Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (6) : 19    https://doi.org/10.1007/s11783-017-0967-x
RESEARCH ARTICLE
Improvement of sludge dewaterability with modified cinder via affecting EPS
Weichao Ma1,2, Lei Zhao3,4, Huiling Liu1, Qianliang Liu1, Jun Ma1()
1. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
2. School of Architectural Engineering, Heilongjiang University, Harbin 150080, China
3. Key Laboratory of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China
4. Key Laboratory of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150090, China
 Download: PDF(811 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The organic matters decreased during the conditioning with cinders.

The modified cinder could improve the dewaterability via affecting EPS.

Variation of EPS disintegrated sludge floc especially for ACMC addition.

ACMC promoted the reconstruction of sludge floc as skeleton builder via adsorption.

The reconstruction mechanisms included charge neutralization, adsorption bridging.

The relationship between the improvement of sludge dewaterability and variation of organic matters has been studied in the process of sludge pre-conditioning with modified cinder, especially for extracellular polymeric substances (EPS) in the sludge. During the conditioning process, the decreases of total organic carbon (TOC) and soluble chemical oxygen demand (SCOD) were obviously in the supernatant especially for the acid modified cinder (ACMC), which could be attributed to the processes of adsorption and sweeping. The reduction of polysaccharide and protein in supernatant indicated that ACMC might adsorb EPS so that the tightly bound EPS (TB-EPS) decreased in sludge. In the case of ACMC addition with 24 g·L−1, SRF of the sludge decreased from 7.85 × 1012 m·kg−1 to 2.06 × 1012 m·kg−1, and the filter cake moisture decreased from 85% to 60%. The reconstruction of “floc mass” was confirmed as the main sludge conditioning mechanism. ACMC promoted the dewatering performance through the charge neutralization and adsorption bridging with the negative EPS, and provided firm and dense structure for sludge floc as skeleton builder. The passages for water quick transmitting were built to avoid collapsing during the high-pressure process.

Keywords Sludge conditioning      Acid or alkali modified cinder      TB-EPS      Floc mass      Floc reconstruction     
Corresponding Author(s): Jun Ma   
Issue Date: 01 August 2017
 Cite this article:   
Weichao Ma,Lei Zhao,Huiling Liu, et al. Improvement of sludge dewaterability with modified cinder via affecting EPS[J]. Front. Environ. Sci. Eng., 2017, 11(6): 19.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0967-x
https://academic.hep.com.cn/fese/EN/Y2017/V11/I6/19
trial No.factors / levelsACMC (ALMC)
SFR
/(×1012 m·kg1)
modification solution concentration
/(mol·L1)
ratio of modification solution to cinder
/(mL·g1)
soaking time/h
121:114.31 (4.71)
223:133.22 (3.72)
325:152.11 (2.81)
441:132.51 (3.04)
543:151.63 (2.11)
645:112.71 (3.13)
761:153.61 (3.71)
863:114.02 (4.61)
965:133.42 (4.02)
ACMCK13.20×10123.46×10123.67×1012
K22.26×10122.93×10123.03×1012
K33.67×10122.73×10122.43×1012
R1.40×10120.73×10121.23×1012
ALMCK13.73×10123.80×10124.13×1012
K22.73×10123.47×10123.57×1012
K34.10×10123.30×10122.89×1012
R1.40×10120.50×10121.26×1012
Tab.1  The experimental analysis of orthogonal test of modified cinder
Fig.1  SEM images of conditioners and the sludge conditioned. a: RC; b: ALMC; c: ACMC; d: raw sludge; a1: sludge by RC; b1: sludge by ALMC; c1: sludge by ACMC
Fig.2  Changes in TOC (a) and SCOD (b) of supernatant with different conditioners dosage. (ΔTOC=TOCini−TOCfin; ΔSCOD=SCODini− SCODfin; ini=initial content; fin=final content)
Fig.3  Variations of extracellular polymeric substances of sludge under different preconditions. (a) Polysaccharides and protein contents in supernatant; (b) LB-EPS and TB-EPS in sludge
Fig.4  Settling curve of sludge with different cinder dosages. (a) RC, (b) ALMC, (c) ACMC, (d) different cinder comparison in dosage of 24 g·L1
Fig.5  Sludge SRF (a) and moisture of sludge cake (b) with different conditioners dosage
Fig.6  Variations of Zeta potential (a) and particle size (b) in the conditioned sludge supernatant under different preconditions (pH of sludge=6.8)
Fig.7  Micrographs of the raw sludge (a), sludge conditioned with RC (b), ALMC (c), ACMC (d) (magnification: 10 × 10)
Fig.8  Schematic of the sludge dewatering conditioned with ACMC
1 Mowla D, Tran H N, Allen D G. A review of the properties of biosludge and its relevance to enhanced dewatering processes. Biomass and Bioenergy, 2013, 58(21): 365–378
https://doi.org/10.1016/j.biombioe.2013.09.002
2 Raynaud M, Vaxelaire J, Olivier J, Dieudé-Fauvel E, Baudez J C. Compression dewatering of municipal activated sludge: effects of salt and pH. Water Research, 2012, 46(14): 4448–4456
https://doi.org/10.1016/j.watres.2012.05.047 pmid: 22735341
3 Chen Y, Chen Y S, Gu G. Influence of pretreating activated sludge with acid and surfactant prior to conventional conditioning on filtration dewatering. Chemical Engineering Journal, 2004, 99(2): 137–143
https://doi.org/10.1016/j.cej.2003.08.027
4 Urbain V, Block J C, Manem J. Bioflocculation in activated sludge: an analytical approach. Water Research, 1993, 27(5): 829–838
https://doi.org/10.1016/0043-1354(93)90147-A
5 Li X Y, Yang S F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Research, 2007, 41(5): 1022–1030
https://doi.org/10.1016/j.watres.2006.06.037 pmid: 16952388
6 Lee C H, Liu J C. Enhanced sludge dewatering by dual polyelectrolytes conditioning. Water Research, 2000, 34(18): 4430–4436
https://doi.org/10.1016/S0043-1354(00)00209-8
7 Saveyn H, Pauwels G, Timmerman R, Van der Meeren P. Effect of polyelectrolyte conditioning on the enhanced dewatering of activated sludge by application of an electric field during the expression phase. Water Research, 2005, 39(13): 3012–3020
https://doi.org/10.1016/j.watres.2005.05.002 pmid: 15993464
8 Liu Y L, Wang L, Ma J, Zhao X D, Huang Z S, Mahadevan G D, Qi J Y. Improvement of settleability and dewaterability of sludge by newly prepared alkaline ferrate solution. Chemical Engineering Journal, 2016, 287: 11–18
https://doi.org/10.1016/j.cej.2015.11.037
9 Wang L F, He D Q, Tong Z H, Li W W, Yu H Q. Characterization of dewatering process of activated sludge assisted by cationic surfactants. Biochemical Engineering Journal, 2014, 91: 174–178
https://doi.org/10.1016/j.bej.2014.08.008
10 Qi Y, Thapa K B, Hoadley A F A. Benefit of lignite as a filter aid for dewatering of digested sewage sludge demonstrated in pilot scale trials. Chemical Engineering Journal, 2011, 166(2): 504–510
https://doi.org/10.1016/j.cej.2010.11.003
11 Qi Y, Thapa K B, Hoadley A F A. Application of filtration aids for improving sludge dewatering properties –A review. ChemInform, 2011, 42(41): 373–384
https://doi.org/10.1002/chin.201141268
12 Benitez J, Rodriguez A, Suarez A. Optimization technique for sewage sludge conditioning with polymer and skeleton builders. Water Research, 1994, 28(10): 2067–2073
https://doi.org/10.1016/0043-1354(94)90016-7
13 Yu W, Yang J, Shi Y, Song J, Shi Y, Xiao J, Li C, Xu X, He S, Liang S, Wu X, Hu J. Roles of iron species and pH optimization on sewage sludge conditioning with Fenton’s reagent and lime. Water Research, 2016, 95: 124–133
https://doi.org/10.1016/j.watres.2016.03.016 pmid: 26986501
14 Shi Y F, Yang J K, Yu W B, Zhang S N, Liang S, Song J, Xua Q, Ye N. Synergetic conditioning of sewage sludge via Fe2+/persulfate and skeleton builder Effect on sludge characteristics and dewaterability. Chemical Engineering Journal, 2015, 270: 572–581
https://doi.org/10.1016/j.cej.2015.01.122
15 Thapa K B, Qi Y, Clayton S A, Hoadley A F A. Lignite aided dewatering of digested sewage sludge. Water Research, 2009, 43(3): 623–634
https://doi.org/10.1016/j.watres.2008.11.005 pmid: 19058831
16 Skoglunda N, Bäfverc L, Fahlströmd J, Holméne E, Renströmc C. Fuel design in co-combustion of demolition wood chips and municipal sewage sludge. Fuel Processing Technology, 2016, 141(1): 196–201
https://doi.org/10.1016/j.fuproc.2015.08.037
17 Yue X, Li X M, Wang D B, Shen T T, Liu X, Yang Q, Zeng G M, Liao D X. Simultaneous phosphate and CODcr removals for landfill leachate using modified honeycomb cinders as an adsorbent. Journal of Hazardous Materials, 2011, 190(1-3): 553–558
https://doi.org/10.1016/j.jhazmat.2011.03.076 pmid: 21514050
18 Tian W, Qiao K, Yu H, Bai J, Jin X, Liu Q, Zhao J. Remediation of aquaculture water in the estuarine wetlands using coal cinder-zeolite balls/reed wetland combination strategy. Journal of Environmental Management, 2016, 181: 261–268
https://doi.org/10.1016/j.jenvman.2016.06.040 pmid: 27372248
19 Huang R Y, Tian W J, Liu Q, Yu H B, Jin X, Zhao Y G, Zhou Y H, Feng G. Enhanced biodegradation of pyrene and indeno(1,2,3-cd)pyrene using bacteria immobilized in cinder beads in estuarine wetlands. Marine Pollution Bulletin, 2016, 102(1): 128–133
https://doi.org/10.1016/j.marpolbul.2015.11.044 pmid: 26632525
20 Yang K L, Yue Q Y, Han W, Kong J J, Gao B Y, Zhao P, Duan L. Effect of novel sludge and coal cinder ceramic media in combined anaerobic–aerobic bio-filter for tetracycline wastewater treatment at low temperature. Chemical Engineering Journal, 2015, 277: 30–139
https://doi.org/10.1016/j.cej.2015.04.114
21 Yang K L, Yue Q Y, Kong J J, Zhao P, Gao Y, Fu K F, Gao B Y. Microbial diversity in combined UAF–UBAF system with novel sludge and coal cinder ceramic fillers for tetracycline wastewater treatment. Chemical Engineering Journal, 2016, 285: 319–330
https://doi.org/10.1016/j.cej.2015.10.019
22 Wang S, Yang J, Lou S J, Yang J. Wastewater treatment performance of a vermifilter enhancement by a converter slag–coal cinder filter. Ecological Engineering, 2010, 36(4): 489–494
https://doi.org/10.1016/j.ecoleng.2009.11.018
23 Baig S A, Zhu J, Tan L S, Xue X Q, Sun C, Xu X H. Influence of calcination on magnetic honeycomb briquette cinders composite for the adsorptive removal of As(III) in fixed-bed column. Chemical Engineering Journal, 2014, 257: 1–9
https://doi.org/10.1016/j.cej.2014.06.117
24 Zhu J, Baig S A, Sheng T, Lou Z, Wang Z, Xu X. Fe3O4 and MnO2 assembled on honeycomb briquette cinders (HBC) for arsenic removal from aqueous solutions. Journal of Hazardous Materials, 2015, 286: 220–228
https://doi.org/10.1016/j.jhazmat.2015.01.004 pmid: 25585269
25 Chen C Y, Zhang P Y, Zeng G M, Deng J H, Zhou Y, Lu H F. Sewage sludge conditioning with coal fly ash modified by sulfuric acid. Chemical Engineering Journal, 2010, 158(3): 616–622
https://doi.org/10.1016/j.cej.2010.02.021
26 Ye F X, Ji H Z, Ye Y F. Effect of potassium ferrate on disintegration of waste activated sludge (WAS). Journal of Hazardous Materials, 2012, 219–220(12): 164–168
27 Wang S, Boyjoo Y, Choueib A. A comparative study of dye removal using fly ash treated by different methods. Chemosphere, 2005, 60(10): 1401–1407
https://doi.org/10.1016/j.chemosphere.2005.01.091 pmid: 16054909
28 Pengthamkeerati P, Satapanajaru T, Chularuengoaksorn P. Chemical modification of coal fly ash for the removal of phosphate from aqueous solution. Fuel, 2008, 87(12): 2469–2476
https://doi.org/10.1016/j.fuel.2008.03.013
29 Lin B, Li S P, Hou X J, Li H Q. Preparation of high performance mullite ceramics from high-aluminum fly ash by an effective method. Journal of Alloys and Compounds, 2015, 623: 359–361
https://doi.org/10.1016/j.jallcom.2014.11.023
30 Zhang B H, Wu D Y, Wang C, He S B, Zhang Z J, Kong H N. Simultaneous removal of ammonium and phosphate by zeolite synthesized from coal fly ash as influenced by acid treatment. Journal of Environmental Sciences (China), 2007, 19(5): 540–545
https://doi.org/10.1016/S1001-0742(07)60090-4 pmid: 17918648
31 Mikkelsen L H, Keiding K. Physico-chemical characteristics of full scale sewage sludges with implications to dewatering. Water Research, 2002, 36(10): 2451–2462
https://doi.org/10.1016/S0043-1354(01)00477-8 pmid: 12153011
32 Zhang W J, Cao B D, Wang D S, Ma T, Yu D H. Variations in distribution and composition of extracellular polymeric substances (EPS) of biological sludge under potassium ferrate conditioning: effects of pH and ferrate dosage. Biochemical Engineering Journal, 2016, 106: 37–47
https://doi.org/10.1016/j.bej.2015.11.004
33 Chen Y, Yang H, Gu G. Effect of acid and surfactant treatment on activated sludge dewatering and settling. Water Research, 2001, 35(11): 2615–2620
https://doi.org/10.1016/S0043-1354(00)00565-0 pmid: 11456159
34 Xiang Y L, Wang L P, Jiao Y R. Disintegration of excess sludge enhanced by a combined treatment of gamma irradiation and modified coal fly ash. Radiation Physics and Chemistry, 2016, 120(March): 49–55
https://doi.org/10.1016/j.radphyschem.2015.11.035
35 Stellacci P, Liberti L, Notarnicol M, Bishop P L. Valorization of coal fly ash by mechano-chemical activation: Part II. Enhancing pozzolanic reactivity. Chemical Engineering Journal, 2009, 149(1–3): 19–24
https://doi.org/10.1016/j.cej.2008.06.042
36 Liu Y, Fang H H P. Influences of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge. Critical Reviews in Environmental Science and Technology, 2003, 33(3): 237–273
https://doi.org/10.1080/10643380390814479
37 Wakeman R J. Separation technologies for sludge dewatering. Journal of Hazardous Materials, 2007, 144(3): 614–619
https://doi.org/10.1016/j.jhazmat.2007.01.084 pmid: 17349743
38 Li W W, Yu H Q. Insight into the roles of microbial extracellular polymer substances in metal biosorption. Bioresource Technology, 2014, 160(2): 15–23
https://doi.org/10.1016/j.biortech.2013.11.074 pmid: 24345430
39 Tang L, Li L Q, Chen R F, Wang C H, Ma W W, Ma X C. Adsorption of acetone and isopropanol on organic acid modified activated carbons. Journal of Environmental Chemical Engineering, 2016, 4(2): 2045–2051
https://doi.org/10.1016/j.jece.2016.03.031
40 Sveegaard S G, Keiding K, Christensen M L. Compression and swelling of activated sludge cakes during dewatering. Water Research, 2012, 46(16): 4999–5008
https://doi.org/10.1016/j.watres.2012.06.039 pmid: 22819870
41 Christensen M L, Keiding K, Nielsen P H, Jørgensen M K. Dewatering in biological wastewater treatment: a review. Water Research, 2015, 82(3): 14–24
https://doi.org/10.1016/j.watres.2015.04.019 pmid: 25959073
[1] FSE-17069-OF-MWC_suppl_1 Download
[1] Yanqing Duan, Aijuan Zhou, Kaili Wen, Zhihong Liu, Wenzong Liu, Aijie Wang, Xiuping Yue. Upgrading VFAs bioproduction from waste activated sludge via co-fermentation with soy sauce residue[J]. Front. Environ. Sci. Eng., 2019, 13(1): 3-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed