual. 2014. Available online at http://www.epa.gov/ttn/scram/guidance/guide/MATS_2-6-1_manual.pdf (accessed April 2014)
17 U.S. EPA. Modeling Guidance for Demonstrating Attainment of Air Quality Goals for Ozone, PM2.5, and Regional Haze. 2014. Available online at http://www.epa.gov/ttn/scram/guidance/guide/Draft_O3-PM-RH_Modeling_Guidance-2014.pdf (accessed December, 2014)
18 Fann  N, Baker  K R, Fulcher  C M. Characterizing the PM2.5-related health benefits of emission reductions for 17 industrial, area and mobile emission sectors across the U.S. Environment International, 2012, 49: 141–151
19 Davidson  K, Hallberg  A, McCubbin  D, Hubbell  B. Analysis of PM2.5 using the Environmental Benefits Mapping and Analysis Program (BenMAP). Journal of Toxicology and Environmental Health-part A-current Issues, 2007, 70(3–4): 332–346
https://doi.org/10.1080/15287390600884982 pmid: 17365595
20 International  R T I. Environmental Benefits Mapping and Analysis Program User's Manual Appendices. 2015. Available online at http://www2.epa.gov/sites/production/files/2015-04/documents/benmap-ce_user_manual_appendices_march_2015.pdf (accessed March 2015)
21 International  R T I. Environmental Benefits Mapping and Analysis Program User's Manual. 2015. Available online at http://www2.epa.gov/sites/production/files/2015-04/documents/benmap-ce_user_manual_march_2015.pdf (accessed March 2015)
22 Krewski  D, Jerrett  M, Burnett  R T, Ma  R, Hughes  E, Shi  Y, Turner  M C, Pope  C A 3rd, Thurston  G, Calle  E E, Thun  M J, Beckerman  B, DeLuca  P, Finkelstein  N, Ito  K, Moore  D K, Newbold  K B, Ramsay  T, Ross  Z, Shin  H, Tempalski  B. Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. Research Report (Health Effects Institute), 2009, 140(140): 5–114, discussion 115–136
pmid: 19627030
23 Woodruff  T J, Grillo  J, Schoendorf  K C. The relationship between selected causes of postneonatal infant mortality and particulate air pollution in the United States. Environmental Health Perspectives, 1997, 105(6): 608–612
https://doi.org/10.1289/ehp.97105608 pmid: 9288495
24 Woodruff  T J, Parker  J D, Schoendorf  K C. Fine particulate matter (PM2.5) air pollution and selected causes of postneonatal infant mortality in California. Environmental Health Perspectives, 2006, 114(5): 786–790
https://doi.org/10.1289/ehp.8484 pmid: 16675438
25 Zanobetti  A, Franklin  M, Koutrakis  P, Schwartz  J. Fine particulate air pollution and its components in association with cause-specific emergency admissions. Environmental Health, 2009, 8(1): 58
https://doi.org/10.1186/1476-069X-8-58 pmid: 20025755
26 Kloog  I, Coull  B A, Zanobetti  A, Koutrakis  P, Schwartz  J D. Acute and chronic effects of particles on hospital admissions in New-England. PLoS ONE, 2012, 7(4): e34664
https://doi.org/10.1371/journal.pone.0034664 pmid: 22529923
27 Moolgavkar  S H. Air pollution and hospital admissions for chronic obstructive pulmonary disease in three metropolitan areas in the United States. Inhalation Toxicology, 2000, 12(Suppl 4): 75–90
https://doi.org/10.1080/089583700750019512 pmid: 12881887
28 Babin  S M, Burkom  H S, Holtry  R S, Tabernero  N R, Stokes  L D, Davies-Cole  J O, DeHaan  K, Lee  D H. Pediatric patient asthma-related emergency department visits and admissions in Washington, DC, from 2001-2004, and associations with air quality, socio-economic status and age group. Environmental Health, 2007, 6(1): 9
