|
|
Global sources, emissions, transport and deposition of dust and sand and their effects on the climate and environment: a review |
Feng Wang1( ), Xueqiu Zhao2, Cynthia Gerlein-Safdi3, Yue Mu1, Dongfang Wang1, Qi Lu1( ) |
1. Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China 2. School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China 3. Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA |
|
|
Abstract he main sources of sand and dust lie in deserts and semi-deserts, such as the Sahara Desert in Africa and the deserts in Central and Western Asia. Dust aerosols directly alter the radiation balance of the earth-atmosphere system by scattering and absorbing short- and long-wave radiation. Dust aerosols indirectly alter the albedo and rainfall patterns by acting as cloud condensation nuclei (CCN) or ice nuclei (IN). Dust aerosols mitigate global warming by altering the amount of CO2 absorbed by the marine phytoplankton. Dust and Sand Storms (DSS) originating in deserts in arid and semi-arid regions are events raising global public concern. An important component of atmospheric aerosols, dust aerosols play a key role in climatic and environmental changes at the regional and the global scale. Deserts and semi-deserts are the main source of dust and sand, but regions that undergo vegetation deterioration and desertification due to climate change and human activities also contribute significantly to DSS. Dust aerosols are mainly composed of dust particles with an average diameter of 2 mm, which can be transported over thousands of kilometers. Dust aerosols influence the radiation budget of the earth-atmosphere system by scattering solar short-wave radiation and absorbing surface long-wave radiation. They can also change albedo and rainfall patterns because they can act as cloud condensation nuclei (CCN) or ice nuclei (IN). Dust deposition is an important source of both marine nutrients and contaminants. Dust aerosols that enter marine ecosystems after long-distance transport influence phytoplankton biomass in the oceans, and thus global climate by altering the amount of CO2 absorbed by phytoplankton. In addition, the carbonates carried by dust aerosols are an important source of carbon for the alkaline carbon pool, which can buffer atmospheric acidity and increase the alkalinity of seawater. DSS have both positive and negative impacts on human society: they can exert adverse impacts on human’s living environment, but can also contribute to the mitigation of global warming and the reduction of atmospheric acidity.
|
Keywords
Dust and sand storm
Climate effects
Radiative forcing
Cloud condensation nuclei
Precipitation
Iron fertilizer
|
Corresponding Author(s):
Feng Wang,Qi Lu
|
Issue Date: 24 January 2017
|
|
1 |
UNEP. WMO, UNCCD. Global Assessment of Sand and Dust Storms — WMO SDS-WAS. United Nations Environment Programme. Nairobi, 2016
|
2 |
X Xi, I N Sokolik. Quantifying the anthropogenic dust emission from agricultural land use and desiccation of the Aral Sea in Central Asia. Journal of Geophysical Research, D, Atmospheres, 2016, 121(20): 12270–12281
https://doi.org/10.1002/2016JD025556
|
3 |
O A Chadwick, L A Derry, P M Vitousek, B J Huebert, L O Hedin. Changing sources of nutrients during four million years of ecosystem development. Nature, 1999, 397(6719): 491–497
https://doi.org/10.1038/17276
|
4 |
H Yu, L A Remer, M Chin, H Bian, Q Tan, T Yuan, Y Zhang. Aerosols from overseas rival domestic emissions over North America. American Scientist, 2012, 337(6094): 566–569
https://doi.org/10.1126/science.1217576
pmid: 22859485
|
5 |
S Satheesh, K Krishnamoorthy. Radiative effects of natural aerosols: a review. Atmospheric Environment, 2005, 39(11): 2089–2110
https://doi.org/10.1016/j.atmosenv.2004.12.029
|
6 |
F Lambert, J S Kug, R J Park, N Mahowald, G Winckler, A Abe-Ouchi, R O’ishi, T Takemura, J H Lee. The role of mineral-dust aerosols in polar temperature amplification. Nature Climate Change, 2013, 3(5): 487–491
https://doi.org/10.1038/nclimate1785
|
7 |
J Haywood, O Boucher. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Reviews of Geophysics, 2000, 38(4): 513–543
https://doi.org/10.1029/1999RG000078
|
8 |
T L Anderson, R J Charlson, S E Schwartz, R Knutti, O Boucher, H Rodhe, J Heintzenberg. Atmospheric science. Climate forcing by aerosol—A hazy picture. Science, 2003, 300(5622): 1103–1104
https://doi.org/10.1126/science.1084777
pmid: 12750507
|
9 |
M Pósfai, P R Buseck. Nature and climate effects of individual tropospheric aerosol particles. Annual Review of Earth and Planetary Sciences, 2010, 38(1): 17–43
https://doi.org/10.1146/annurev.earth.031208.100032
|
10 |
J M Creamean, K J Suski, D Rosenfeld, A Cazorla, P J DeMott, R C Sullivan, A B White, F M Ralph, P Minnis, J M Comstock, J M Tomlinson, K A Prather. Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S. Science, 2013, 339(6127): 1572–1578
https://doi.org/10.1126/science.1227279
pmid: 23449996
|
11 |
P G Falkowski, R T Barber, V Smetacek. Biogeochemical controls and feedbacks on ocean primary production. Science, 1998, 281(5374): 200–207
https://doi.org/10.1126/science.281.5374.200
pmid: 9660741
|
12 |
J M Prospero, J E Bullard, R Hodgkins. High-latitude dust over the North Atlantic: inputs from Icelandic proglacial dust storms. Science, 2012, 335(6072): 1078–1082
https://doi.org/10.1126/science.1217447
pmid: 22383844
|
13 |
F Lamy, R Gersonde, G Winckler, O Esper, A Jaeschke, G Kuhn, J Ullermann, A Martinez-Garcia, F Lambert, R Kilian. Increased dust deposition in the Pacific Southern Ocean during glacial periods. Science, 2014, 343(6169): 403–407
https://doi.org/10.1126/science.1245424
pmid: 24458637
|
14 |
J J Cao, S C Lee, X Y Zhang, J C Chow, Z S An, K F Ho, J G Watson, K Fung, Y Q Wang, Z X Shen. Characterization of airborne carbonate over a site near Asian dust source regions during spring 2002 and its climatic and environmental significance. Journal of Geophysical Research, D, Atmospheres, 2005, 110(D3): D03203
https://doi.org/10.1029/2004JD005244
|
15 |
P D Broxton, X Zeng, W Scheftic, P A Troch. A MODIS-Based Global 1-km maximum green vegetation fraction dataset. Journal of Applied Meteorology and Climatology, 2014, 53(8): 1996–2004 doi:10.1175/JAMC-D-13-0356.1
|
16 |
P Ginoux, J M Prospero, T E Gill, N C Hsu, M Zhao. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Reviews of Geophysics, 2012, 50(3): RG3005
https://doi.org/10.1029/2012RG000388
|
17 |
J M Prospero, P Ginoux, O Torres, S E Nicholson, T E Gill. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product. Reviews of Geophysics, 2002, 40(1): 1002 doi:10.1029/2000RG000095
|
18 |
D A Ridley, C L Heald, J R Pierce, M J Evans. Toward resolution-independent dust emissions in global models: impacts on the seasonal and spatial distribution of dust. Geophysical Research Letters, 2013, 40(11): 2873–2877
https://doi.org/10.1002/grl.50409
|
19 |
T Stanelle, I Bey, T Raddatz, C Reick, I Tegen. Anthropogenically induced changes in twentieth century mineral dust burden and the associated impact on radiative forcing. Journal of Geophysical Research, D, Atmospheres, 2014, 119(23): 13526–13546
https://doi.org/10.1002/2014JD022062
|
20 |
I Tegen, I Fung. Modeling of mineral dust in the atmosphere: sources, transport, and optical thickness. Journal of Geophysical Research, 1994, 99(D11): 22897
https://doi.org/10.1029/94JD01928
|
21 |
C S Zender, R L R L Miller, I Tegen. Quantifying mineral dust mass budgets: terminology, constraints, and current estimates. Eos (Washington D.C.), 2004, 85(48): 509–512
https://doi.org/10.1029/2004EO480002
|
22 |
X Y Zhang, R Arimoto, Z S An. Dust emission from Chinese desert sources linked to variations in atmospheric circulation. Journal of Geophysical Research: Atmospheres (1984–2012), 1997, 102(D23): 28041–28047
|
23 |
X Y Zhang, S L Gong, Z X Shen, F M Mei, X X Xi, L C Liu, Z J Zhou, D Wang, Y Q Wang, Y Cheng. Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 1. Network observations. Journal of Geophysical Research, D, Atmospheres, 2003, 108(D9):4261
|
24 |
N Mahowald, S Albani, J F Kok, S Engelstaeder, R Scanza, D S Ward, M G Flanner. The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Research, 2014, 15: 53–71
https://doi.org/10.1016/j.aeolia.2013.09.002
|
25 |
S L Gong, X Y Zhang, T L Zhao, I G McKendry, D A Jaffe, N M Lu. Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 2. Model simulation and validation. Journal of Geophysical Research, D, Atmospheres, 2003, 108(D9):
https://doi.org/10.1029/2002JD002633
|
26 |
S L Gong, X Y Zhang, T L Zhao, X B Zhang, L A Barrie, I G McKendry, C S Zhao. A simulated climatology of Asian dust aerosol and its trans-Pacific transport. Part II: Interannual variability and climate connections. Journal of Climate, 2006, 19(1): 104–122
https://doi.org/10.1175/JCLI3606.1
|
27 |
H Steltzer, C Landry, T H Painter, J Anderson, E Ayres. Biological consequences of earlier snowmelt from desert dust deposition in alpine landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(28): 11629–11634
https://doi.org/10.1073/pnas.0900758106
pmid: 19564599
|
28 |
I G McKendry, J P Hacker, R Stull, S Sakiyama, D Mignacca, K Reid. Long-range transport of Asian dust to the Lower Fraser Valley, British Columbia, Canada. Journal of Geophysical Research, 2001, 106(D16): 18361–18370
https://doi.org/10.1029/2000JD900359
|
29 |
R A Duce, C K Unni, B J Ray, J M Prospero, J T Merrill. Long-range atmospheric transport of soil dust from Asia to the tropical north pacific: temporal variability. Science, 1980, 209(4464): 1522–1524
https://doi.org/10.1126/science.209.4464.1522
pmid: 17745962
|
30 |
T Murayama, N Sugimoto, I Uno, K Kinoshita, K Aoki, N Hagiwara, Z Liu, I Matsui, T Sakai, T Shibata, K Arao, B J Sohn, J G Won, S C Yoon, T Li, J Zhou, H Hu, M Abo, K Iokibe, R Koga, Y Iwasaka. Ground-based network observation of Asian dust events of April 1998 in East Asia. Journal of Geophysical Research, 2001, 106(D16): 18345–18360
https://doi.org/10.1029/2000JD900554
|
31 |
J Merrill, E Arnold, M Leinen, C Weaver. Mineralogy of aeolian dust reaching the North Pacific Ocean: 2. Relationship of mineral assemblages to atmospheric transport patterns. Journal of Geophysical Research: Atmospheres (1984–2012), 1994, 99(D10): 21025–21032
|
32 |
Y Chun, K O Boo, J Kim, S U Park, M Lee. Synopsis, transport, and physical characteristics of Asian dust in Korea. Journal of Geophysical Research, 2001, 106(D16): 18067–18074
https://doi.org/10.1029/2001JD900184
|
33 |
I Uno, K Eguchi, K Yumimoto, T Takemura, A Shimizu, M Uematsu, Z Liu, Z Wang, Y Hara, N Sugimoto. Asian dust transported one full circuit around the globe. Nature Geoscience, 2009, 2(8): 557–560
https://doi.org/10.1038/ngeo583
|
34 |
J L Hand, N M Mahowald, Y Chen, R L Siefert, C Luo, A Subramaniam, I Fung. Estimates of atmospheric-processed soluble iron from observations and a global mineral aerosol model: Biogeochemical implications. Journal of Geophysical Research: Atmospheres (1984–2012), 2004, 109(17): 1781–1795
|
35 |
T D Jickells, Z S An, K K Andersen, A R Baker, G Bergametti, N Brooks, J J Cao, P W Boyd, R A Duce, K A Hunter, H Kawahata, N Kubilay, J laRoche, P S Liss, N Mahowald, J M Prospero, A J Ridgwell, I Tegen, R Torres. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 2005, 308(5718): 67–71
https://doi.org/10.1126/science.1105959
pmid: 15802595
|
36 |
X Y Zhang, R Arimoto, Z S An. Glacial and interglacial patterns for Asian dust transport. Quaternary Science Reviews, 1999, 18(6): 811–819
https://doi.org/10.1016/S0277-3791(98)00028-6
|
37 |
V Ramanathan, P J Crutzen, J T Kiehl, D Rosenfeld. Aerosols, climate, and the hydrological cycle. Science, 2001, 294(5549): 2119–2124
https://doi.org/10.1126/science.1064034
pmid: 11739947
|
38 |
D Rosenfeld. Aerosols, clouds, and climate. Science, 2006, 312(5778): 1323–1324 doi:10.1126/science.1128972
pmid: 16741104
|
39 |
S Twomey. The influence of pollution on the shortwave albedo of clouds. Journal of the Atmospheric Sciences, 1977, 34(7): 1149–1152
https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
|
40 |
D T McCoy, S M Burrows, R Wood, D P Grosvenor, S M Elliott, P L Ma, P J Rasch, D L Hartmann. Natural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo. Science Advances, 2015, 1(6): e1500157 doi:10.1126/sciadv.1500157
pmid: 26601216
|
41 |
Y J Kaufman, D Tanré, O Boucher. A satellite view of aerosols in the climate system. Nature, 2002, 419(6903): 215–223
https://doi.org/10.1038/nature01091
pmid: 12226676
|
42 |
R J Allen, W Landuyt, S T Rumbold. An increase in aerosol burden and radiative effects in a warmer world. Nature Climate Change, 2016, 6(3): 269–274
https://doi.org/10.1038/nclimate2827
|
43 |
P Forster, V Ramaswamy, P Artaxo, T Berntsen, R Betts, D W Fahey, J Haywood, J Lean, D C Lowe, G Myhre, J Nganga, R Prinn, G Raga, M Schulz, R Van Dorland. Changes in atmospheric constituents and in radiative forcing. Chapter 2. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller, H L. Climate Change 2007. Cambridge: Cambridge University Press, 2007, 129–234
|
44 |
M Kulmala, J Kontkanen, H Junninen, K Lehtipalo, H E Manninen, T Nieminen, T Petäjä, M Sipilä, S Schobesberger, P Rantala, A Franchin, T Jokinen, E Järvinen, M Äijälä, J Kangasluoma, J Hakala, P P Aalto, P Paasonen, J Mikkilä, J Vanhanen, J Aalto, H Hakola, U Makkonen, T Ruuskanen, R L Mauldin 3rd, J Duplissy, H Vehkamäki, J Bäck, A Kortelainen, I Riipinen, T Kurtén, M V Johnston, J N Smith, M Ehn, T F Mentel, K E J Lehtinen, A Laaksonen, V M Kerminen, D R Worsnop. Direct observations of atmospheric aerosol nucleation. Science, 2013, 339(6122): 943–946
https://doi.org/10.1126/science.1227385
pmid: 23430652
|
45 |
B A Albrecht. Aerosols, cloud microphysics, and fractional cloudiness. Science, 1989, 245(4923): 1227–1230
https://doi.org/10.1126/science.245.4923.1227
pmid: 17747885
|
46 |
W Wang, A T Evan, C Flamant, C Lavaysse. On the decadal scale correlation between African dust and Sahel rainfall: the role of Saharan heat low-forced winds. Science Advances, 2015, 1(9): e1500646
https://doi.org/10.1126/sciadv.1500646
pmid: 26601301
|
47 |
Y Yin, S Wurzler, Z Levin, T G Reisin. Interactions of mineral dust particles and clouds: Effects on precipitation and cloud optical properties. Journal of Geophysical Research: Atmospheres (1984–2012), 2002, 107(D23): AAC 19-1–AAC 19-14
|
48 |
A Teller, Z Levin. The effects of aerosols on precipitation and dimensions of subtropical clouds: a sensitivity study using a numerical cloud model. Atmospheric Chemistry and Physics, 2006, 6(1): 67–80
https://doi.org/10.5194/acp-6-67-2006
|
49 |
Y Rudich, O Khersonsky, D Rosenfeld. Treating clouds with a grain of salt. Geophysical Research Letters, 2002, 29(22): 17–1
https://doi.org/10.1029/2002GL016055
|
50 |
Y Yin, Z Levin, T G Reisin, S Tzivion. The effects of giant cloud condensation nuclei on the development of precipitation in convective clouds—A numerical study. Atmospheric Research, 2000, 53(1): 91–116
https://doi.org/10.1016/S0169-8095(99)00046-0
|
51 |
H Yu, Y J Kaufman, M Chin, G Feingold, L A Remer, T L Anderson, Y Balkanski, N Bellouin, O Boucher, S Christopher, P DeCola, R Kahn, D Koch, N Loeb, M S Reddy, M Schulz, T Takemura, M Zhou. A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmospheric Chemistry and Physics, 2006, 6(3): 613–666
https://doi.org/10.5194/acp-6-613-2006
|
52 |
G Myhre. Consistency between satellite-derived and modeled estimates of the direct aerosol effect. Science, 2009, 325(5937): 187–190
https://doi.org/10.1126/science.1174461
pmid: 19541952
|
53 |
M Park, J Oh, K Park. Development of a cloud condensation nuclei (CCN) counter using a laser and charge-coupled device (CCD) camera. Frontiers of Environmental Science & Engineering in China, 2011, 5(3): 313–319 doi:10.1007/s11783-011-0346-y
|
54 |
A Martínez-García, D M Sigman, H Ren, R F Anderson, M Straub, D A Hodell, S L Jaccard, T I Eglinton, G H Haug. Iron fertilization of the Subantarctic ocean during the last ice age. Science, 2014, 343(6177): 1347–1350
https://doi.org/10.1126/science.1246848
pmid: 24653031
|
55 |
T M Conway, E W Wolff, R Röthlisberger, R Mulvaney, H E Elderfield. Constraints on soluble aerosol iron flux to the Southern Ocean at the Last Glacial Maximum. Nature Communications, 2015, 6: 7850
https://doi.org/10.1038/ncomms8850
pmid: 26204562
|
56 |
G Zhuang, Z Yi, R A Duce, P R Brown. Chemistry of iron in marine aerosols. Global Biogeochemical Cycles, 1992, 6(2): 161–173
https://doi.org/10.1029/92GB00756
|
57 |
A W Schroth, J Crusius, E R Sholkovitz, B C Bostick. Iron solubility driven by speciation in dust sources to the ocean. Nature Geoscience, 2009, 2(5): 337–340
https://doi.org/10.1038/ngeo501
|
58 |
T M Conway, S G John. Quantification of dissolved iron sources to the North Atlantic Ocean. Nature, 2014, 511(7508): 212–215
https://doi.org/10.1038/nature13482
pmid: 25008528
|
59 |
R W Young, K L Carder, P R Betzer, D K Costello, R A Duce, G R DiTullio, N W Tindale, E A Laws, M Uematsu, J T Merrill, R A Feely. Atmospheric iron inputs and primary productivity: Phytoplankton responses in the North Pacific. Global Biogeochemical Cycles, 1991, 5(2): 119–134
https://doi.org/10.1029/91GB00927
|
60 |
J K Bishop, R E Davis, J T Sherman. Robotic observations of dust storm enhancement of carbon biomass in the North Pacific. Science, 2002, 298(5594): 817–821
https://doi.org/10.1126/science.1074961
pmid: 12399588
|
61 |
N Cassar, M L Bender, B A Barnett, S Fan, W J Moxim, H Levy 2nd, B Tilbrook. The Southern Ocean biological response to aeolian iron deposition. Science, 2007, 317(5841): 1067–1070
https://doi.org/10.1126/science.1144602
pmid: 17717181
|
62 |
M M Mills, C Ridame, M Davey, J La Roche, R J Geider. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature, 2004, 429(6989): 292–294
https://doi.org/10.1038/nature02550
pmid: 15152251
|
63 |
R A Duce, J LaRoche, K Altieri, K R Arrigo, A R Baker, D G Capone, S Cornell, F Dentener, J Galloway, R S Ganeshram, R J Geider, T Jickells, M M Kuypers, R Langlois, P S Liss, S M Liu, J J Middelburg, C M Moore, S Nickovic, A Oschlies, T Pedersen, J Prospero, R Schlitzer, S Seitzinger, L L Sorensen, M Uematsu, O Ulloa, M Voss, B Ward, L Zamora. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science, 2008, 320(5878): 893–897
https://doi.org/10.1126/science.1150369
pmid: 18487184
|
64 |
A Paytan, K R Mackey, Y Chen, I D Lima, S C Doney, N Mahowald, R Labiosa, A F Post. Toxicity of atmospheric aerosols on marine phytoplankton. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(12): 4601–4605
https://doi.org/10.1073/pnas.0811486106
pmid: 19273845
|
65 |
E A Shinn, G W Smith, J M Prospero, P Betzer, M L Hayes, V Garrison, R T Barber. African dust and the demise of Caribbean coral reefs. Geophysical Research Letters, 2000, 27(19): 3029–3032
https://doi.org/10.1029/2000GL011599
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|