|
|
Space view of the decadal variation for typical air pollutants in the Pearl River Delta (PRD) region in China |
Zifeng WANG1,Min SHAO2,*( ),Liangfu CHEN1,*( ),Minghui TAO1,Liuju ZHONG3,Duohong CHEN3,Meng FAN1,Yang WANG1,Xinhui WANG1 |
1. State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences and Beijing Normal University, Beijing 100101, China
2. College of Environmental Sciences and Engineering, Peking University, Beijing 100876, China
3. Guangdong Environmental Monitoring Center, Guangzhou 510308, China |
|
|
Abstract Spatial and temporal trends of the typical pollutants in PRD viewed from space.
Comparisons of the satellite retrievals with the collocated in situ data are given.
Among different MCs, the control measures applied in PRD are the most effective.
The unique HCHO trends imply significant contribution from the biogenic origins.
The Pearl River Delta (PRD) is one of the most industrialized, urbanized and populated regions in China, and thus has been long suffering from severe air pollutions. Space data provide a unique perspective for investigating the atmospheric environment at a regional scale. By utilizing multiple satellite retrievals from 2005 to 2013, this study presented, for the first time, the spatial patterns and temporal trends of typical air pollutants over PRD and its vicinity. As viewed from space, aerosol optical depth (AOD), NO2 and SO2 all had their higher values at the central part of PRD, and showed clear descending gradients as moving to the outskirt of this region. As to the inter-annual variation, all these pollutants had decreasing trends in PRD during the study period, which generally agreed with the relevant in situ measurements. However, the satellite retrievals differed from ground measurements when addressing NO2 and SO2 in the vicinity of PRD. This work also provides the inter-comparison among PRD and three other metropolitan clusters in China: PRD had relatively high AOD, moderate NO2 and low SO2 levels, and it was the only region achieving the effective reduction of NO2 and SO2 during last decade. Unlike the previous three pollutants, HCHO observed by satellite showed very special patterns: it had a relatively homogeneous spatial distribution over both of PRD and its vicinity, and presented an opposite increasing trend from 2005 to 2010. Moreover, PRD had the highest HCHO level among all the metropolitan clusters, hinting a considerable contribution of biogenic origins of HCHO in PRD.
|
Keywords
The Pearl River Delta (PRD)
Satellite monitoring
Regional air quality
Long-term trend
HCHO
|
|
Fund: |
Corresponding Author(s):
Min SHAO,Liangfu CHEN
|
Issue Date: 20 June 2016
|
|
1 |
Zhong L, Louie P K, Zheng Z, Yuan Z, Yue D, Ho J W K, Lau A K H. Science-policy interplay: air quality management in the Pearl River Delta Region and Hong Kong. Atmospheric Environment, 2013, 76: 3–10
https://doi.org/10.1016/j.atmosenv.2013.03.012
|
2 |
Nie W, Wang T, Wang W X, Wei X L, Liu Q. Atmospheric concentrations of particulate sulfate and nitrate in Hong Kong during 1995–2008: impact of local emission and super-regional transport. Atmospheric Environment, 2013, 76: 43–51
https://doi.org/10.1016/j.atmosenv.2012.07.001
|
3 |
Yuan Z B, Yadav V, Turner J R, Louie P K K, Lau A K H. Longterm trends of ambient particulate matter emission source contributions and the accountability of control strategies in Hong Kong over 1998–2008. Atmospheric Environment, 2013, 76: 21–31
https://doi.org/10.1016/j.atmosenv.2012.09.026
|
4 |
Lu Q, Zheng J Y, Ye S Q, Shen X L, Yuan Z B, Yin S S. Emission trends and source characteristics of SO2, NOx, PM10 and VOCs in the Pearl River Delta region from 2000 to 2009. Atmospheric Environment, 2013, 76: 11–20
https://doi.org/10.1016/j.atmosenv.2012.10.062
|
5 |
Wang X, Chen W, Chen D, Wu Z, Fan Q. Long-term trends of fine particulate matter and chemical composition in the Pearl River Delta Economic Zone (PRDEZ), China. Frontiers of Environmental Science and Engineering, 2016, 10(1): 53–62
https://doi.org/10.1007/s11783-014-0728-z
|
6 |
Martin R V. Satellite remote sensing of surface air quality. Atmospheric Environment, 2008, 42(34): 7823–7843
https://doi.org/10.1016/j.atmosenv.2008.07.018
|
7 |
Hoff R M, Christopher S A. Remote sensing of particulate pollution from space: have we reached the Promised Land. Journal of the Air & Waste Management Association, 2009, 59(6): 645–675
|
8 |
Zhang L. Intercontinental transport of air pollution. Frontiers of Environmental Science and Engineering, 2010, 4(1): 20–29
https://doi.org/10.1007/s11783-010-0014-7
|
9 |
Streets D G, Canty T, Carmichael G R, de Foy B, Dickerson R R, Duncan B N, Edwards D P, Haynes J A, Henze D K, Houyoux M R, Jacob D J, Krotkov N A, Lamsal L N, Liu Y, Lu Z, Martin R V, Pfister G G, Pinder R W, Salawitch R J, Wecht K J. Emissions estimation from satellite retrievals: a review of current capability. Atmospheric Environment, 2013, 77: 1011–1042
https://doi.org/10.1016/j.atmosenv.2013.05.051
|
10 |
Massie S T, Torres O, Smith S J. Total ozone mapping spectrometer (TOMS) observations of increases of Asian aerosol in winter from 1979 to 2000. Journal of Geophysical Research, 2004, 109(D18): D18211
https://doi.org/10.1029/2004JD004620
|
11 |
Yoon J, Burrows J P, Vountas M, von Hoyningen-Hueue W. Changes in atmospheric aerosol loadings retrieved from space-based measurements during the past decade. Atmospheric Chemistry and Physics, 2014, 14(13): 6881–6902
https://doi.org/10.5194/acp-14-6881-2014
|
12 |
Wang Y, Zhang Y, Hao J. Review on the applications of tropospheric emissions spectrometer to air-quality research: perspectives for China. Frontiers of Environmental Science and Engineering, 2010, 4(1): 12–19
https://doi.org/10.1007/s11783-010-0012-9
|
13 |
Zhang Q, Streets D G, He K, Wang Y, Richter A, Burrows J P, Uno I, Jang C J, Chen D, Yao Z, Lei Y. NOx emissions trends for China, 1995–2004: the view from the ground and the view from space. Journal of Geophysical Research, 2007, 112(D22): D22306
https://doi.org/10.1029/2007JD008684
|
14 |
Itahashi S, Uno I, Yumimono K, Irie H, Osada K, Ogata K, Fukushima H, Wang Z, Ohara T.Interannual variation in the fine-mode MODIS aerosol optical depth and its relationship to the changes in sulfur dioxide emissions in China between 2000 and 2010. Atmospheric Chemistry and Physics, 2012, 12(5): 2631–2640
https://doi.org/10.5194/acp-12-2631-2012
|
15 |
Wang S, Xing J, Chatani S, Hao J, Klimont Z, Cofala J, Amann M. Verification of anthropogenic emissions of China by satellite and ground observations. Atmospheric Environment, 2011, 45(35): 6347–6358
https://doi.org/10.1016/j.atmosenv.2011.08.054
|
16 |
Lu Z, Zhang Q, Streets D G. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010. Atmospheric Chemistry and Physics, 2011, 11(18): 9839–9864
https://doi.org/10.5194/acp-11-9839-2011
|
17 |
De Smedt I, Stavrakou T, Müller J F, van der A R J, Van Roozendael M. van der A and Van Roozendael. Trend detection in satellite observations for formaldehyde tropospheric columns. Geophysical Research Letters, 2010, 37(18): L18808 doi:10.1029/2010GL044245
|
18 |
Zhang Y, Su H, Zhong L J, Cheng Y F, Zeng L M, Wang X S, Xiang Y R, Wang J L, Gao D F, Shao M, Fan S J, Liu S C. Regional ozone pollution and observation-based approach for analyzing ozone-precursor relationship during the PRIDE-PRD 2004 campaign. Atmospheric Environment, 2008, 42(25): 6203–6218
https://doi.org/10.1016/j.atmosenv.2008.05.002
|
19 |
Lo J C F, Lau A K H, Fung J C H, Chen F. Investigation of enhanced cross-city transport and trapping of air pollutants by coastal and urban land-sea breeze circulations. Journal of Geophysical Research, 2006, 111: D14104
|
20 |
Wu D, Tie X X, Li C C, Ying Z M, Lau A K H, Huang J. An extremely low visibility event over the Guangzhou region: a case study. Atmospheric Environment, 2005, 39(35): 6568–6577
https://doi.org/10.1016/j.atmosenv.2005.07.061
|
21 |
Zheng J Y, Zhang L J, Che W W, Zheng Z Y, Yin S S. A highly resolved temporal and spatial air pollutant emission inventory for the Pearl River Delta region, China and its uncertainty assessment. Atmospheric Environment, 2009, 43(32): 5112–5122
https://doi.org/10.1016/j.atmosenv.2009.04.060
|
22 |
GDPBS (Guangdong Provincial Bureau of Statistic). 2006–2015. Guangdong Statistical Year books from 2006 to 2015. Available at: (in Chinese)
|
23 |
Kaufman Y J, Tanré D, Remer L A, Vermote E F, Chu A, Holben B N. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. Journal of Geophysical Research, 1997, 102(D14): 17051–17067
https://doi.org/10.1029/96JD03988
|
24 |
Tanré D, Kaufman Y J, Herman M, Mattoo S. Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. Journal of Geophysical Research, 1997, 102(D14): 16971–16988
https://doi.org/10.1029/96JD03437
|
25 |
Remer L A, Kaufman Y J, Tanré D, Mattoo S, Chu D A, Martins J V, Li R R, Ichoku C, Levy R C, Kleidman R G, Eck T F, Vermote E, Holben B N. The MODIS aerosol algorithm, products, and validation. Journal of the Atmospheric Sciences, 2005, 62(4): 947–973
https://doi.org/10.1175/JAS3385.1
|
26 |
Abdou W A, Diner D J, Martonchik J V, Bruegge C J, Kahn R A, Gaitley B J, Crean K A, Remer L A, Holben B. Comparison of coincident multiangle imaging spectroradiometer and moderate resolution imaging spectroradiometer aerosol optical depths over land and ocean scenes containing aerosol robotic network sites. Journal of Geophysical Research, 2005, 110(D10): D10S07
https://doi.org/10.1029/2004JD004693
|
27 |
Levelt P F, van den Oord G H J, Dobber M R, Malkki A, Visser H, de Vries J, Stammes P, Lundell J O, Saari H. The ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5): 1093–1101
https://doi.org/10.1109/TGRS.2006.872333
|
28 |
Boersma K F, Eskes H J, Veefkind J P, Brinksma E J. van der A R J, Sneep M, van den Oord G H J,, Levelt P F, Stammes P, Gleason J F, Bucsela E J. Near-real time retrieval of tropospheric NO2 from OMI. Atmospheric Chemistry and Physics, 2007, 6(6): 2013–2128
|
29 |
Boersma K F, Eskes H J, Brinksma E J. Error analysis for tropospheric NO2 retrieval from space. Journal of Geophysical Research, 2004, 109(D4): D04311
https://doi.org/10.1029/2003JD003962
|
30 |
Chance K, Palmer P I, Spurr R J D, Martin R V, Kurosu T P, Jacob D J. Satellite observations of formaldehyde over North America from GOME. Geophysical Research Letters, 2000, 27(21): 3461–3464
https://doi.org/10.1029/2000GL011857
|
31 |
Krotkov N A, Carn S A, Krueger A J, Bhartia P K, Kai Yang. Band residual difference algorithm for retrieval of SO2 from the Aura Ozone Monitoring Instrument (OMI). IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5): 1259–1266
https://doi.org/10.1109/TGRS.2005.861932
|
32 |
Krotkov N A, McClure B, Dickerson R R, Carn S A, Li C, Bhartia P K, Yang K, Krueger A J, Li Z, Levelt P F, Chen H, Wang P, Lu D. Validation of SO2 retrievals from the ozone monitoring instrument over NE China. Journal of Geophysical Research, 2008, 113(D16): D16S40
https://doi.org/10.1029/2007JD008818
|
33 |
De Smedt I, Muller J F, Stavrakou T, van der A R, Eskes H, Van Roozendael M. Twelve years of global observations of formaldehyde in the troposphere using GOME and SCIAMACHY sensors. Atmospheric Chemistry and Physics, 2008, 8(16): 4947–4963
https://doi.org/10.5194/acp-8-4947-2008
|
34 |
Abad G GLiu X, Chance K, Wang H, Kurosu T P, Suleiman R. Updated smithsonian astrophysical observatory ozone monitoring instrument (SAO OMI) formaldehyde retrieval. Atmospheric Measurement Techniques, 2014, 8(1): 19–32
https://doi.org/10.5194/amt-8-19-2015
|
35 |
GDEPA (Guangdong Environmental Protection Agency). 2005–2014. Environment Statistical Bulletin of Guangdong (2005 to 2014). Available at: (in Chinese)
|
36 |
Rutkowska A. Properties of the Cox–Stuart test for trend in application to hydrological series: the simulation study. Communications in Statistics– Simulation and Computation, 2015, 44(3): 565–579
https://doi.org/10.1080/03610918.2013.784988
|
37 |
Kanakidou M, Seinfeld J H, Pandis S N, Barnes I, Dentener F J, Facchini M C, Van Dingenen R, Ervens B, Nenes A, Nielsen C J, Swietlicki E, Putaud J P, Balkanski Y, Fuzzi S, Horth J, Moortgat G K, Winterhalter R, Myhre C E L, Tsigaridis K, Vignati E, Stephanou E G, Wilson J. Organic aerosol and global climate modelling: a review. Atmospheric Chemistry and Physics, 2005, 5(4): 1053–1123
https://doi.org/10.5194/acp-5-1053-2005
|
38 |
Parrish D D, Ryerson T B, Mellqvist J, Johansson J, Fried A, Richter D, Walega J G, Washenfelder R A, de Gouw J A, Peischl J, Aikin K C, McKeen S A, Frost G J, Fehsenfeld F C, Herndon S C. Primary and secondary sources of formaldehyde in urban atmospheres: Houston Texas region. Atmospheric Chemistry and Physics, 2012, 12(7): 3273–3288
https://doi.org/10.5194/acp-12-3273-2012
|
39 |
Qu W J, Arimoto R, Zhang Y X, Zhao C H, Wang Y Q, Sheng L F, Fu G. Spatial distribution and interannual variation of surace PM10 concentrations over eighty-six Chinese cities. Atmospheric Chemistry and Physics, 2010, 10(12): 5641–5662
https://doi.org/10.5194/acp-10-5641-2010
|
40 |
Barnaba F, Putaud J P, Gruening C, dell’Acqua A, Dos Santos S. Annual cycle in collocated in situ, total-column, and height-resolved aerosol observations in the Po Valley (Italy): implications for ground-level particulate matter mass concentration estimation from remote sensing. Journal of Geophysical Research, 2010, 115(D19): D19209
https://doi.org/10.1029/2009JD013002
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|