https://doi.org/10.1186/1476-069X-6-9 pmid: 17376237
29 Bell  M L, Ebisu  K, Peng  R D, Walker  J, Samet  J M, Zeger  S L, Dominici  F. Seasonal and regional short-term effects of fine particles on hospital admissions in 202 US counties, 1999–2005. American Journal of Epidemiology, 2008, 168(11): 1301–1310
https://doi.org/10.1093/aje/kwn252 pmid: 18854492
30 Bell  M L. Assessment of the health impacts of particulate matter characteristics. Research Report (Health Effects Institute), 2012, 161(161): 5–38
pmid: 22393584
31 Moolgavkar  S H. Air pollution and hospital admissions for diseases of the circulatory system in three U.S. metropolitan areas. Journal of the Air & Waste Management Association, 2000, 50(7): 1199–1206
https://doi.org/10.1080/10473289.2000.10464162 pmid: 10939212
32 Abbey  D E, Ostro  B E, Petersen  F, Burchette  R J. Chronic respiratory symptoms associated with estimated long-term ambient concentrations of fine particulates less than 2.5 microns in aerodynamic diameter (PM2.5) and other air pollutants. Journal of Exposure Analysis and Environmental Epidemiology, 1995, 5(2): 137–159
pmid: 7492903
33 Slaughter  J C, Kim  E, Sheppard  L, Sullivan  J H, Larson  T V, Claiborn  C. Association between particulate matter and emergency room visits, hospital admissions and mortality in Spokane, Washington. Journal of Exposure Analysis and Environmental Epidemiology, 2005, 15(2): 153–159
https://doi.org/10.1038/sj.jea.7500382 pmid: 15187986
34 Mar  T F, Koenig  J Q, Primomo  J. Associations between asthma emergency visits and particulate matter sources, including diesel emissions from stationary generators in Tacoma, Washington. Inhalation Toxicology, 2010, 22(6): 445–448
https://doi.org/10.3109/08958370903575774 pmid: 20384437
35 Glad  J A, Brink  L L, Talbott  E O, Lee  P C, Xu  X, Saul  M, Rager  J. The relationship of ambient ozone and PM2.5 levels and asthma emergency department visits: possible influence of gender and ethnicity. Archives of Environmental & Occupational Health, 2012, 67(2): 103–108
https://doi.org/10.1080/19338244.2011.598888 pmid: 22524651
36 Dockery  D W, Cunningham  J, Damokosh  A I, Neas  L M, Spengler  J D, Koutrakis  P, Ware  J H, Raizenne  M, Speizer  F E. Health effects of acid aerosols on North American children: respiratory symptoms. Environmental Health Perspectives, 1996, 104(5): 500–505
https://doi.org/10.1289/ehp.96104500 pmid: 8743437
37 Ostro  B, Lipsett  M, Mann  J, Braxton-Owens  H, White  M. Air pollution and exacerbation of asthma in African-American children in Los Angeles. Epidemiology (Cambridge, Mass), 2001, 12(2): 200–208
https://doi.org/10.1097/00001648-200103000-00012 pmid: 11246581
38 Ostro  B D, Rothschild  S. Air pollution and acute respiratory morbidity: an observational study of multiple pollutants. Environmental Research, 1989, 50(2): 238–247
https://doi.org/10.1016/S0013-9351(89)80004-0 pmid: 2583069
[1] Qi WANG, Shuming LIU, Wenjun LIU, Zoran KAPELAN, Dragan SAVIC. Decision Support System for emergency scheduling of raw water supply systems with multiple sources[J]. Front Envir Sci Eng, 2013, 7(5): 777-786.
[2] Mow-Soung CHENG, Jenny X. ZHEN, Leslie SHOEMAKER, . BMP decision support system for evaluating stormwater management alternatives[J]. Front.Environ.Sci.Eng., 2009, 3(4): 453-463.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed