Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (2) : 11    https://doi.org/10.1007/s11783-018-1007-1
research-article
New insights into mercury removal mechanism on CeO2-based catalysts: A first-principles study
Ling Li1, Yu He2(), Xia Lu3
1. Forestry College, Guizhou University, Guiyang 550025, China
2. Key Laboratory of High-Temperature and High-Pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
3. State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Energy, Beijing University of Chemical Engineering, Beijing 100029, China
 Download: PDF(373 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hg0 is chemically adsorbed and fully oxidized by surface oxygen on CeO2.

HCl promotes the desorption of oxidized Hg on CeO2.

Surface oxygen is consumed by the H provided by HCl.

Desorption of oxidized Hg is a rate-determining step.

Maintenance of sufficient active surface oxygen is another rate-determining step.

First-principles calculations were performed to investigate the mechanism of Hg0 adsorption and oxidation on CeO2(111). Surface oxygen activated by the reduction of Ce4+ to Ce3+ was vital to Hg0 adsorption and oxidation processes. Hg0 was fully oxidized by the surface lattice oxygen on CeO2(111), without using any other oxidizing agents. HCl could dissociate and react with the Hg adatom on CeO2(111) to form adsorbed Hg–Cl or Cl–Hg–Cl groups, which promoted the desorption of oxidized Hg and prevented CeO2 catalyst deactivation. In contrast, O–H and H–O–H groups formed during HCl adsorption consumed the active surface oxygen and prohibited Hg oxidation. The consumed surface oxygen was replenished by adding O2 into the flue gas. We proposed that oxidized Hg desorption and maintenance of sufficient active surface oxygen were the rate-determining steps of Hg0 removal on CeO2-based catalysts. We believe that our thorough understanding and new insights into the mechanism of the Hg0 removal process will help provide guidelines for developing novel CeO2-based catalysts and enhance the Hg0 removal efficiency.

Keywords Elemental mercury removal      Surface adsorption      Ceria      First-principles calculations     
Corresponding Author(s): Yu He   
Issue Date: 07 November 2017
 Cite this article:   
Ling Li,Yu He,Xia Lu. New insights into mercury removal mechanism on CeO2-based catalysts: A first-principles study[J]. Front. Environ. Sci. Eng., 2018, 12(2): 11.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1007-1
https://academic.hep.com.cn/fese/EN/Y2018/V12/I2/11
Fig.1  CeO2(111)-p(2 × 2) 9-layer slab: (a) side and (b) top views, in which yellow and red spheres represent Ce and O atoms, respectively. Cet, Ceb, Ob, Ot, and h correspond to active sites at Ce-top, Ce-bridge, O-top, O-bridge and O hollow positions
Adsorption site 5s25p66s25d14f1 6s25d14f1
Eads (kJ/mol) RHg-O (Å) Eads (kJ/mol) RHg-O (Å)
Ce-top -4.27 3.85 -130.21 2.32
Ce-bridge 18.52 2.57 -201.46 2.25
O-top -2.26 3.42 -59.64 2.18
O-bridge -3.50 3.83 -201.43 2.25
O-hollow -3.56 3.80 -201.49 2.25
Tab.1  Adsorption energies (Eads) and equilibrium distances of a Hg adatom on the CeO2(111)
Fig.2  Most stable configuration of Hg-adsorbed CeO2(111): (a) top and (b) side views. Gary, yellow, and red spheres represent Hg, Ce, and O atoms, respectively. Active sites Ce1, Ce2, O1, O2, O3, and O4 are labeled
Fig.3  Charge density difference for (a) Hg adsorption at the O-hollow site and (b) bare CeO2(111). Red and blue colors represent charge accumulation and depletion, accordingly
Compounds/Configurations Hg (e) Ce (e) O (e)
Hg (g) 11.96
HgO (g) 11.60
HgCl (g) 11.57
HgCl2 (g) 11.24
CeO2 (s) 8.71 7.14
Ce2O3 (s) 8.80 7.45
Ce-topa) 11.96 8.73 7.12
Ce-bridgea) 11.96 8.71 7.13
O-topa) 11.95 8.72 7.13
O-bridgea) 11.95 8.73 7.12
O-hollowa) 11.95 8.72 7.11
Ce-topb) 11.23 8.80 7.25
Ce-bridgeb) 11.24 8.77 7.22
O-topb) 11.63 8.75 7.19
O-bridgeb) 11.24 8.78 7.22
O-hollowb) 11.25 8.78 7.22
Tab.2  Calculated Bader charges of Hg, Ce, and O in various compounds and configurations
Fig.4  Side views of the optimized configurations of two HCl on the Hg-adsorbed CeO2(111): (a) O1O2-top, (b) O3O4-top, (c) O3-top, (d) O4-top, (e) Ce1Ce2-top, (f) CeHg-top
Compounds Eads (kJ/mol) Hg (e) H1 (e) H2 (e) Cl1 (e) Cl2 (e) O (e)
HgCl (g) 11.57 7.38
HgCl2 (g) 11.24 7.35 7.35
HCl (g) 0.67 7.30
H2O (g) 0.12 0.12 7.73
O1O2-topa) -413.63 11.23 0.34 0.33 7.42 7.43 7.45
O3O4-topa) -419.86 11.19 0.31 0.35 7.46 7.45 7.48
O3-topa) -277.50 11.04 0.38 0.38 7.43 7.43 7.35
O4-topa) -430.18 11.20 0.31 0.37 7.36 7.72 7.41
Ce1Ce2-topa) -281.68 11.22 0.65 0.42 7.33 7.40 7.37
CeHg-topa) -26.95 11.24 0.73 0.73 7.25 7.26
Tab.3  Adsorption energies (Eads) of two HCl molecules on Hg-adsorbed CeO2(111), and the calculated Bader charges of Hg, H, Cl, and O (bonded with H) in various compounds and configurations
Fig.5  Charge density difference for two HCl adsorptions on Hg-adsorbed CeO2(111): (a) O1O2-top, (b) O3O4-top, (c) O3-top, (d) O4-top. The isosurfaces were calculated at 0.05 bohr−3
1 Pavlish J H, Sondreal  E A, Mann  M D, Olson  E S, Galbreath  K C, Laudal  D L, Benson  S A. Status review of mercury control options for coal-fired power plants. Fuel Processing Technology, 2003, 82(2-3): 89–165
https://doi.org/10.1016/S0378-3820(03)00059-6
2 Mergler D, Anderson  H A, Chan  L H, Mahaffey  K R, Murray  M, Sakamoto M,  Stern A H. Methylmercury exposure and health effects in humans: A worldwide concern. Ambio, 2007, 36(1): 3–11
https://doi.org/10.1579/0044-7447(2007)36[3:MEAHEI]2.0.CO;2 pmid: 17408186
3 Wu Q, Wang  S, Li G,  Liang S,  Lin C J,  Wang Y, Cai  S, Liu K,  Hao J. Temporal trend and spatial distribution of speciated atmospheric mercury emissions in China during 1978–2014. Environmental Science & Technology, 2016, 50(24): 13428–13435
https://doi.org/10.1021/acs.est.6b04308 pmid: 27993067
4 Presto A A, Granite  E J. Survey of catalysts for oxidation of mercury in flue gas. Environmental Science & Technology, 2006, 40(18): 5601–5609
https://doi.org/10.1021/es060504i pmid: 17007115
5 Galbreath K C,  Zygarlicke C J. Mercury speciation in coal combustion and gasification flue gases. Environmental Science & Technology, 1996, 30(8): 2421–2426
https://doi.org/10.1021/es950935t
6 Wilcox J, Rupp  E, Ying S C,  Lim D H,  Negreira A S,  Kirchofer A,  Feng F, Lee  K. Mercury adsorption and oxidation in coal combustion and gasification processes. International Journal of Coal Geology, 2012, 90–91: 4–20
https://doi.org/10.1016/j.coal.2011.12.003
7 Monnell J D, Vidic  R D, Gang  D, Karash A,  Granite E J. Recent Advances in Trace Metal Capture Using Micro and Nano-Scale Sorbents. In: Proceedings of the 23rd Pittsburgh Coal Conference. Pittsburgh, PA: University of Pittsburgh, 2006
8 Granite E J, Pennline  H W, Hargis  R A. Novel sorbents for mercury removal from flue gas. Industrial & Engineering Chemistry Research, 2000, 39(4): 1020–1029
https://doi.org/10.1021/ie990758v
9 Hua X Y, Zhou  J S, Li  Q, Luo Z Y,  Cen K F. Gas-phase elemental mercury removal by CeO2 impregnated activated coke. Energy & Fuels, 2010, 24(10): 5426–5431
https://doi.org/10.1021/ef100554t
10 Li H, Wu  C Y, Li  Y, Zhang J. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas. Environmental Science & Technology, 2011, 45(17): 7394–7400
https://doi.org/10.1021/es2007808 pmid: 21770402
11 Zhou J, Hou  W, Qi P,  Gao X, Luo  Z, Cen K. CeO2-TiO2 sorbents for the removal of elemental mercury from syngas. Environmental Science & Technology, 2013, 47(17): 10056–10062
https://doi.org/10.1021/es401681y pmid: 23931010
12 Chang H, Wu  Q, Zhang T,  Li M, Sun  X, Li J,  Duan L, Hao  J. Design strategies for CeO2-MoO3 catalysts for DeNOx and Hg0 oxidation in the presence of HCl: The significance of the surface acid-base properties. Environmental Science & Technology, 2015, 49(20): 12388–12394
https://doi.org/10.1021/acs.est.5b02520 pmid: 26421943
13 Li H, Wu  S, Wu C Y,  Wang J, Li  L, Shih K. SCR atmosphere induced reduction of oxidized mercury over CuO-CeO2/TiO2 catalyst. Environmental Science & Technology, 2015, 49(12): 7373–7379
https://doi.org/10.1021/acs.est.5b01104 pmid: 25961487
14 Wang Y, Chang  H, Shi C,  Duan L, Li  J, Zhang G,  Guo L, You  Y. Novel Fe-Ce-O mixed metal oxides catalyst prepared by hydrothermal method for Hg0 oxidation in the presence of NH3. Catalysis Communications, 2017, 100: 210–213
https://doi.org/10.1016/j.catcom.2017.06.053
15 Reddy B M, Khan  A, Yamada Y,  Kobayashi T,  Loridant S,  Volta J C. Structural characterization of CeO2-MO2 (M= Si4+, Ti4+, and Zr4+) mixed oxides by Raman spectroscopy, X-ray photoelectron spectroscopy, and other techniques. Journal of Physical Chemistry B, 2003, 107(41): 5162–5167
https://doi.org/10.1021/jp0344601
16 Bera P, Patil  K C, Jayaram  V, Subbanna G N,  Hegde M S. Ionic dispersion of Pt and Pd on CeO2 by combustion method: Effect of metal-ceria interaction on catalytic activities for NO reduction and CO and hydrocarbon oxidation. Journal of Catalysis, 2000, 196(2): 293–301
https://doi.org/10.1006/jcat.2000.3048
17 Roy S, Marimuthu  A, Hegde M S,  Madras G. High rates of NO and N2O reduction by CO, CO and hydrocarbon oxidation by O2 over nano crystalline Ce0.98Pd0.02O2-d: Catalytic and kinetic studies. Applied Catalysis B: Environmental, 2007, 71(1-2): 23–31
https://doi.org/10.1016/j.apcatb.2006.08.005
18 Cui L, Tang  Y, Zhang H,  Hector L G Jr,  Ouyang C,  Shi S, Li  H, Chen L. First-principles investigation of transition metal atom M (M= Cu, Ag, Au) adsorption on CeO2(110). Physical Chemistry Chemical Physics, 2012, 14(6): 1923–1933
https://doi.org/10.1039/c2cp22720g pmid: 22231441
19 Lim D H, Aboud  S, Wilcox J. Investigation of adsorption behavior of mercury on Au(111) from first principles. Environmental Science & Technology, 2012, 46(13): 7260–7266
https://doi.org/10.1021/es300046d pmid: 22631210
20 Lim D H, Wilcox  J. Heterogeneous mercury oxidation on au(111) from first principles. Environmental Science & Technology, 2013, 47(15): 8515–8522
https://doi.org/10.1021/es400876e pmid: 23805868
21 Jung J E, Geatches  D, Lee K,  Aboud S,  Brown G E Jr,  Wilcox J. First-principles investigation of mercury adsorption on the a-Fe2O3 surface. Journal of Physical Chemistry C, 2015, 119(47): 26512–26518
https://doi.org/10.1021/acs.jpcc.5b07827
22 Zhang B, Liu  J, Zheng C,  Chang M. Theoretical study of mercury species adsorption mechanism on MnO2(110) surface. Chemical Engineering Journal, 2014, 256(256): 93–100
https://doi.org/10.1016/j.cej.2014.07.008
23 Zhang B, Liu  J, Shen F. Heterogeneous mercury oxidation by HCl over CeO2 catalyst: density functional theory study. Journal of Physical Chemistry C, 2015, 119(27): 15047–15055
https://doi.org/10.1021/acs.jpcc.5b00645
24 Fabris S, Gironcol  S D, Baroni  S, Vicario G,  Balducci G. Taming multiple valency with density functionals: A case study of defective ceria. Physical Review B: Condensed Matter and Materials Physics, 2005, 71(4): 041102
https://doi.org/10.1103/PhysRevB.71.041102
25 Da Silva J L F,  Ganduglia-Pirovano M V,  Sauer J,  Bayer V,  Kresse G. Hybrid functionals applied to rare-earth oxides: The example of ceria. Physical Review B: Condensed Matter and Materials Physics, 2007, 75(4): 045121
https://doi.org/10.1103/PhysRevB.75.045121
26 Loschen C, Carrasco  J, Neyman K M,  Illas F.First-principles LDA+ U and GGA+ U study of cerium oxides: Dependence on the effective U parameter. Physical Review B: Condensed Matter and Materials Physics, 2007, 75(3): 035115 
https://doi.org/10.1103/PhysRevB.75.035115
27 Kresse G, Hafner  J. Ab initio molecular dynamics for liquid metals. Physical Review B: Condensed Matter and Materials Physics, 1993, 47(1): 558–561
https://doi.org/10.1103/PhysRevB.47.558 pmid: 10004490
28 Kresse G, Furthmüller  J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B: Condensed Matter and Materials Physics, 1996, 54(16): 11169–11186
https://doi.org/10.1103/PhysRevB.54.11169 pmid: 9984901
29 Kresse G, Furthmüller  J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1): 15–50
https://doi.org/10.1016/0927-0256(96)00008-0
30 Blöchl P E. Projector augmented-wave method. Physical Review B: Condensed Matter and Materials Physics, 1994, 50(24): 17953–17979
https://doi.org/10.1103/PhysRevB.50.17953 pmid: 9976227
31 Perdew J P, Burke  K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868
https://doi.org/10.1103/PhysRevLett.77.3865 pmid: 10062328
32 Perdew J P, Burke  K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1997, 78(7): 1396 
https://doi.org/10.1103/PhysRevLett.78.1396
33 Zhang C, Michaelides  A, King D A,  Jenkins S. Oxygen vacancy clusters on ceria: Decisive role of cerium f electrons. Physical Review B: Condensed Matter, 2009, 79(7): 075433
https://doi.org/10.1103/PhysRevB.79.075433
34 Fabris S, de Gironcoli  S, Baroni S,  Vicario G,  Balducci G. Taming multiple valency with density functionals: A case study of defective ceria. Physical Review B: Condensed Matter and Materials Physics, 2005, 72(23): 237102
https://doi.org/10.1103/PhysRevB.72.237102
35 Tang W, Sanville  E, Henkelman G. A grid-based Bader analysis algorithm without lattice bias. Journal of Physics Condensed Matter, 2009, 21(8): 084204
https://doi.org/10.1088/0953-8984/21/8/084204 pmid: 21817356
36 Sanville E, Kenny  S D, Smith  R, Henkelman G. Improved grid-based algorithm for Bader charge allocation. Journal of Computational Chemistry, 2007, 28(5): 899–908
https://doi.org/10.1002/jcc.20575 pmid: 17238168
[1] Yue PENG, Junhua LI. Ammonia adsorption on graphene and graphene oxide: a first-principles study[J]. Front Envir Sci Eng, 2013, 7(3): 403-411.
[2] Lijing MENG, Licheng LIU, Xuehong ZI, Hongxing DAI, Hong HE, Zhen ZHAO, Xinping WANG, . Preparation of ceria-zirconia solid solution with enhanced oxygen storage capacity and redox performance[J]. Front.Environ.Sci.Eng., 2010, 4(2): 164-171.
[3] LI Ning, LI Guangming, YAO Zhenya, ZHAO Jianfu. Preparation of rare-earth metal complex oxide catalysts for catalytic wet air oxidation[J]. Front.Environ.Sci.Eng., 2007, 1(2): 190-195.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed