Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (6) : 12    https://doi.org/10.1007/s11783-017-0956-0
RESEARCH ARTICLE
Assessing human bioaccessibility of trace contaminants in size-fractionated red mud, derived precipitates and geopolymeric blocks
Chunfeng Wang1(), Yanchen Zhu1, Dan Yao1, Guanfei Chen1, Lianjun Wang2()
1. Henan Key Laboratory for Environmental Pollution Control and Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
2. Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
 Download: PDF(817 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

PBET values of size-fractionated red mud were depended on pH and chelating role.

MGS results extracted was significantly higher than those by ALF for RM38 samples.

High bioaccessibility values were obtained for derived precipitates using PBET.

High PBET values of the geopolymeric blocks should raise social concerns.

The objective of this study was to provide insight into human exposure to trace contaminants bearing red mud, derived precipitates and geopolymeric blocks due to inhalation contact and/or hand-to-mouth ingestion. The in vitro bioaccessibility behavior of trace contaminants was investigated with the PBET (physiologically based extraction test), ALF (artificial lysosomal fluid) and MGS (modified Gamble’ solution) methods. The results showed that total contents of trace contaminants and operation parameters, such as pH and chelating properties of simulated gastrointestinal phases (PBET), played a joint role in controlling the bioaccessibility efficacy for size-fractionated red mud particles. As for airborne particles (<38 µm size fractions), trace contaminants concentrations extracted by MGS was significantly higher than those by ALF. Additionally, higher bioaccessibility (PBET) values of Cu, Pb, Zn, As, V and U were obtained from red mud derived precipitates compared with those of red mud itself. Even though short-term and long-term leaching values of trace contaminants were relatively lower in the prepared geopolymeric blocks, the health risk could be significantly higher due to the more pronounced bioaccessibility characteristics.

Keywords Bioaccessibility      Trace contaminants      Red mud      Precipitates      Geopolymeric blocks.     
Corresponding Author(s): Chunfeng Wang,Lianjun Wang   
Issue Date: 07 June 2017
 Cite this article:   
Chunfeng Wang,Yanchen Zhu,Dan Yao, et al. Assessing human bioaccessibility of trace contaminants in size-fractionated red mud, derived precipitates and geopolymeric blocks[J]. Front. Environ. Sci. Eng., 2017, 11(6): 12.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0956-0
https://academic.hep.com.cn/fese/EN/Y2017/V11/I6/12
Fig.1  The weight percentage of each size fractionated red mud
Fig.2  SEM image of RM38 sample
elementraw red mudRM250RM250-38RM38
heavy metals metalloidsCu139.36132.73132.92124.75
Pb145.83152.70144.48130.74
Zn551.45977.28531.56309.39
As162.82164.17163.25149.70
Cd4.124.353.904.11
Cr1043.961004.981097.741167.66
V1248.751187.621305.611337.33
radioactive
elements
Th63.5866.0262.7961.58
U39.8548.0636.3932.34
Tab.1  Total concentrations of selected trace contaminants in raw red mud, RM250, RM250-38 and RM-38 samples (mg·kg1)
elementRM250RM250-38RM38
gastricintestinalgastricintestinalgastricintestinal
heavy metals metalloidsCu19.5311.5221.199.4923.4510.51
Pb48.1520.9942.9419.4539.8714.85
Zn364.11210.85207.25186.52119.6398.50
As13.056.4415.156.4615.298.18
Cd1.260.891.281.150.780.89
Cr70.3432.7173.1833.26104.4935.45
V249.64158.80201.54108.28129.5869.23
radioactive
elements
Th3.672.034.033.257.483.52
U15.1412.3315.2311.0618.9216.71
Tab.2  The PBET (gastric pH 1.3; intestinal pH 7) results of trace contaminants in sized-fractionated red mud samples (mg·kg1)
Fig.3  Trace contaminants concentrations extracted by the ALF and MGS bioaccessibility tests in RM38 sample
elementsimulated acid rainwaterdeionized water
total contentgastricintestinaltotal contentgastricintestinal
heavy metals metalloidsCu70.9540.9420.8058.5235.7517.25
Pb74.6546.3114.5350.7431.4916.85
Zn120.3594.5277.2071.2342.3729.54
As65.2630.594.7492.0354.283.44
Cd0.130.02n.d. a0.09n.d.n.d.
Cr260.1354.810.12110.2421.216.55
V190.06123.54104.86270.41247.91209.98
radioactive
elements
Th5.361.30n.d.18.726.712.43
U2.030.590.209.967.025.68
Tab.3  Total content and PBET bioaccessibility values (gastric pH 1.3; intestinal pH 7) of trace contaminants in both formed precipitates (mg·kg1)
Fig.4  The photograph of geopolymeric blocks
elementtotal contentPBET bioaccessibilityshort-term leaching b
gastricintestinal
heavy metals metalloidsCu0.620.460.19n.d.
Pb0.540.380.09n.d.
Zn2.341.951.260.058
As0.880.34n.d.n.d.
Cdn.d. an.d.n.d.n.d.
Cr4.051.520.02n.d.
V5.293.293.050.138
radioactive
elements
Th0.370.32n.d.n.d.
U0.290.210.16n.d.
Tab.4  Total content, PBET bioaccessibility (gastric pH 1.3; intestinal pH 7) and short-term leaching values of trace contaminants in geopolymeric blocks (mg·kg1)
Fig.5  Long-term leaching values of trace contaminants in geopolymeric blocks (concentrations of both radioactive elements were below the detection limit). The first leaching is conducted with the 0.5 mol·L1 CH3COOH solution (pH 5) and then nine successive leaching processes are performed by a simulated acid rainwater (pH 3.0±0.2)
1 National Bureau of Statistics of the People’s Republic of China. 2014. National economic operation data in  2014. Available from: .
2 Wen Z C, Ma S H, Zheng S L, Zhang Y, Liang Y. Assessment of environmental risk for red mud storage facility in China: a case study in Shandong Province. Environmental Science and Pollution Research International, 2016, 23(11): 11193–11208
https://doi.org/10.1007/s11356-016-6243-y pmid: 26920533
3 Enserink M. Environment. After red mud flood, scientists try to halt wave of fear and rumors. Science, 2010, 330(6003): 432–433
https://doi.org/10.1126/science.330.6003.432 pmid: 20966220
4 Mayes1 W M, Burke I T, Gomes H I, Anton Á D, Molnár M, Feigl V, Ujaczki É. Advances in understanding environmental risks of red mud after the Ajka spill, Hungary. Journal of Sustainable Metallurgy, 2016, 2: 332– 343DOI: 10.1007/s40831-016-0050-z.
5 Gelencsér A, Kováts N, Turóczi B, Rostási Á, Hoffer A, Imre K, Nyirő-Kósa I, Csákberényi-Malasics D, Tóth Á, Czitrovszky A, Nagy A, Nagy S, Ács A, Kovács A, Ferincz Á, Hartyáni Z, Pósfai M. The red mud accident in Ajka (Hungary): characterization and potential health effects of fugitive dust. Environmental Science & Technology, 2011, 45(4): 1608–1615
https://doi.org/10.1021/es104005r pmid: 21280648
6 Mayes W M, Jarvis A P, Burke I T, Walton M, Feigl V, Klebercz O, Gruiz K. Dispersal and attenuation of trace contaminants downstream of the Ajka bauxite residue (red mud) depository failure, Hungary. Environmental Science & Technology, 2011, 45(12): 5147–5155
https://doi.org/10.1021/es200850y pmid: 21591764
7 Burke I T, Mayes W M, Peacock C L, Brown A P, Jarvis A P, Gruiz K. Speciation of arsenic, chromium, and vanadium in red mud samples from the Ajka spill site, Hungary. Environmental Science & Technology, 2012, 46(6): 3085–3092
https://doi.org/10.1021/es3003475 pmid: 22324637
8 Ruyters S, Mertens J, Vassilieva E, Dehandschutter B, Poffijn A, Smolders E. The red mud accident in ajka (hungary): plant toxicity and trace metal bioavailability in red mud contaminated soil. Environmental Science & Technology, 2011, 45(4): 1616–1622
https://doi.org/10.1021/es104000m pmid: 21204523
9 Ujaczki É, Klebercz O, Feigl V, Molnár M, Magyar Á, Uzinger N, Gruiz K. Environmental toxicity assessment of the spilled Ajka red mud in soil microcosms for its potential utilisation as soil ameliorant. Periodica Polytechnica. Chemical Engineering, 2015, 59(4): 1141–1142
https://doi.org/10.3311/PPch.7839
10 Ujaczki É, Feigl V, Molnár M, Vaszita E, Uzinger N, Erdélyi A, Gruiz K. The potential application of red mud and soil mixture as additive to the surface layer of a landfill cover system. Journal of Environmental Sciences (China), 2016, 44: 189–196
https://doi.org/10.1016/j.jes.2015.12.014 pmid: 27266315
11 Burke I T, Peacock C L, Lockwood C L, Stewart D I, Mortimer R J G, Ward M B, Renforth P, Gruiz K, Mayes W M. Behavior of aluminum, arsenic, and vanadium during the neutralization of red mud leachate by HCl, gypsum, or seawater. Environmental Science & Technology, 2013, 47(12): 6527–6535
pmid: 23683000
12 Klauber C, Grafe M, Power G. Bauxite residue issues: II. options for residue utilization. Hydrometallurgy, 2011, 108(1–2): 11–32
https://doi.org/10.1016/j.hydromet.2011.02.007
13 Zhang M, Zhao M X, Zhang G P, Mann D, Lumsden K, Tao M J. Durability of red mud-fly ash based geopolymer and leaching behavior of heavy metals in sulfuric acid solutions and deionized water. Construction & Building Materials, 2016, 124: 373–382
https://doi.org/10.1016/j.conbuildmat.2016.07.108
14 Oomen A G, Hack A, Minekus M, Zeijdner E, Cornelis C, Schoeters G, Verstraete W, Van de Wiele T, Wragg J, Rompelberg C J M, Sips A J A M, Van Wijnen J H. Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science & Technology, 2002, 36(15): 3326–3334
https://doi.org/10.1021/es010204v pmid: 12188361
15 Cruz N, Rodrigues S M, Tavares D, Monteiro R J R, Carvalho L, Trindade T, Duarte A C, Pereira E, Römkens P F A M. Testing single extraction methods and in vitro tests to assess the geochemical reactivity and human bioaccessibility of silver in urban soils amended with silver nanoparticles. Chemosphere, 2015, 135: 304–311
https://doi.org/10.1016/j.chemosphere.2015.04.071 pmid: 25966049
16 Rodrigues S M, Coelho C, Cruz N, Monteiro R J R, Henriques B, Duarte A C, Römkens P F A M, Pereira E. Oral bioaccessibility and human exposure to anthropogenic and geogenic mercury in urban, industrial and mining areas. Science of the Total Environment, 2014, 496: 649–661
https://doi.org/10.1016/j.scitotenv.2014.06.115 pmid: 25034206
17 Juhasz A L, Weber J, Smith E, Naidu R, Rees M, Rofe A, Kuchel T, Sansom L. Assessment of four commonly employed in vitro arsenic bioaccessibility assays for predicting in vivo relative arsenic bioavailability in contaminated soils. Environmental Science & Technology, 2009, 43(24): 9487–9494
https://doi.org/10.1021/es902427y pmid: 20000545
18 Izquierdo M, De Miguel E, Ortega M F, Mingot J. Bioaccessibility of metals and human health risk assessment in community urban gardens. Chemosphere, 2015, 135: 312–318
https://doi.org/10.1016/j.chemosphere.2015.04.079 pmid: 25966050
19 Pelfrêne A, Waterlot C, Mazzuca M, Nisse C, Cuny D, Richard A, Denys S, Heyman C, Roussel H, Bidar G, Douay F. Bioaccessibility of trace elements as affected by soil parameters in smelter-contaminated agricultural soils: a statistical modeling approach. Environmental Pollution, 2012, 160(1): 130–138
https://doi.org/10.1016/j.envpol.2011.09.008 pmid: 22035936
20 Ruby M V, Davis A, Schoof R, Eberle S, Sellstone C M. Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science & Technology, 1996, 30(2): 422–430
https://doi.org/10.1021/es950057z
21 Colombo C, Monhemius A J, Plant J A. Platinum, palladium and rhodium release from vehicle exhaust catalysts and road dust exposed to simulated lung fluids. Ecotoxicology and Environmental Safety, 2008, 71(3): 722–730
https://doi.org/10.1016/j.ecoenv.2007.11.011 pmid: 18206235
22 Gray J E, Plumlee G S, Morman S A, Higueras P L, Crock J G, Lowers H A, Witten M L. In vitro studies evaluating leaching of mercury from mine waste calcine using simulated human body fluids. Environmental Science & Technology, 2010, 44(12): 4782–4788
https://doi.org/10.1021/es1001133 pmid: 20491469
23 Mukhtar A, Limbeck A. Recent developments in assessment of bio-accessible trace metal fractions in airborne particulate matter: a review. Analytica Chimica Acta, 2013, 774(8): 11–25
https://doi.org/10.1016/j.aca.2013.02.008 pmid: 23567112
24 USEPA. Standard operating procedure for an in vitro bioaccessibilityassay for lead in soil, EPA 9200; p. 1–86, U.S. Environmental Protection Agency, Washington, DC, 2008.
25 Somlai J, Jobbágy V, Kovács J, Tarján S, Kovács T. Radiological aspects of the usability of red mud as building material additive. Journal of Hazardous Materials, 2008, 150(3): 541–545
https://doi.org/10.1016/j.jhazmat.2007.05.004 pmid: 17566642
26 Ollson C J, Smith E, Scheckel K G, Betts A R, Juhasz A L. Assessment of arsenic speciation and bioaccessibility in mine-impacted materials. Journal of Hazardous Materials, 2016, 313: 130–137
https://doi.org/10.1016/j.jhazmat.2016.03.090 pmid: 27060218
27 Xie Y J, Zhu J X. Leaching toxicity and heavy metal bioavailability of medical waste incineration fly ash. Journal of Material Cycles and Waste Management, 2013, 15(4): 440–448
https://doi.org/10.1007/s10163-013-0133-x
28 Poggio L, Vrscaj B, Schulin R, Hepperle E, Ajmone Marsan F. Metals pollution and human bioaccessibility of topsoils in Grugliasco (Italy). Environmental Pollution, 2009, 157(2): 680–689
https://doi.org/10.1016/j.envpol.2008.08.009 pmid: 18835073
29 Tian Z P, Zhang B R, He C J, Tang R Z, Zhao H P, Li F T. The physiochemical properties and heavy metal pollution of fly ash from municipal solid waste incineration. Process Safety and Environmental Protection, 2015, 98: 333–341
https://doi.org/10.1016/j.psep.2015.09.007
30 Shoeib T, Rodriquez C F, Siu K W M, Hopkinson A C. A comparison of copper(I) and silver(I) complexes of glycine, diglycine and triglycine. Physical Chemistry Chemical Physics, 2001, 3(5): 853–861
https://doi.org/10.1039/b008836f
31 Qin S, Wu B. Effect of self-glazing on reducing the radioactivity levels of red mud based ceramic materials. Journal of Hazardous Materials, 2011, 198(2): 269–274
https://doi.org/10.1016/j.jhazmat.2011.10.039 pmid: 22050932
32 Akinci A, Artir R. Characterization of trace elements and radionuclides and their risk assessment in red mud. Materials Characterization, 2008, 59(4): 417–421
https://doi.org/10.1016/j.matchar.2007.02.008
33 Somlai J, Jobbágy V, Kovács J, Tarján S, Kovács T. Radiological aspects of the usability of red mud as building material additive. Journal of Hazardous Materials, 2008, 150(3): 541–545
https://doi.org/10.1016/j.jhazmat.2007.05.004 pmid: 17566642
34 USEPA. Toxicity characteristic leaching procedure. USEPA Method 1311, SW-846 Test methods for evaluating solid waste, physical/chemical methods, U.S. Environmental Protection Agency, Washington, DC. 1992
35 USEPA. Multiple extraction procedure, Revision 0. USEPA Method 1320, Washington, DC. 1986
36 USEPA. Extraction procedure (EP) toxicity test method and structural integrity test, Revision 2. USEPA Method 1310B, Washington, DC. 2004
37 GB 5749–2006.Standards for drinking water quality. Beijing: Standards Press of China, 2007
38 Davidovits J. Geopolymer chemistry and sustainable development. The poly (sialate) terminology: A very useful and simple model for the promotion and understanding of green-chemistry. Proceedings of the world Congress Geopolymer: France 2005, 9–15
[1] FSE-17056-OF-WCF_suppl_1 Download
[1] Qiuzhun Chen, Xiang Zhang, Bing Li, Shengli Niu, Gaiju Zhao, Dong Wang, Yue Peng, Junhua Li, Chunmei Lu, John Crittenden. Insight into the promotion mechanism of activated carbon on the monolithic honeycomb red mud catalyst for selective catalytic reduction of NOx[J]. Front. Environ. Sci. Eng., 2021, 15(5): 92-.
[2] Chunfeng Wang, Guanfei Chen, Yanchen Zhu, Dan Yao, Wanfeng Wang, Lianjun Wang. Assessment of leaching behavior and human bioaccessibility of rare earth elements in typical hospital waste incineration ash in China[J]. Front. Environ. Sci. Eng., 2017, 11(6): 5-.
[3] Junxing YANG,Liqun WANG,Jumei LI,Dongpu WEI,Shibao CHEN,Qingjun GUO,Yibing MA. Effects of rape straw and red mud on extractability and bioavailability of cadmium in a calcareous soil[J]. Front. Environ. Sci. Eng., 2015, 9(3): 419-428.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed