Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2020, Vol. 14 Issue (6) : 115    https://doi.org/10.1007/s11783-020-1374-2
RESEARCH ARTICLE
Nitrogen removal efficiencies and microbial communities in full-scale IFAS and MBBR municipal wastewater treatment plants at high COD:N ratio
Supaporn Phanwilai1, Naluporn Kangwannarakul1, Pongsak (Lek) Noophan1(), Tamao Kasahara2, Akihiko Terada3, Junko Munakata-Marr4, Linda Ann Figueroa4
1. Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
2. Laboratory of Ecohydrology, Division of Forest Sciences, Department of Agro-environmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
3. Department of Chemical Engineering and Institute of Global Innovation Research, Tokyo University of Agriculture & Technology, Tokyo 184-8588, Japan
4. Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
 Download: PDF(1944 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Two IFAS and two MBBR full-scale systems (high COD:N ratio 8:1) were characterized.

• High specific surface area carriers grew and retained slow-growing nitrifiers.

• High TN removal is related to high SRT and low DO concentration in anoxic tanks.

The relative locations of AOB, NOB, and DNB were examined for three different kinds of carriers in two types of hybrid biofilm process configurations: integrated fixed-film activated sludge (IFAS) and moving bed biofilm reactor (MBBR) processes. IFAS water resource recovery facilities (WRRFs) used AnodkalnessTM K1 carriers (KC) at Broomfield, Colorado, USA and polypropylene resin carriers (RC) at Fukuoka, Japan, while MBBR WRRFs used KC carriers at South Adams County, Colorado, USA and sponge carriers (SC) at Saga, Japan. Influent COD to N ratios ranged from 8:1 to 15:1. The COD and BOD removal efficiencies were high (96%–98%); NH4+-N and TN removal efficiencies were more varied at 72%–98% and 64%–77%, respectively. The extent of TN removal was higher at high SRT, high COD:N ratio and low DO concentration in the anoxic tank. In IFAS, RC with high specific surface area (SSA) maintained higher AOB population than KC. Sponge carriers with high SSA maintained higher overall bacteria population than KC in MBBR systems. However, the DNB were not more abundant in high SSA carriers. The diversity of AOB, NOB, and DNB was fairly similar in different carriers. Nitrosomonas sp. dominated over Nitrosospira sp. while denitrifying bacteria included Rhodobacter sp., Sulfuritalea sp., Rubrivivax sp., Paracoccus sp., and Pseudomonas sp. The results from this work suggest that high SRT, high COD:N ratio, low DO concentration in anoxic tanks, and carriers with greater surface area may be recommended for high COD, BOD and TN removal in WRRFs with IFAS and MBBR systems.

Keywords IFAS      MBBR      AnodkalnessTM K1 carrier      Polypropylene resin carrier      Sponge carrier     
Corresponding Author(s): Pongsak (Lek) Noophan   
Issue Date: 19 November 2020
 Cite this article:   
Supaporn Phanwilai,Naluporn Kangwannarakul,Pongsak (Lek) Noophan, et al. Nitrogen removal efficiencies and microbial communities in full-scale IFAS and MBBR municipal wastewater treatment plants at high COD:N ratio[J]. Front. Environ. Sci. Eng., 2020, 14(6): 115.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-020-1374-2
https://academic.hep.com.cn/fese/EN/Y2020/V14/I6/115
Fig.1  Biomass types of IFAS with AnodkalnessTM K1 carrier (KC) in Broomfield (A-left), and with polypropylene resin carrier (RC) in Fukuoka (A-right) and MBBR with AnodkalnessTM K1 carrier (KC) in South Adams County (B-left) and with sponge carrier (SC) in Saga (B-right).
Fig.2  Schematic of full-scale WRRF with IFAS process in Broomfield (A), and Fukuoka (B) and MBBR process in South Adams County (C) and Saga (D).
Process Plant Country Media type Flow rate (m3/d) HRT (h) SRT (d) DO (mg/L)
Anaerobic Anoxic Aerobic Anoxic Aerobic
IFAS Broomfield USA AnodkalnessTM K1 24,300 0.5–1.0 1–2 5–8 5–15 0.1 1.8±0.2
Fukuoka JP Polypropylene resin 91,990 1.0–2.0 1–2 3–4 6–13 0.3 1.5±0.2
MBBR South Adams County USA AnodkalnessTM K1 17,146 0.5–1.0 5–8 5–15 1.8±0.2
Saga JP Sponges 45,500 2.04.1 5–6 5–7 1.4–1.5
Tab.1  Operational parameters of full-scale IFAS and MBBR WRRFs
Parameters IFAS MBBR
Broomfield Fukuoka South Adams County Saga
Inf. Eff. % Inf. Eff. % Inf. Eff. % Inf. Eff. %
pH 7.5±0.1 7.5±0.1 7.5±0.1 7.2±0.1 7.4±0.1 7.4±0.1 7.2±0.1 7.1±0.1
Temp (°C) in summer 22.5±0.9 22.5±0.9 26.5±1 24±1.5 21.5±0.9 22.0±1 26.6±2 27.3±2
Temp (°C) in winter 15.2±1.5 14.6±1.2 19.6±1.5 17±1 14.2±1.5 14.2±1.5 18±2 18±2
TSS (mg/L) ND ND 210±20 3±1 98.6 340.9±120.8 4.7±2.9 98.6 180±10 6±3 96.0
SS (mg/L) 120.9±48.5 2.9±0.9 97.6 212.5±53.5 3.1±0.9 98.5 123.5±72.1 5.2±3.2 95.7 180±20 6±3 96.0
BOD (mg/L) 180.2±27.8 2.2±0.5 98.8 198.7±39.4 3±0.5 98.5 221.6±42.7 2.7±0.9 98.8 220±30 7±3 96.8
COD (mg/L) 288.3±22.1 3.6±1.5 98.6 320±20 4.8±2 98.5 354.6±25 4.3±2.0 98.7 352±30 11.2±5 96.8
NH4+ (mg-N/L) 18.8±2.5 0.34±0.8 98.2 29.8±3.9 8.1±2.8 72.8 16.8±2.5 2.9±4.1 82.7 35±10 5±2 85.7
NO3 (mg-N/L) 0.7±0.1 ND 0.2±0.1 3.8±1.1 0.6±0.1 2.0±1.7 ND 25±5
TN (mg-N/L) 24.0±2.5 5.6±1.5 76 39.1±6.6 13.9±2.6 64.5 24.0±3.5 7.6±1.3 68.3 40±5 30±5 25
TP (mg-P/L) ND 0.2±0.1 5.4±0.9 0.3±0.1 94.0 12.5±2.8 0.2±0.1 98.4 5.5±3 1.1±1 80
COD:N 12 8 15 10
BOD:N 8 5 9 5
Tab.2  Physical and chemical characteristics of influent (Inf.) and effluent (Eff.) in full-scale IFAS and MBBR WRRFs
Fig.3  Concentrations of AOB, NSR, Nitro, nirS and nirK genes compared with total bacteria (EUB). (A) IFAS plant with KC at Broomfield, (B) IFAS plant with RC at Fukuoka, (C) MBBR plant with KC at South Adams County and (D) MBBR plant with SC carriers at Saga.
Target gene Species Similarity(%) Accession No BandNo. IFAS MBBR
Broomfield Fukuoka South Adams County Saga
I II III I II III I II III I II III
16S rRNA-AOB Ferribacterium limneticum 95 NR074736.1 A3 / / / / / /
Nitrosospira lacus 95 CP021106.3 A1 / /
Nitrosomonas oligotropha 96 NR114770.1 A2, A9 / / / / / / / / / / // /
Nitrosomonas oligotropha 95?98 NR104820.1 A7, A8, A14, A15 / // /// /// // // // // // / / //
Nitrosomonas marina 97 NR104815.1 A4 / /
Nitrosomonas ureae 98 NR104814.1 A5 / /
Nitrosomonas aestuarii 97 NR104818.1 A6, A10 // // // // / // / // // // / /
Nitrosomonas ureae 95 NR104814.1 A11 / / / / / /
Nitrosomonas halophila 96 NR104817.1 A12, A13 / / / / / / / // // / /
Tab.3  Classification of AOB by DGGE sequencing analysis
Target gene Species Similarity(%) Accession No Band No. IFAS MBBR
Broomfield Fukuoka South Adams County Saga
I II III I II III I II III I II III
nirS Rhodobacter sp. 86 CP017781.1 S3, S13, S14 / // // // // / // /// // / / /
Sulfuritalea hydrogenivorans 83 AP012547.1 S1, S12 // / / / / / // // / / / /
Rubrivivax gelatinosus 84 AP012320.1 S18 / / / / / / / / / /
Uncultured denitrifying bacterium 99 KJ498554.1 S2, S4, S5, S6, S7, S8, S9, S10, S11, S15, S16, S17, S20, S23 ///// ////// //// //////// //////// /////// /////////// ////////// ////////// //////// //////// ////////
Uncultured bacterium nirS gene 81 AB377736.1 S19, S21, S22 / / / / / / / /
nirK Paracoccus sp. 84 AM230857.1 K5 / / / / /
Pseudomonas denitrificans 82 CP004143.1 K3 / / / / / / / /
Pseudomonas citronellolis 80 KJ498187.1 K14 / / / /
Uncultured denitrifying bacterium 99 KJ498226.1 K1, K2, K4, K6, K7, K8, K9, K10, K11, K12, K13 ////// /////// ///////// ///// ////// /////// /////////// /////////// /////////// ///////// //////// ///////////
Tab.4  Classification of denitrifying bacteria by DGGE sequencing analysis
Fig.4  SEM images of the carriers of KC at Broomfield (A) and RC at Fukuoka (B) by IFAS WRRF and KC at South Adams County (C) and Saga (D) by MBBR WRRF.
1 APHA (2005).Standard Methods for the Examination of Water and Wastewater. Washington DC: American Public Health Association
2 J P Bassin, R Kleerebezem, A S Rosado, M C M van Loosdrecht, M Dezotti (2012). Effect of different operational conditions on biofilm development, nitrification, and nitrifying microbial population in moving-bed biofilm reactors. Environmental Science & Technology, 46(3): 1546–1555
https://doi.org/10.1021/es203356z
3 J P Boltz, B R Johnson, G T Daigger, J Sandino (2009). Modeling integrated fixed-film activated sludge and moving-bed biofilm reactor systems I: Mathematical treatment and model development. Water Environment Research, 81(6): 555–575
https://doi.org/10.2175/106143008X357066
4 J Choi, G Hwang, M Gamal El-Din, Y Liu (2014). Effect of reactor configuration and microbial characteristics on biofilm reactors for oil sands process-affected water treatment. International Biodeterioration & Biodegradation, 89: 74–81
https://doi.org/10.1016/j.ibiod.2014.01.008
5 L Chu, J Wang (2011). Comparison of polyurethane foam and biodegradable polymer as carriers in moving bed biofilm reactor for treating wastewater with a low C/N ratio. Chemosphere, 83(1): 63–68
https://doi.org/10.1016/j.chemosphere.2010.12.077
6 A Cydzik-Kwiatkowska (2015). Bacterial structure of aerobic granules is determined by aeration mode and nitrogen load in the reactor cycle. Bioresource Technology, 181: 312–320
https://doi.org/10.1016/j.biortech.2015.01.101
7 L M C Daniel, E Pozzi, E Foresti, F A Chinalia (2009). Removal of ammonium via simultaneous nitrification-denitrification nitrite-short cut in a single packed-bed batch reactor. Bioresource Technology, 100(3): 1100–1107
https://doi.org/10.1016/j.biortech.2008.08.003
8 M de Kreuk, J J Heijnen, M C M van Loosdrecht (2005). Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnology and Bioengineering, 90(6): 761–769
https://doi.org/10.1002/bit.20470
9 Q Feng, J S Cao, L N Chen, C Y Guo, J Y Tan, H L Xu (2011). Simultaneous nitrification and denitrification at variable C/N ratio in aerobic granular sequencing batch reactors. Journal of Food Agriculture and Environment, 9(3‒4): 1135–1140
10 J Guo, Y Peng, S Wang, Y Zheng, H Huang, Z Wang (2009). Long-term effect of dissolved oxygen on partial nitrification performance and microbial community structure. Bioresource Technology, 100(11): 2796–2802
https://doi.org/10.1016/j.biortech.2008.12.036
11 V Hoang, R Delatolla, T Abujamel, W Mottawea, A Gadbois, E Laflamme, A Stintzi (2014). Nitrifying moving bed biofilm reactor (MBBR) biofilm and biomass response to long term exposure to 1°C. Water Research, 49: 215–224
https://doi.org/10.1016/j.watres.2013.11.018
12 J G Holt, N R Krieg, P H A Sneath, J T Staley, S T Williams (1994).Bergey’s Manual of Determentative Bacteriology. Baltimore: Williams and Wilkins
13 C Huang, Y Shi, J Xue, Y Zhang, M Gamal El-Din, Y Liu (2017). Comparison of biomass from integrated fixed-film activated sludge (IFAS), moving bed biofilm reactor (MBBR) and membrane bioreactor (MBR) treating recalcitrant organics: Importance of attached biomass. Journal of Hazardous Materials, 326: 120–129
https://doi.org/10.1016/j.jhazmat.2016.12.015
14 A H Javid, A H Hassani, B Ghanbari, K Yaghmaeian (2013). Feasibility of utilizing moving bed biofilm reactor to upgrade and retrofit municipal wastewater treatment plants. International Journal of Environmental of Research, 7(4): 963–972
15 T L Johnson, A Shaw, H Phillips, N Choi, T Lauro, R Butler, L Radko (2007). A pilot-scale comparison of IFAS and MBBR to achieve very low total nitrogen concentrations. Water Practice and Technology, 1(5): 1–14
https://doi.org/10.2175/193317707X256937
16 T Kamei, R Eamrat, K Shinoda, Y Tanaka, F Kazama (2019). Coupled anaerobic ammonium oxidation and hydrogenotrophic denitrification for simultaneous NH4-N and NO3-N removal. Water Science and Technology, 79(5): 975–984
https://doi.org/10.2166/wst.2018.459
17 H S Kim, A J Schuler, C K Gunsch, R Pei, J Gellner, J P Boltz, R G Freudenberg, R Dodson (2011). Comparison of conventional and integrated fixed-film activated sludge systems: attached-and suspended-growth functions and quantitative polymerase chain reaction measurements. Water Environment Research, 83(7): 627–635
https://doi.org/10.2175/106143010X12851009156448
18 Y M Kim, H Park, K H Cho, J M Park (2013). Long term assessment of factors affecting nitrifying bacteria communities and N-removal in a full-scale biological process treating high strength hazardous wastewater. Bioresource Technology, 134: 180–189
https://doi.org/10.1016/j.biortech.2013.02.036
19 C Li, X L Li, M Ji, J Liu (2012). Performance and microbial characteristics of integrated fixed-film activated sludge system treating industrial wastewater. Water Science and Technology, 66(12): 2785–2792
https://doi.org/10.2166/wst.2012.421
20 G Magnusson, H Edin, G Dalhammar (1998). Characterisation of efficient denitrifying bacteria strains isolated from activated sludge by 16S-rDNA analysis. Water Science and Technology, 38(8‒9): 63–68
https://doi.org/10.2166/wst.1998.0791
21 A E McCaig, A Glover, J I Prosser (2001). Numerical analysis of grassland bacterial community structure under different land management regimens by using 16S ribosomal DNA sequence data and denaturing gradient gel electrophoresis banding patterns. Applied and Environmental Microbiology, 67(10): 4554–4559
https://doi.org/10.1128/AEM.67.10.4554-4559.2001
22 Metcalf and Eddy (2004).Wastewater Engineering: Treatment and Reuse. New York: McGraw-Hill
23 K Miksch, J Sikora (2010). Biotechnologia ścieków (Wastewater biotechnology). Warszawa: Polish Scientific Publishers PWN (In polish)
24 G Muyzer, E C de Waal, A G Uitterlinden (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59(3): 695–700
https://doi.org/10.1128/AEM.59.3.695-700.1993
25 H Ødegaard (2006). Innovations in wastewater treatment: the moving bed biofilm process. Water Science and Technology, 53(9): 17–33
https://doi.org/10.2166/wst.2006.284
26 H Ødegaard, B Gisvold, J Strickland (2000). The influence of carrier size and shape in the moving bed biofilm process. Water Science and Technology, 41(4‒5): 383–391
https://doi.org/10.2166/wst.2000.0470
27 A Onnis-Hayden, N Majed, A Schramm, A Z Gu (2011). Process optimization by decoupled control of key microbial populations: distribution of activity and abundance of polyphosphate-accumulating organisms and nitrifying populations in a full-scale IFAS-EBPR plant. Water Research, 45(13): 3845–3854
https://doi.org/10.1016/j.watres.2011.04.039
28 L Pal, B Kraigher, B Brajer-Humar, M Levstek, I Mandic-Mulec (2012). Total bacterial and ammonia-oxidizer community structure in moving bed biofilm reactors treating municipal wastewater and inorganic synthetic wastewater. Bioresource Technology, 110: 135–143
https://doi.org/10.1016/j.biortech.2012.01.130
29 P Reboleiro-Rivas, J Martín-Pascual, B Juárez-Jiménez, J M Poyatos, R Vílchez-Vargas, S E Vlaeminck, B Rodelas, J González-López (2015). Nitrogen removal in a moving bed membrane bioreactor for municipal sewage treatment: Community differentiation in attached biofilm and suspended biomass. Chemical Engineering Journal, 277: 209–218
https://doi.org/10.1016/j.cej.2015.04.141
30 M Seifi, M H Fazaelipoor (2012). Modeling simultaneous nitrification and denitrification (SND) in a fluidized bed biofilm reactor. Applied Mathematical Modelling, 36(11): 5603–5613
https://doi.org/10.1016/j.apm.2012.01.004
31 Y Shao, Y Shi, A Mohammed, Y Liu (2017). Wastewater ammonia removal using an integrated fixed‒film activated sludge-sequencing batch biofilm reactor (IFAS‒SBR): Comparison of suspended flocs and attached biofilm. International Biodeterioration & Biodegradation, 116: 38–47
https://doi.org/10.1016/j.ibiod.2016.09.026
32 S Siripong, B Rittmann (2007). Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants. Water Research, 41(5): 1110–1120
https://doi.org/10.1016/j.watres.2006.11.050
33 C Tan, F Ma, A Li, S Qiu, J Li (2013). Evaluating the effect of dissolved oxygen on simultaneous nitrification and denitrification in polyurethane foam contact oxidation reactors. Water Environment Research, 85(3): 195–202
https://doi.org/10.2175/106143012X13503213812445
34 B van den Akker, H Beard, U Kaeding, S Giglio, M D Short (2010). Exploring the relationship between viscous bulking and ammonia-oxidiser abundance in activated sludge: a comparison of conventional and IFAS systems. Water Research, 44(9): 2919–2929
https://doi.org/10.1016/j.watres.2010.02.016
35 S Wang, S Parajuli, V Sivalingam, R Bakke (2018). Biofilm in moving bed biofilm process for wastewater treatment. In: Dincer S, Sümengen Özdenefe M, Arkut A, editors. Bacteria Biofilms. London: IntechOpen, 88520: 1‒15
https://doi.org/10.5772/intechopen.88520
36 S Xia, J Li, R Wang (2008). Nitrogen removal performance and microbial community structure dynamics response to carbon nitrogen ratio in a compact suspended carrier biofilm reactor. Ecological Engineering, 32(3): 256–262
https://doi.org/10.1016/j.ecoleng.2007.11.013
37 S F Yang, J H Tay, Y Liu (2004). Respirometric activaties of heterotrophic and nitrifying populations in aerobic granules developed at different substrate N/COD ratios. Current Microbiology, 49(1): 42–46
https://doi.org/10.1007/s00284-004-4266-y
38 L Zhang, S Zhang, Y Peng, X Han, Y Gan (2015). Nitrogen removal performance and microbial distribution in pilot- and full-scale integrated fixed-biofilm activated sludge reactors based on nitritation-anammox process. Bioresource Technology, 196: 448–453
https://doi.org/10.1016/j.biortech.2015.07.090
39 Q Zhang, X Chen, W Luo, H Wu, X Liu, W Chen, J Tang, L Zhang (2019). Effects of temperature on the characteristics of nitrogen removal and microbial community in post solid-phase denitrification biofilter process. International Journal of Environmental Research and Public Health, 16(22): 1–15
https://doi.org/10.3390/ijerph16224466
40 X L Zhu, J Y Yu, Z X Wu, L Yao (2014). The preparation of iron ore tailings bio fiber filter material and domestic sewage treatment. Advanced Materials Research, 997: 877–881
https://doi.org/10.4028/www.scientific.net/AMR.997.877
41 A Ziembińska, S Ciesielski, K Miksch (2009). Ammonia oxidizing bacteria community in activated sludge monitored by denaturing gradient gel electrophoresis (DGGE). Journal of General and Applied Microbiology, 55(5): 373–380
https://doi.org/10.2323/jgam.55.373
[1] FSE-20136-OF-PS_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed