Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2021, Vol. 15 Issue (6) : 124    https://doi.org/10.1007/s11783-021-1412-8
REVIEW ARTICLE
Bioinspired and biomimetic membranes for water purification and chemical separation: A review
Elham Abaie, Limeimei Xu, Yue-xiao Shen()
Department of Construction, Civil and Environmental Engineering, Texas Tech University, Lubbock, TX 79409, USA
 Download: PDF(4406 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

•The history of biological and artificial water channels is reviewed.

•A comprehensive channel characterization platform is introduced.

•Rationale designs and fabrications of biomimetic membranes are summarized.

•The advantages, limitations, and challenges of biomimetic membranes are discussed.

•The prospect and scalable solutions of biomimetic membranes are discussed.

Bioinspired and biomimetic membranes that contain biological transport channels or attain their structural designs from biological systems have been through a remarkable development over the last two decades. They take advantage of the exceptional transport properties of those channels, thus possess both high permeability and selectivity, and have emerged as a promising solution to existing membranes. Since the discovery of biological water channel proteins aquaporins (AQPs), extensive efforts have been made to utilize them to make separation membranes–AQP-based membranes, which have been commercialized. The exploration of AQPs’ unique structures and transport properties has resulted in the evolution of biomimetic separation materials from protein-based to artificial channel-based membranes. However, large-scale, defect-free biomimetic membranes are not available yet. This paper reviews the state-of-the-art biomimetic membranes and summarizes the latest research progress, platform, and methodology. Then it critically discusses the potential routes of this emerging area toward scalable applications. We conclude that an appropriate combination of bioinspired concepts and molecular engineering with mature polymer industry may lead to scalable polymeric membranes with intrinsic selective channels, which will gain the merit of both desired selectivity and scalability.

Keywords Aquaporins      Artificial water channels      Biomimetic membranes      Chemical separation and water purification     
Corresponding Author(s): Yue-xiao Shen   
Issue Date: 12 March 2021
 Cite this article:   
Elham Abaie,Limeimei Xu,Yue-xiao Shen. Bioinspired and biomimetic membranes for water purification and chemical separation: A review[J]. Front. Environ. Sci. Eng., 2021, 15(6): 124.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-021-1412-8
https://academic.hep.com.cn/fese/EN/Y2021/V15/I6/124
Fig.1  Three stages of bioinspired and biomimetic membranes for water purification and chemical separation. (a) Aquaporin (AQP)-based membranes for desalination applications. AQPs show excellent water permeability and selectivity. AQP-incorporated vesicles are embedded in the polyamide selective layer of traditional thin film composite (TFC) membranes. The resultant membranes are the first-generation biomimetic membranes and commercialized by Aquaporin A/S. Reproduced with permission from Aquaporin A/S. (b) Channel-based membranes for angstrom-scale separations. Studies on AQPs have promoted the research on artificial structures (i.e., artificial water channels, AWCs) that have AQP-like structure, permeability, and selectivity. These channels have been made into 2-dimensional (2D) arrays with high packing density and the 2D nanosheet-based TFC membranes have outperformed comparable commercial membranes. Another strategy is to use the compatibility between AWCs and amphiphilic block copolymers (BCPs) to make lamellar channel-based membranes which are solvent casting-based and more scalable. (c) Highly selective channels and more scalable polymeric membranes with intrinsic channel-like structures. Innovative channels are expected to target specific niches in separation fields. Practically, these structures should shed light on the designs of traditional polymer membranes to improve separation efficiency, while maintaining their own scalability.
Fig.2  Several representative biological water channels used for biomimetic membranes. (a) Aquaporin 1 (AQP1) is one representative protein of aquaporins (AQPs) family. Several key pore-lining amino acid residuals are responsible for its high water permeability and selectivity. Within the pore, Arg195 and His180 form the narrowest part of the channel (~3 Å), slightly higher than the diameter of a water molecule (2.7 Å). Arg195 is also responsible for electrostatic repulsion. Asn76 and Asn192 control the water dipole rearrangement in two Asn-Pro-Ala motifs near the size exclusion region, which blocks proton transport. (b) Outer membrane protein F (OmpF) is a β-barrel membrane protein that has a pore size of 0.8 nm. (c) Ferric hydroxamate uptake protein component A DC/D4L (FhuA DC/D4L, DC/D4L indicates the deletion of the cork domain and four large extracellular loops) is a stiff engineered biological transmembrane nanopore with a pore size of 1.3 nm. (d) α-Hemolysin (αHL) is a water-soluble 33 kDa monomer secreted by Staphylococcus aureus. It assembles into a heptamer to form a transmembrane pore of 1.5 nm on a target membrane.
Fig.3  A schematic illustration of membrane protein (MP) expression and purification from E. coli. Cultivated and overexpressed E. coli is subject to cell lysis to break down cells and extract MPs with other membrane fractions. Several consecutive centrifugations will be conducted to separate MPs and membrane fractions from cell debris and solute parts. After stabilization of MPs in detergent, they will be separated from lipids and further purified through chromatography based on size, charge, or specific binding.
Fig.4  Artificial water channels developed over the last two decades. (a) Helical tube formed by zwitterionic coordination polymers. Reproduced with permission from Fei et al., 2005. Copyright 2005 John Wiley and Sons. (b) Helical pore assembled by dendritic dipeptides. Reproduced with permission from Kaucher et al., 2007. Copyright 2007 American Chemical Society. (c) Imidazole I-quartets water channels. Reproduced with permission from Barboiu, 2016. Copyright 2016 Royal Society of Chemistry. (d) Pillar[5]arene-based water channels. (e) Aquafoldamer-based water channels. Reproduced with permission from Zhao et al., 2014. Copyright 2014 American Chemical Society. (f) m-Phenylene ethynylene macrocycle-stacked channels. (g) Peptide-appended hybrid[4]arene water channels. (h) Carbon nanotube porins. Image credit by F. Aydin, A. Pham, and A. Noy from Lawrence Livermore National Laboratory.
Artificial water channels Pore size (Å) Water permeability (H2O s−1 per channel) Salt rejection References
Zwitterionic polymers 2.6 NA NA Fei at al., 2005
Dendritic dipeptides 14.5 NA × Kaucher at al., 2007
Imidazole channels 2.6 1.5×106 Leduc et al., 2011; Licsandru et al., 2016;
Schneider et al., 2017
Pillar[5]arene channels*
?Hydrazide-appended (d1) 4.7 ~40 × Hu et al., 2012
?Peptide-appended (d2) 4.7 3.5×108 × Chen et al., 2013;
Shen et al., 2015
?Peptide-appended (pR) (d3) 4.7 1.3×109 Li et al., 2019
Aquafoldmer channels*
?Pyridine-based (e1) 2.8 2.2×108 Zhao et al., 2014
?Polypyridine-based (e2) 2.8 1.6×109 Shen et al., 2020a
?Pore volume optimized (e3) 2.8 3×109 Shen et al., 2020b
m-phenylene ethynylene macrocycle-stacked channels 6.4 5×107 × Zhou et al., 2012
Peptide-appended hybrid[4]arene PAH[4] ~3 >109 Song at al., 2020
Carbon nanotube porins
Narrow 8 2.8×1010 × Tunuguntla et al., 2017
Wide 15 2×109 × Tunuguntla et al., 2017
Tab.1  Pore size, water permeability and salt rejection of artificial water channels
Characterization Approach
Overall water permeability Osmotically induced permeability test
Solute rejection
Channel insertion efficiency Fluorescent correlation spectroscopy
Single channel water permeability Fluorescent correlation spectroscopy+
Osmotically induced permeability test
Size measurement Dynamic light scattering
Ion conductance Patch-clamp
Water permeability of proteins/channels Molecular dynamics simulation
Solute selectivity of proteins/channels
Dynamics of proteins/channels in bilayer membranes
Morphology of protein/channel aggregates in block copolymer/lipid membranes Transmission electron microscopy
Tab.2  Characterization methods of biological and artificial water channels
Fig.5  Molecular transport characterizations of biological water channels (BWCs) and artificial water channels (AWCs).(a) Reconstitution of BWCs or AWCs into liposomes or polymersomes by the film rehydration or dialysis methods. (b) Osmotically induced water permeability measurement of vesicular membranes. Vesicles swell in response to the hypotonic buffer and the light scattering at 90° will decrease due to the vesicle expansion based on Reighley scattering theory. (c) Counting averaged channel number per vesicle using fluorescence correlation spectroscopy. Autocorrelation curves show a decreased intercept after the fluorophore-tagged channels are turned into individual micelles from vesicles by detergent dissolution. The ratio of the intercept before and after detergent dissolution is used to calculate averaged channel number per vesicle (see detailed description in Section 3.1). (d) Solute rejection test using osmotically induced water permeability measurement. If the channel of interest is permeable to one solute, the volumetric change upon osmotic shock will be smaller because the solute will diffuse out and compensate the volumetric change, compared to the case when using a non-permeable solute in the osmotic buffer. (e) A patch-clamp setup for ion conductance measurement.
Fig.6  Molecular dynamics (MD) simulation of biological water channels (BWCs) and artificial water channels (AWCs) in bilayer membranes. (a) A snapshot provides the orientation of proteins or channels (e.g., peptide-appended pillar[5]arene, PAP[5]) within bilayer membranes during a simulation period. Reproduced with permission from Shen et al., 2015. Copyright 2015 National Academy of Sciences. (b) Simulation of an array of proteins or channels can help predict aggregation and the potential for self-assembly. Reproduced with permission from Shen et al., 2015. Copyright 2015 National Academy of Sciences. (c) Quantitative root-mean-squared deviation (RMSD) calculations can be used to characterize the configuration change of a protein or channel with respect to its coordination system (shown in panel a). This number can be indicative of the freedom of the selected protein or channel in the bilayer membrane. The red curve represents the RMSD of the PAP[5] channel and the blue curve represents the RMSD of the carbons in the central ring of the channel. Reproduced with permission from Shen et al. (2018). Copyright 2018 Nature Publishing Group. (d) Steered MD simulations can be used to verify the selectivity of proteins or channels. In this process, we assume to pull an atom of a solute of interest and drag it through a protein or channel. From the change in the system energy or applied force, we can determine if the solute will be rejected by the protein or channel.
Fig.7  Historical development of channel-based membranes. The picture of aquaporins (AQPs) 2D crystals is reproduced with permission from Kumar et al. (2012). Copyright 2012 American Chemical Society. The picture of AQP-based thin film composite membrane modules is reproduced with permission from Aquaporin A/S.
Fig.8  Four strategies to fabricate aquaporin-incorporated vesicle-based membranes. (a) Direct vesicle fusion; (b) Charge-enhanced vesicle deposition; (c) Chemical cross-linking; (d) Interfacial polymerization.
Fabrication method ?Substrate ?Permeability ?Rejection ?Note ?References
?Direct vesicle fusion ?Mica, NF-270 and NTR-7450 ?Showed the resistance of lipid membranes ?Kaufman et al., 2010
?NF-270 ?No functionality of AQPs ?Li et al., 2012
?NF-270 and NTR-7450 ?Showed the function of AQPs but the selectivity was not ?achieved ?Kaufman et al., 2014
Charge enhanced vesicle deposition ?PAN ?6 LMH bar−1 ?95% MgCl2 ?Poly-L-lysine as the protecting layer ?Sun et al., 2013b
?PAN ?15-20 LMH ?Poly-L-lysine as the protecting layer, magnetic nanoparticles ?were used to expedite the deposition by magnet. ?Sun et al., 2013a
?Hydrolyzed PAN ?5.5 LMH bar−1 ?75% NaCl
?97% MgCl2
?Poly(ethylenimine) and poly(sodium 4-styrenesulfonate) as ?the positively and negatively charged layers, respectively ?Wang et al., 2015
Post chemical cross-linking ?Gold-coated porous alumina substrates ?8.2 LMH bar−1 ?45% NaCl ?Thiol chemistry ?Duong et al., 2012
?PCTE ?16.4 LMH ?99% NaCl ?Methacrylate chemistry, 0.3M sucrose as draw solution, ?FO membranes ?Wang et al., 2012
?PCTE ?34 LMH bar−1 ?30% NaCl ?Methacrylate chemistry ?Zhong et al., 2012
?CA ?22.9 LMH?bar-1 ?61% NaCl
?75% MgCl2
?Amidation chemistry ?Xie et al., 2013
?PCTE ?3.8 LMH bar−1 ?65% NaCl
?82% MgCl2
?Methacrylate chemistry, plus vesicle cross-linking ?Sun et al., 2013c
?Poly(amide-imide) ?36.6 LMH ?95% MgCl2 ?1 MPa ?Li et al., 2014
Interfacial polymerization ?Polysulfone ?4 LMH bar−1 ?97% NaCl ?Flat sheet RO membranes, 5 bar ?Zhao et al., 2012b
?Polyethersulfone ?8 LMH bar−1 ?97.5% NaCl ?Hollow fiber RO membranes, 5 bar ?Li et al., 2015
?Polysulfone ?~4 LMH bar−1 ?~97% NaCl ?Flat sheet RO membranes, 10 bar, stability and long ?term performances were evaluated ?Qi et al., 2016
?Aquaporin A/S ?4.6 LMH ?99% NaCl ?Hollow fiber FO membranes, chemical cleaning was ?evaluated ?Li et al., 2017b
?Polyetherimide ?49.1 LMH ?Hollow fiber FO membranes, 1 M NaCl as draw solution ?Li et al., 2017a
?Aquaporin A/S ?Flat sheet FO membranes, higher water permeability ?and comparable salt permeability compared to a ?benchmark FO membrane after fouling and cleaning ?Chun et al., 2018
?Polysulfone ?0.36 LMH bar−1 ?99% NaCl ?Flat sheet RO membranes, 55 bar, real seawater ?concentration was used in the feed ?Li et al., 2019b
?Aquaporin A/S ?2.1 LMH bar−1 ?99.9% NaCl ?FO membranes, complement well biological treatment ?with trace organic contaminant removal ?Luo et al., 2018
?Aquaporin A/S ?FO membranes, transport mechanism and membrane ?stability were evaluated ?Xie et al., 2018
?Aquaporin A/S ?8.8 LMH ?FO membranes, structural parameters were evaluated ?Xia et al., 2017
Tab.3  Summary of aquaporin-based desalination membranes
Fig.9  The dialysis method is used to synthesize membrane protein or artificial channel-based 2D arrays. The transmission electron microscopy (TEM) image shows tetragonally packed (as indicated by the inset Fourier transform diagram) aquaporin Z (AqpZ) 2D crystals in 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(succinyl) lipid (unpublished data). Scale bar is 200 nm.
Fig.10  Several factors influencing protein or artificial channel-based 2D array formation. (a) Protein (or channel) to lipid (or block copolymer, BCP) ratio. A clear transition from vesicular to planner membranes was observed when the molar channel (peptide-appended pillar[5]arene, PAP[5]) to lipid (phosphatidylcholine, PC) ratios (mCLR) were increased from 0.05 to ~1. Scale bars are 100 nm. Reproduced with permission from Shen et al., 2015. Copyright 2015 National Academy of Sciences. (b) Detergent removal rate. When the detergent removal rate was lowered down to ~5 mg/ml per day, aquaporin 0 (AQP0) started to form 2D crystals in poly(butadiene)-b-poly(ethylene oxide) (PB12) membranes when the molar protein to polymer ratio was 0.77. Scale bars are 100 nm. Reproduced with permission from Kumar et al., 2012. Copyright 2012 American Chemical Society. (c) Hydrophobic physical mismatch. A computational simulation showed the physical mismatch between PAP[5] channels (~4 nm) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC, ~4 nm), PB12 (3.7 nm) and PB23 (5.4 nm) membranes and how PB23 membrane deformed around the PAP[5] channel. Reproduced with permission from Shen et al., 2018. Copyright 2018 Nature Publishing Group. (d) Hydrophobic chemical mismatch. 4,4’-Bis(4’-(N,N-bis(6”-(N,N,N-trimethylammonium)hexyl)amino)-styryl)stilbene tetraiodide (DSSN+) can probe relative hydrophobicity of membrane environment. The larger relative emission shift indicates larger hydrophobic chemical mismatch. The smaller shift in PC/phosphatidylserine (PS) membranes showed PAP[5] channels were more favorable in lipid than in PB-PEO membranes. Reproduced with permission from Ren et al., 2017. Copyright 2017 John Wiley and Sons.
Fig.11  Two approaches to optimize membrane protein or channel-based 2D crystal formation. (a) Under a magnetic field, outer membrane protein F (OmpF) was expected to have a preferred orientation and the 2D crystals formed in block copolymer (BCP) membranes had bigger size and higher order. Reproduced with permission from Klara et al. (2016). Copyright 2016 American Chemical Society. (b) The solvent method is used to synthesize membrane protein or artificial channel-based 2D arrays in BCP membranes within a few hours.
Fig.12  A modified layer-by-layer technique for synthesis of membrane protein (MP) or channel-embedded 2-dimensional (2D) nanosheet-based membranes. (a) A schematic illustration of layered deposition of 2D nanosheets onto a porous support. The transmission electron microscopy image (unpublished data) showed peptide-appended pillar[5]arene (PAP[5]) formed 2D nanosheets in poly(butadiene)-b-poly(ethylene oxide) (PB12-PEO10) membranes. Scale bar is 200 nm. (b) Scanning electron microscopy images (unpublished data) showed the polyethersulfone (PES) support before and after PAP[5]-embedded 2D nanosheet immobilization, and the cross-sectional view showed the thin layer of the 2D nanosheets. Scale bars are 2 mm. (c) Comparison of water permeability (LMH/bar) and molecular weight cut-off (MWCO) (Da) of MP or channel-embedded 2D nanosheet-based membranes with commercial nanofiltration (NF) or ultrafiltration membranes. Reproduced with permission from Tu et al. (2020). Copyright 2020 Nature Publishing Group.
Fig.13  Fabrication of lamellar block copolymer (BCP) channel-based membranes. (a) A schematic illustration of the design of lamellar BCP channel-based membranes. Reproduced with permission from Lang et al. (2019). Copyright 2019 American Chemical Society. (b) A schematic illustration of BCP film fabrication using a spin coating technique.
Fig.14  Pore engineering of biological water channels. (a) Structural comparison of low-water-permeability aquaporin 0 (AQP0, blue ribbon) and high-water-permeability aquaporin 1 (AQP1, yellow ribbon) shows Tyr23 and Tyr149 of AQP0 (shown in gray with red hydroxyl groups) extend into the water pathway, which is the reason for the low water permeability of AQP0. Reproduced with permission from Saboe et al. (2017). Copyright 2017 Elsevier. (b) PoreDesigner was used to reengineer the pore of outer membrane protein F (OmpF) to make it have AQP-like permeability and salt rejection properties. First, a water wire from AQP1 generated by molecular dynamics (MD) simulation was placed in the lumen of OmpF. It was used as a template to redesign the OmpF pore geometry by filling up the empty space around the water wire using large hydrophobic amino acids as the pore-lining residues. The mutations have three representative internal pore geometries: off-center pore closure design (OCD), uniform pore closure design (UCD), and cork-screw design (CSD). Reproduced with permission from Chowdhury et al. (2018). Copyright 2018 Nature Publishing Group.
Fig.15  Challenges for bioinspired and biomimetic membranes. (a) The Gartner Hype Cycle. Reproduced from https://en.wikipedia.org/wiki/Hype_cycle. Most newly invented technologies follow this trend, including the majority of the novel materials developed in academia for separations. (b) Performance-cost trade-off for separation materials. A cost limit should be set for a new technology or material. Within that range, we should make efforts to improve separation efficiency by either reengineering traditional materials or downgrading biomimetic materials to achieve certain scalability.
Aquaporins: AQPs
Aquaporin 0: AQP0
Aquaporin 1: AQP1
Aquaporin Z: AqpZ
Aquaporin from Rhodobacter sphaeroides: RsAqpZ
Artificial water channels: AWCs
α-Hemolysin: αHL
Biological water channels: BWCs
4,4’-Bis(4’-(N,N-bis(6”-(N,N,N-trimethylammonium)hexyl)amino)-styryl)stilbene tetraiodide: DSSN+
Block copolymers: BCPs
Carbon nanotubes: CNTs
Carbon nanotube porins: CNTPs
Cellulose acetate: CA
Cork-screw design: CSD
Covalent organic frameworks: COFs
2-Dimentional: 2D
Diblock copolymers: di-BCPs
Ferric hydroxamate uptake protein component A: FhuA
Fluorescence correlation spectroscopy: FCS
Forward osmosis: FO
Lithium bis(trifluoromethanesulfonyl)imide: LiTFSI
L·m–2·h–1: LMH
Membrane proteins: MPs
Metal organic frameworks: MOFs
Molecular dynamics: MD
Molecular weight: MW
Molecular weight cut-off: MWCO
m-Phenylenediamine: MPD
Nanofiltration: NF
Off-center pore closure design: OCD
Octyl-β,D-glucoside: OG
Outer membrane protein F: OmpF
1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine: POPC
Peptide-appended hybrid[4]arene: PAH[4]
Peptide-appended pillar[5]arenes: PAP[5]
Phosphatidylcholine: PC
Phosphatidylserine: PS
Polyacrylonitrile: PAN
Poly(butadiene)-b-poly(ethylene oxide): PB-PEO
polycarbonate track etched membrane: PCTE
Poly(ethylenimine): PEI
Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate: PEDOT:PSS
Poly(2-methyl-2-oxazoline)-b-poly-(dimethysiloxane)-b-poly(2-methyl-2-oxazoline): PMOXA-
PDMS-PMOXA, ABA
Poly(isoprene)-b-poly(ethylene oxide)-b-poly(isoprene): IOI
Reverse osmosis: RO
Root-mean-squared deviation: RMSD
Thin film composite: TFC
Transmission electron microscopy: TEM
Triblock copolymers: tri-BCPs
Ultraviolet–visible: UV/vis
Uniform pore closure design: UCD
  
1 M Abdulsalam Ebrahim, S Karan, A G Livingston (2020). On the influence of salt concentration on the transport properties of reverse osmosis membranes in high pressure and high recovery desalination. Journal of Membrane Science, 594: 117339
https://doi.org/10.1016/j.memsci.2019.117339
2 J K Adewole, A L Ahmad, S Ismail, C P Leo (2013). Current challenges in membrane separation of CO2 from natural gas: A review. International Journal of Greenhouse Gas Control, 17: 46–65
https://doi.org/10.1016/j.ijggc.2013.04.012
3 P Agre (2004). Aquaporin water channels (nobel lecture). Angewandte Chemie International Edition, 43(33): 4278–4290
https://doi.org/10.1002/anie.200460804
4 P Agre, L S King, M Yasui, W B Guggino, O P Ottersen, Y Fujiyoshi, A Engel, S Nielsen (2002). Aquaporin water channels: From atomic structure to clinical medicine. Journal of Physiology, 542(1): 3–16
https://doi.org/10.1113/jphysiol.2002.020818
5 A Aksimentiev, K Schulten (2005). Imaging α-hemolysin with molecular dynamics: Ionic conductance, osmotic permeability, and the electrostatic potential map. Biophysical Journal, 88(6): 3745–3761
https://doi.org/10.1529/biophysj.104.058727
6 Aquaporin A/S.Available online at aquaporin.com
7 V Balaram (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10(4): 1285–1303
https://doi.org/10.1016/j.gsf.2018.12.005
8 M A Barakat (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4(4): 361–377
https://doi.org/10.1016/j.arabjc.2010.07.019
9 M Barboiu (2012). Artificial water channels. Angewandte Chemie International Edition, 51(47): 11674–11676
https://doi.org/10.1002/anie.201205819
10 M Barboiu (2016). Artificial water channels: Incipient innovative developments. Chemical Communications, 52(33): 5657–5665
https://doi.org/10.1039/C6CC01724J
11 M Barboiu, A Gilles (2013). From natural to bioassisted and biomimetic artificial water channel system. Accounts of Chemical Research, 46(12): 2814–2823
https://doi.org/10.1021/ar400025e
12 S Belegrinou, J Dorn, M Kreiter, K Kita-Tokarczyk, E K Sinner, W Meier (2010). Biomimetic supported membranes from amphiphilic block copolymers. Soft Matter, 6(1): 179–186
https://doi.org/10.1039/B917318H
13 A Belluati, V Mikhalevich, S Yorulmaz Avsar, D Daubian, I Craciun, M Chami, W P Meier, C G Palivan (2020). How do the properties of amphiphilic polymer membranes influence the functional insertion of peptide pores? Biomacromolecules, 21(2): 701–715
https://doi.org/10.1021/acs.biomac.9b01416
14 D Benrabah, D Baril, J Y Sanchez, M Armand, B P S Heres, G G Gard (1993). Comparative electrochemical study of new poly(oxyethy1ene)-Li salt complexes. Journal of the Chemical Society, Faraday Transactions, 89(2): 355–359
https://doi.org/10.1039/FT9938900355
15 R A Böckmann, B L De Groot, S Kakorin, E Neumann, H Grubmüller (2008). Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophysical Journal, 95(4): 1837–1850
https://doi.org/10.1529/biophysj.108.129437
16 M Borgnia, S Nielsen, A Engel, P Agre (1999b). Cellular and molecular biology of the aquaporin water channels. Annual Review of Biochemistry, 68(1): 425–458
https://doi.org/10.1146/annurev.biochem.68.1.425
17 M J Borgnia, D Kozono, G Calamita, P C Maloney, P Agre, G Ambientale (1999a). Functional reconstitution and characterization of AqpZ, the E . coli water channel protein. 291(5): 1169–1179
18 J Bornhorst, J J Falke (2010). Purification of proteins using polyhistidine affinity tags. Methods in Enzymology, 2000(326): 245–254
19 D Branton, D W Deamer, A Marziali, H Bayley, S A Benner, T Butler, M Di Ventra, S Garaj, A Hibbs, X Huang, S B Jovanovich, P S Krstic, S Lindsay, X S Ling, C H Mastrangelo, A Meller, J S Oliver, Y V Pershin, J M Ramsey, R Riehn, G V Soni, V Tabard-Cossa, M Wanunu, M Wiggin, J A Schloss (2008). The potential and challenges of nanopore sequencing. Nature Biotechnology, 26(10): 1146–1153
https://doi.org/10.1038/nbt.1495
20 B Burger, P M Maffettone, V V Gusev, C M Aitchison, Y Bai, X Wang, X Li, B M Alston, B Li, R Clowes, N Rankin, B Harris, R S Sprick, A I Cooper (2020). A mobile robotic chemist. Nature, 583(7815): 237–241
https://doi.org/10.1038/s41586-020-2442-2
21 G Calamita, W R Bishai, G M Preston, W B Guggino, P Agre (1995). Molecular cloning and characterization of AqpZ, a water channel from Escherichia coli. Journal of Biological Chemistry, 270(49): 29063–29066
https://doi.org/10.1074/jbc.270.49.29063
22 V E Carmichael, P J Dutton, T M Fyles, T D James, J A Swan, M Zojaji (1989). Biomimetic ion transport: A functional model of a unimolecular ion channel. Journal of the American Chemical Society, 111(2): 767–769
https://doi.org/10.1021/ja00184a075
23 T Cheisson, E J Schelter (2019). Rare earth elements: Mendeleev’s bane, modern marvels. Science, 363(6426): 489–493
https://doi.org/10.1126/science.aau7628
24 L Chen, W Si, L Zhang, G Tang, Z T Li, J L Hou (2013). Chiral selective transmembrane transport of amino acids through artificial channels. Journal of the American Chemical Society, 135(6): 2152–2155
https://doi.org/10.1021/ja312704e
25 X Chen, H Zhang, R H Tunuguntla, A Noy (2019). Silicon nanoribbon pH sensors protected by a barrier membrane with carbon nanotube porins. Nano Letters, 19(2): 629–634
https://doi.org/10.1021/acs.nanolett.8b02898
26 M R Chowdhury, J Steffes, B D Huey, J R McCutcheon (2018a). 3D printed polyamide membranes for desalination. Science, 361(6403): 682–686
https://doi.org/10.1126/science.aar2122
27 R Chowdhury, T Ren, M Shankla, K Decker, M Grisewood, J Prabhakar, C Baker, J H Golbeck, A Aksimentiev, M Kumar, C D Maranas (2018b). PoreDesigner for tuning solute selectivity in a robust and highly permeable outer membrane pore. Nature Communications, 9(1): 3661
https://doi.org/10.1038/s41467-018-06097-1
28 M J Chrispeels, P Agre (1994). Aquaporins: water channel proteins of plant and animal cells. Trends in Biochemical Sciences, 19(10): 421–425
https://doi.org/10.1016/0968-0004(94)90091-4
29 Y Chun, L Qing, G Sun, M R Bilad, A G Fane, T H Chong (2018). Prototype aquaporin-based forward osmosis membrane: Filtration properties and fouling resistance. Desalination, 445: 75–84
https://doi.org/10.1016/j.desal.2018.07.030
30 S M Cohen (2012). Postsynthetic methods for the functionalization of metal-organic frameworks. Chemical Reviews, 112(2): 970–1000
https://doi.org/10.1021/cr200179u
31 O C Compton, S T Nguyen (2010). Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small, 6(6): 711–723
https://doi.org/10.1002/smll.200901934
32 D L Connolly, C M Shanahan, P L Weissberg (1998). The aquaporins. A family of water channel proteins. International Journal of Biochemistry & Cell Biology, 30(2): 169–172
https://doi.org/10.1016/S1357-2725(97)00124-6
33 P J Cragg, K Sharma (2012). Pillar[5]arenes: Fascinating cyclophanes with a bright future. Chemical Society Reviews, 41(2): 597–607
https://doi.org/10.1039/C1CS15164A
34 K Dalane, Z Dai, G Mogseth, M Hillestad, L Deng (2017). Potential applications of membrane separation for subsea natural gas processing: A review. Journal of Natural Gas Science and Engineering, 39: 101–117
https://doi.org/10.1016/j.jngse.2017.01.023
35 B Dhakshnamoorthy, A Rohaim, H Rui, L Blachowicz, B Roux (2016). Structural and functional characterization of a calcium-activated cation channel from Tsukamurella paurometabola. Nature Communications, 7(1): 12753
https://doi.org/10.1038/ncomms12753
36 M Di Vincenzo, A Tiraferri, V Musteata, S Chisca, R Sougrat, L Huang (2020). Biomimetic artificial water channel membranes for enhanced desalination. Nature Nanotechnology, https://doi.org/10.1038/s41565-020-00796-x
37 J Dorn, S Belegrinou, M Kreiter, E K Sinner, W Meier (2011). Planar block copolymer membranes by vesicle spreading. Macromolecular Bioscience, 11(4): 514–525
https://doi.org/10.1002/mabi.201000396
38 P H H Duong, T S Chung, K Jeyaseelan, A Armugam, Z Chen, J Yang, M Hong (2012). Planar biomimetic aquaporin-incorporated triblock copolymer membranes on porous alumina supports for nanofiltration. Journal of Membrane Science, 409–410: 34–43
https://doi.org/10.1016/j.memsci.2012.03.004
39 M Elimelech, W A Phillip (2011). The future of seawater desalination: Energy, technology, and the environment. Science, 333(6043): 712–717
https://doi.org/10.1126/science.1200488
40 R Epsztein, R M DuChanois, C L Ritt, A Noy, M Elimelech (2020). Towards single-species selectivity of membranes with subnanometre pores. Nature Nanotechnology, 15(6): 426–436
https://doi.org/10.1038/s41565-020-0713-6
41 M Erbakan, Y X Shen, M Grzelakowski, P J Butler, M Kumar, W R Curtis (2014). Molecular cloning, overexpression and characterization of a novel water channel protein from Rhodobacter sphaeroides. PLoS One, 9(1): e86830
https://doi.org/10.1371/journal.pone.0086830
42 B Ersson, L Rydén, J C Janson (2011). In: Janson J C, eds. Protein purification: Principles, high resolution methods, and applications. 3rd ed. Hoboken: Wiley
43 C Falagán, B M Grail, D B Johnson (2017). New approaches for extracting and recovering metals from mine tailings. Minerals Engineering, 106: 71–78
https://doi.org/10.1016/j.mineng.2016.10.008
44 Z Fei, D Zhao, T J Geldbach, R Scopelliti, P J Dyson, S Antonijevic, G Bodenhausen (2005). A synthetic zwitterionic water channel: Characterization in the solid state by X-ray crystallography and NMR spectroscopy. Angewandte Chemie International Edition, 44(35): 5720–5725
https://doi.org/10.1002/anie.200500207
45 H Feng, X Lu, W Wang, N G Kang, J W Mays (2017). Block copolymers: Synthesis, self-assembly, and applications. Polymers, 9(10): 494
https://doi.org/10.3390/polym9100494
46 P J Flory, W R Krigbaum (1951). Thermodynamics of high polymer solutions. Annual Review of Physical Chemistry, 2(1): 383–402
https://doi.org/10.1146/annurev.pc.02.100151.002123
47 B D Freeman (1999). Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules, 32(2): 375–380
https://doi.org/10.1021/ma9814548
48 Y Fujiyoshi (1998). The structural study of membrane proteins by electron crystallography. Advances in Biophysics, 35: 25–80
https://doi.org/10.1016/S0065-227X(98)80003-8
49 A Fuwad, H Ryu, N Malmstadt, S M Kim, T J Jeon (2019). Biomimetic membranes as potential tools for water purification: Preceding and future avenues. Desalination, 458: 97–115
https://doi.org/10.1016/j.desal.2019.02.003
50 T M Fyles (2007). Synthetic ion channels in bilayer membranes. Chemical Society Reviews, 36(2): 335–347
https://doi.org/10.1039/B603256G
51 L E Garner, J Park, S M Dyar, A Chworos, J J Sumner, G C Bazan (2010). Modification of the optoelectronic properties of membranes via insertion of amphiphilic phenylenevinylene oligoelectrolytes. Journal of the American Chemical Society, 132(29): 10042–10052
https://doi.org/10.1021/ja1016156
52 J Geng, K Kim, J Zhang, A Escalada, R Tunuguntla, L R Comolli, F I Allen, A V Shnyrova, K R Cho, D Munoz, Y M Wang, C P Grigoropoulos, C M Ajo-Franklin, V A Frolov, A Noy (2014). Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes. Nature, 514(7524): 612–615
https://doi.org/10.1038/nature13817
53 D L Gin, R D Noble, (2011). Designing the next generation of chemical separation membranes. Science, 332(6030): 674–676
https://doi.org/10.1126/science.1203771
54 A Giwa, S W Hasan, A Yousuf, S Chakraborty, D J Johnson, N Hilal (2017). Biomimetic membranes: A critical review of recent progress. Desalination, 420: 403–424
https://doi.org/10.1016/j.desal.2017.06.025
55 D Gomes, A Agasse, P Thiébaud, S Delrot, H Gerós, F Chaumont (2009). Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochimica et Biophysica Acta- Biomembranes, 1788(6): 1213–1228
56 T Gonen, P Sliz, J Kistler, Y Cheng, T Walz (2004). Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature, 429(6988): 193–197
https://doi.org/10.1038/nature02503
57 T Gonen, T Walz (2006). The structure of aquaporins. Quarterly Reviews of Biophysics, 39(4): 361–396
https://doi.org/10.1017/S0033583506004458
58 R Górecki, D M Reurink, M M Khan, V Sanahuja-Embuena, K Trzaskuś, C Hélix-Nielsen (2020). Improved reverse osmosis thin film composite biomimetic membranes by incorporation of polymersomes. Journal of Membrane Science, 593: 117392
https://doi.org/10.1016/j.memsci.2019.117392
59 L F Greenlee, D F Lawler, B D Freeman, B Marrot, P Moulin (2009). Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Research, 43(9): 2317–2348
https://doi.org/10.1016/j.watres.2009.03.010
60 M Grzelakowski, M F Cherenet, Y X Shen, M Kumar (2015). A framework for accurate evaluation of the promise of aquaporin based biomimetic membranes. Journal of Membrane Science, 479: 223–231
https://doi.org/10.1016/j.memsci.2015.01.023
61 S Guo, S Dong (2011). Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chemical Society Reviews, 40(5): 2644–2672
https://doi.org/10.1039/c0cs00079e
62 W Guo, H H Ngo, J Li (2012). A mini-review on membrane fouling. Bioresource Technology, 122: 27–34
https://doi.org/10.1016/j.biortech.2012.04.089
63 J Habel, M Hansen, S Kynde, N Larsen, S R Midtgaard, G V Jensen, J Bomholt, A Ogbonna, K Almdal, A Schulz, C Hélix-Nielsen (2015). Aquaporin-based biomimetic polymeric membranes: Approaches and challenges. Membranes, 5(3): 307–351
https://doi.org/10.3390/membranes5030307
64 R E W Hancock, A M Carey (1979). Outer membrane of Pseudomonas aeruginosa: Heat- and 2-mercaptoethanol-modifiable proteins. Journal of Bacteriology, 140(3): 902–910
https://doi.org/10.1128/JB.140.3.902-910.1979
65 R G Harrison, P Todd, S R Rudge, D P Petrides (2015). In: Harrison R G, eds. Bioseparations Science and Engineering. 1st ed. New York: Oxford University Press
66 T Hasell, A I Cooper (2016). Porous organic cages: Soluble, modular and molecular pores. Nature Reviews. Materials, 1(9): 16053
https://doi.org/10.1038/natrevmats.2016.53
67 L Hasler, J B Heymann, A Engel, J Kistler, T Walz (1998). 2D crystallization of membrane proteins: Rationales and examples. Journal of Structural Biology, 121(2): 162–171
https://doi.org/10.1006/jsbi.1998.3960
68 C Hélix-Nielsen (2009). Biomimetic membranes for sensor and separation applications. Analytical and Bioanalytical Chemistry, 395(3): 697–718
https://doi.org/10.1007/s00216-009-2960-0
69 C Hélix-Nielsen (2018). Biomimetic membranes as a technology platform: Challenges and opportunities. Membranes, 8(3): 44
https://doi.org/10.3390/membranes8030044
70 B J Hinds, N Chopra, T Rantell, R Andrews, V Gavalas, L G Bachas (2004). Aligned multiwalled carbon nanotube membranes. Science, 303(5654): 62–65
https://doi.org/10.1126/science.1092048
71 N Hodnik, C Baldizzone, G Polymeros, S Geiger, J P Grote, S Cherevko, A Mingers, A Zeradjanin, K J J Mayrhofer (2016). Platinum recycling going green via induced surface potential alteration enabling fast and efficient dissolution. Nature Communications, 7(1): 13164
https://doi.org/10.1038/ncomms13164
72 J P Holme, J S Hansen, T Vissing, M. E Perry, C Hélix-Nielsen (2015). Biomimetic membranes and uses thereof. US20150360183A1
73 J K Holt, H G Park, Y Wang, M Stadermann, A B Artyukhin, C P Grigoropoulos (2006). Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 312(5776): 1034–1037
https://doi.org/10.1126/science.1126298
74 H Hong, L K Tamm (2004). Elastic coupling of integral membrane protein stability to lipid bilayer forces. Proceedings of the National Academy of Sciences of the United States of America, 101(12): 4065–4070
https://doi.org/10.1073/pnas.0400358101
75 T Hoomann, N Jahnke, A Horner, S Keller, P Pohl (2013). Filter gate closure inhibits ion but not water transport through potassium channels. Proceedings of the National Academy of Sciences of the United States of America, 110(26): 10842–10847
https://doi.org/10.1073/pnas.1304714110
76 A Horner, P Pohl (2018). Single-file transport of water through membrane channels. Faraday Discussions, 209: 9–33
https://doi.org/10.1039/C8FD00122G
77 A Horner, F Zocher, J Preiner, N Ollinger, C Siligan, S A Akimov, P Pohl (2015). The mobility of single-file water molecules is governed by the number of H-bonds they may form with channel-lining residues. Science Advances, 1(2): e1400083
https://doi.org/10.1126/sciadv.1400083
78 N T Hovijitra, J J Wuu, B Peaker, J R Swartz (2009). Cell-free synthesis of functional aquaporin Z in synthetic liposomes. Biotechnology and Bioengineering, 104(1): 40–49
https://doi.org/10.1002/bit.22385
79 X B Hu, Z Chen, G Tang, J L Hou, Z T Li (2012). Single-molecular artificial transmembrane water channels. Journal of the American Chemical Society, 134(20): 8384–8387
https://doi.org/10.1021/ja302292c
80 J S Hub, H Grubmüller, B L de Groot (2009). In: Beitz E, ed. Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations? BT–Aquaporins. Berlin: Springer, 57–76
81 M L Huggins (1942). Some properties of solutions of long-chain compounds. Journal of Physical Chemistry, 46(1): 151–158
https://doi.org/10.1021/j150415a018
82 W Humphrey, A Dalke, K Schulten (1996). VMD: Visual Molecular Dynamics. Journal of Molecular Graphics, 14(1): 33–38
https://doi.org/10.1016/0263-7855(96)00018-5
83 Y Huo, H Zeng (2016). “Sticky”-Ends-Guided creation of functional hollow nanopores for guest encapsulation and water transport. Accounts of Chemical Research, 49(5): 922–930
https://doi.org/10.1021/acs.accounts.6b00051
84 J N Israelachvili, D J Mitchell, B W Ninham (1977). Theory of self-assembly of lipid bilayers and vesicles. BBA- Biomembranes, 470(2): 185–201
85 B K Jap, P J Walian, K Gehring (1991). Structural architecture of an outer membrane channel as determined by electron crystallography. Nature, 350(6314): 167–170
https://doi.org/10.1038/350167a0
86 V Jörg, S Groth Jesper, N K Hoier, G Oliver (2015). Membranes, Hollow fiber module having tfc-aquaporin modified. US20151445-53A1
87 M Kalaj, K C Bentz, S Ayala Jr, J M Palomba, K S Barcus, Y Katayama, S M Cohen (2020). MOF-Polymer Hybrid Materials: From simple composites to tailored architectures. Chemical Reviews, 120(16): 8267–8302
https://doi.org/10.1021/acs.chemrev.9b00575
88 E W Kaler, A K Murthy, B E Rodriguez, J A N Zasadzinski (1989). Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science, 245(4924): 1371–1374
https://doi.org/10.1126/science.2781283
89 L Kalé, R Skeel, M Bhandarkar, R Brunner, A Gursoy, N Krawetz, J Phillips, A Shinozaki, K Varadarajan, K Schulten. (1999). NAMD2: Greater scalability for parallel molecular dynamics. Journal of Computational Physics, 151(1): 283–312
https://doi.org/10.1006/jcph.1999.6201
90 M S Kaucher, M Peterca, A E Dulcey, A J Kim, S A Vinogradov, D A Hammer, P A Heiney, V Percec (2007). Selective transport of water mediated by porous dendritic dipeptides. Journal of the American Chemical Society, 129(38): 11698–11699
https://doi.org/10.1021/ja076066c
91 Y Kaufman, A Berman, V Freger (2010). Supported lipid bilayer membranes for water purification by reverse osmosis. Langmuir, 26(10): 7388–7395
https://doi.org/10.1021/la904411b
92 Y Kaufman, S Grinberg, C Linder, E Heldman, J Gilron, Y X Shen, M Kumar, R G H Lammertink, V Freger (2014). Towards supported bolaamphiphile membranes for water filtration: Roles of lipid and substrate. Journal of Membrane Science, 457: 50–61
https://doi.org/10.1016/j.memsci.2014.01.036
93 K Kita-Tokarczyk, J Grumelard, T Haefele, W Meier (2005). Block copolymer vesicles: Using concepts from polymer chemistry to mimic biomembranes. Polymer, 46(11): 3540–3563
https://doi.org/10.1016/j.polymer.2005.02.083
94 D A Klaerke, M L A Tejada, V G Christensen, M Lassen, P A Pedersen, K Calloe (2018). Reconstitution and electrophysiological characterization of ion channels in lipid bilayers. Current Protocols in Pharmacology, 81(1): e37
https://doi.org/10.1002/cpph.37
95 S S Klara, P O Saboe, I T Sines, M Babaei, P L Chiu, R Dezorzi, K Dayal, T Walz, M Kumar, M S Mauter (2016). Magnetically directed two-dimensional crystallization of OmpF membrane proteins in block copolymers. Journal of the American Chemical Society, 138(1): 28–31
https://doi.org/10.1021/jacs.5b03320
96 I Kocsis, M Sorci, H Vanselous, S Murail, S E Sanders, E Licsandru (2018a). Oriented chiral water wires in artificial transmembrane channels. Science Advances, 4(3): eaao5603
97 I Kocsis, Z Sun, Y M Legrand, M Barboiu (2018b). Artificial water channels—deconvolution of natural aquaporins through synthetic design. NPJ Clean Water, 1(1): 13
98 I Köper (2007). Insulating tethered bilayer lipid membranes to study membrane proteins. Molecular BioSystems, 3(10): 651–657
https://doi.org/10.1039/b707168j
99 W J Koros, C Zhang (2017). Materials for next-generation molecularly selective synthetic membranes. Nature Materials, 16(3): 289–297
https://doi.org/10.1038/nmat4805
100 E Kruse, N Uehlein, R Kaldenhoff (2006). The aquaporins. Genome Biology, 7(2): 206
https://doi.org/10.1186/gb-2006-7-2-206
101 M Kumar, M Grzelakowski, J Zilles, M Clark, W Meier (2007). Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proceedings of the National Academy of Sciences of the United States of America, 104(52): 20719–20724
https://doi.org/10.1073/pnas.0708762104
102 M Kumar, J E O Habel, Y X Shen, W P Meier, T Walz (2012). High-density reconstitution of functional water channels into vesicular and planar block copolymer membranes. Journal of the American Chemical Society, 134(45): 18631–18637
https://doi.org/10.1021/ja304721r
103 M Kumar, Y X Shen, P O Saboe (2013). Biological and biomimetic membranes. In: Hoek E M V, ed. Encyclopedia of Membrane Science and Technology. 1st ed. Hoboken: Wiley, 1–37
104 Y P Kumar, R N Das, O M Schütte, C Steinem, J Dash (2016). Bis-triazolyl diguanosine derivatives as synthetic transmembrane ion channels. Nature Protocols, 11(6): 1039–1056
https://doi.org/10.1038/nprot.2016.045
105 C Kutzner, H Grubmüller, B L De Groot, U Zachariae (2011). Computational electrophysiology: The molecular dynamics of ion channel permeation and selectivity in atomistic detail. Biophysical Journal, 101(4): 809–817
https://doi.org/10.1016/j.bpj.2011.06.010
106 C Lang, Y X Shen, J A LaNasa, D Ye, W Song, T J Zimudzi, M A Hickner, E D Gomez, E W Gomez, M Kumar, R J Hickey (2018). Creating cross-linked lamellar block copolymer supporting layers for biomimetic membranes. Faraday Discussions, 209: 179–191
https://doi.org/10.1039/C8FD00044A
107 C Lang, D Ye, W Song, C Yao, Y M Tu, C Capparelli, J A LaNasa, M A Hickner, E W Gomez, E D Gomez, R J Hickey, M Kumar (2019). Biomimetic separation of transport and matrix functions in lamellar block copolymer channel-based membranes. ACS Nano, 13(7): 8292–8302
https://doi.org/10.1021/acsnano.9b03659
108 P Latimer, B E Pyle (1972). Light scattering at various angles. Biophysical Journal, 12(7): 764–773
https://doi.org/10.1016/S0006-3495(72)86120-4
109 Y Le Duc, M Michau, A Gilles, V Gence, Y M Legrand, A Vanderlee, S Tingry, M Barboiu (2011). Imidazole-quartet water and proton dipolar channels. Angewandte Chemie International Edition, 50(48): 11366–11372
https://doi.org/10.1002/anie.201103312
110 B J Lehn (1990). Perspectives in supramolecular chemistry-from molecular recognition towards molecular information processing and self-organization. Angewandte Chemie International Edition, 29(11): 1304–1319
https://doi.org/10.1002/anie.199013041
111 J M Lehn (1988). Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices. Angewandte Chemie International Edition, 27(1): 89–112
https://doi.org/10.1002/anie.198800891
112 J C Lei, X Zhang, Z Zhou (2015). Recent advances in MXene: Preparation, properties, and applications. Frontiers in Physics, 10(3): 276–286
https://doi.org/10.1007/s11467-015-0493-x
113 M Li, Y Xiong, G Qing (2020). Smart bio-separation materials. Trends in Analytical Chemistry, 124: 115585
https://doi.org/10.1016/j.trac.2019.06.035
114 Q Li, X Li, L Ning, C H Tan, Y Mu, R Wang (2019a). Hyperfast water transport through biomimetic nanochannels from peptide-attached (pR)-pillar[5]arene. Small, 15(6): 1804678
https://doi.org/10.1002/smll.201804678
115 X Li, S Chou, R Wang, L Shi, W Fang, G Chaitra, C Y Tang, J Torres, X Hu, A G Fane (2015). Nature gives the best solution for desalination: Aquaporin-based hollow fiber composite membrane with superior performance. Journal of Membrane Science, 494: 68–77
https://doi.org/10.1016/j.memsci.2015.07.040
116 X Li, C H Loh, R Wang, W Widjajanti, J Torres (2017a). Fabrication of a robust high-performance FO membrane by optimizing substrate structure and incorporating aquaporin into selective layer. Journal of Membrane Science, 525: 257–268
https://doi.org/10.1016/j.memsci.2016.10.051
117 X Li, R Wang, C Tang, A Vararattanavech, Y Zhao, J Torres, T Fane (2012). Preparation of supported lipid membranes for aquaporin Z incorporation. Colloids and Surfaces. B, Biointerfaces, 94: 333–340
https://doi.org/10.1016/j.colsurfb.2012.02.013
118 X Li, R Wang, F Wicaksana, C Tang, J Torres, A G Fane (2014). Preparation of high performance nanofiltration (NF) membranes incorporated with aquaporin Z. Journal of Membrane Science, 450: 181–188
https://doi.org/10.1016/j.memsci.2013.09.007
119 Y Li, S Qi, M Tian, W Widjajanti, R Wang (2019b). Fabrication of aquaporin-based biomimetic membrane for seawater desalination. Desalination, 467: 103–112
https://doi.org/10.1016/j.desal.2019.06.005
120 Z Li, R Valladares Linares, S Bucs, L Fortunato, C Hélix-Nielsen, J S Vrouwenvelder, N Ghaffour, T O Leiknes, G Amy (2017b). Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation. Desalination, 420: 208–215
https://doi.org/10.1016/j.desal.2017.07.015
121 Y Liang, Y Zhu, C Liu, K R Lee, W S Hung, Z Wang, Y Li, M Elimelech, J Jin, S Lin (2020). Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation. Nature Communications, 11(1): 2015
https://doi.org/10.1038/s41467-020-15771-2
122 E Licsandru, I Kocsis, Y X Shen, S Murail, Y M Legrand, A Van Der Lee, D Tsai, M Baaden, M Kumar, M Barboiu (2016). Salt-excluding artificial water channels exhibiting enhanced dipolar water and proton translocation. Journal of the American Chemical Society, 138(16): 5403–5409
https://doi.org/10.1021/jacs.6b01811
123 G Liu, W Jin, N Xu (2016). Two-dimensional-material membranes: A new family of high-performance separation membranes. Angewandte Chemie International Edition, 55(43): 13384–13397
https://doi.org/10.1002/anie.201600438
124 G Liu, Z Zhao, A Ghahreman (2019a). Novel approaches for lithium extraction from salt-lake brines: A review. Hydrometallurgy, 187: 81–100
https://doi.org/10.1016/j.hydromet.2019.05.005
125 K Liu, Y Tian, L Jiang (2013). Bio-inspired superoleophobic and smart materials: Design, fabrication, and application. Progress in Materials Science, 58(4): 503–564
https://doi.org/10.1016/j.pmatsci.2012.11.001
126 M Liu, S Wang, L Jiang (2017). Nature-inspired superwettability systems. Nature Reviews. Materials, 2(7): 17036
https://doi.org/10.1038/natrevmats.2017.36
127 M Liu, L Zhang, M A Little, V Kapil, M Ceriotti, S Yang, L Ding, D L Holden, R Balderas-Xicohténcatl, D He, R Clowes, S Y Chong, G Schütz, L Chen, M Hirscher, A I Cooper (2019b). Barely porous organic cages for hydrogen isotope separation. Science, 366(6465): 613–620
https://doi.org/10.1126/science.aax7427
128 W Luo, M Xie, X Song, W Guo, H H Ngo, J L Zhou, L D Nghiem (2018). Biomimetic aquaporin membranes for osmotic membrane bioreactors: Membrane performance and contaminant removal. Bioresource Technology, 249: 62–68
https://doi.org/10.1016/j.biortech.2017.09.170
129 A D MacKerell Jr, D Bashford, M Bellott, R L Dunbrack Jr, J D Evanseck, M J Field, S Fischer, J Gao, H Guo, S Ha, D Joseph-McCarthy, L Kuchnir, K Kuczera, F T K Lau, C Mattos, S Michnick, T Ngo, D T Nguyen, B Prodhom, W E Reiher, B Roux, M Schlenkrich, J C Smith, R Stote, J Straub, M Watanabe, J Wiórkiewicz-Kuczera, D Yin, M Karplus (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B, 102(18): 3586–3616
https://doi.org/10.1021/jp973084f
130 H T Madsen, N Bajraktari, C Hélix-Nielsen, B Van der Bruggen, E G Søgaard (2015). Use of biomimetic forward osmosis membrane for trace organics removal. Journal of Membrane Science, 476: 469–474
https://doi.org/10.1016/j.memsci.2014.11.055
131 Y Mai, A Eisenberg (2012). Self-assembly of block copolymers. Chemical Society Reviews, 41(18): 5969–5985
https://doi.org/10.1039/c2cs35115c
132 V Malinova, S Belegrinou, D de Bruyn Ouboter, W P Meier (2010). In: Meier W P, Knoll W, eds. Biomimetic Block Copolymer Membranes. Berlin: Springer, 87–111
133 M Masi, J M Pagès (2013). Structure, function and regulation of outer membrane proteins involved in drugt transport in enterobactericeae: the OmpF/C–TolC Case. Open Microbiology Journal, 7(1): 22–33
https://doi.org/10.2174/1874285801307010022
134 S Matile, A Vargas Jentzsch, J Montenegro, A Fin (2011). Recent synthetic transport systems. Chemical Society Reviews, 40(5): 2453–2474
https://doi.org/10.1039/c0cs00209g
135 J R McCutcheon (2019). Avoiding the hype in developing commercially viable desalination Technologies. Joule, 3(5): 1168–1171
https://doi.org/10.1016/j.joule.2019.03.005
136 A K Meinild, D A Klaerke, T Zeuthen (1998). Bidirectional water fluxes and specificity for small hydrophilic molecules in aquaporins 0–5. Journal of Biological Chemistry, 273(49): 32446–32451
https://doi.org/10.1074/jbc.273.49.32446
137 S Mentzel, M E Perry, J Vogel, S Braekevelt, O Geschke, M E S Larsen (2014). Systems for water extraction. WO2014128293Al
138 Y Miao, N W Johnson, T Phan, K Heck, P B Gedalanga, X Zheng, D Adamson, C Newell, M S Wong, S Mahendra (2020). Monitoring, assessment, and prediction of microbial shifts in coupled catalysis and biodegradation of 1,4-dioxane and co-contaminants. Water Research, 173: 115540
https://doi.org/10.1016/j.watres.2020.115540
139 M M Mohammad, K R Howard, L Movileanu (2011). Redesign of a plugged β-barrel membrane protein. Journal of Biological Chemistry, 286(10): 8000–8013
https://doi.org/10.1074/jbc.M110.197723
140 K Murata, K Mitsuoka, T Hirai, T Walz, P Agre, J B Heymann (2000). Structural determinants of water permeation through aquaporin-. Nature, 407(6804): 599–605
https://doi.org/10.1038/35036519
141 A Nagai, Z Guo, X Feng, S Jin, X Chen, X Ding, D Jiang (2011). Pore surface engineering in covalent organic frameworks. Nature Communications, 2(1): 536
https://doi.org/10.1038/ncomms1542
142 H Nassrullah, S F Anis, R Hashaikeh, N Hilal (2020). Energy for desalination: A state-of-the-art review. Desalination, 491: 114569
https://doi.org/10.1016/j.desal.2020.114569
143 A Nath, W M Atkins, S G Sligar (2007). Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry, 46(8): 2059–2069
https://doi.org/10.1021/bi602371n
144 S Nephrol (1998). Decreased membrane hypercalcemic aquaporin-2 delivery rats expression in kidney and collecting apical ducts plasma of polyuric. Journal of the American Society of Nephrology, 9(2): 2181–2193
145 T Ogoshi, S Kanai, S Fujinami, T A Yamagishi, Y Nakamoto (2008). Para-bridged symmetrical pillar[5]arenes: Their Lewis acid catalyzed synthesis and host-guest property. Journal of the American Chemical Society, 130(15): 5022–5023
https://doi.org/10.1021/ja711260m
146 T Ogoshi, T A Yamagishi, Y Nakamoto (2016). Pillar-shaped macrocyclic hosts pillar[n]arenes: New key players for supramolecular chemistry. Chemical Reviews, 116(14): 7937–8002
https://doi.org/10.1021/acs.chemrev.5b00765
147 Y Okamoto, J H Lienhard (2019). How RO membrane permeability and other performance factors affect process cost and energy use: A review. Desalination, 470: 114064
https://doi.org/10.1016/j.desal.2019.07.004
148 H B Park, J Kamcev, L M Robeson, M Elimelech, B D Freeman (2017). Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science, 356(6343): eaab0530
https://doi.org/10.1126/science.aab0530
149 B Peng, J Tang, J Luo, P Wang, B Ding, K C Tam (2018). Applications of nanotechnology in oil and gas industry: Progress and perspective. Canadian Journal of Chemical Engineering, 96(1): 91–100
https://doi.org/10.1002/cjce.23042
150 L Plançon, M Chami, L Letellier (1997). Reconstitution of FhuA, an Escherichia coli outer membrane protein, into liposomes: Binding of phage T5 to FhuA triggers the transfer of DNA into the proteoliposomes. Journal of Biological Chemistry, 272(27): 16868–16872
https://doi.org/10.1074/jbc.272.27.16868
151 K Pollmann, S Kutschke, S Matys, S Kostudis, S Hopfe, J Raff (2016). Novel biotechnological approaches for the recovery of metals from primary and secondary resources. Minerals (Basel), 6(2): 54
https://doi.org/10.3390/min6020054
152 C J Porter, J R Werber, M Zhong, C J Wilson, M Elimelech (2020). Pathways and challenges for biomimetic desalination membranes with sub-nanometer channels. ACS Nano, 14(9): 10894–10916
https://doi.org/10.1021/acsnano.0c05753
153 G M Preston, T P Carroll, W B Guggino, P Agre (1992). Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science, 256(5055): 385–387
https://doi.org/10.1126/science.256.5055.385
154 S Qi, R Wang, G K M Chaitra, J Torres, X Hu, A G Fane (2016). Aquaporin-based biomimetic reverse osmosis membranes: Stability and long term performance. Journal of Membrane Science, 508: 94–103
https://doi.org/10.1016/j.memsci.2016.02.013
155 S Qiu, M Xue, G Zhu (2014). Metal-organic framework membranes: From synthesis to separation application. Chemical Society Reviews, 43(16): 6116–6140
https://doi.org/10.1039/C4CS00159A
156 S Rajesh, Y Yan, H C Chang, H Gao, W A Phillip (2014). Mixed mosaic membranes prepared by layer-by-layer assembly for ionic separations. ACS Nano, 8(12): 12338–12345
https://doi.org/10.1021/nn504736w
157 V S Rathee, S Qu, W A Phillip, J K Whitmer (2016). A coarse-grained thermodynamic model for the predictive engineering of valence-selective membranes. Molecular Systems Design & Engineering, 1(3): 301–312
https://doi.org/10.1039/C6ME00045B
158 T Ren, M Erbakan, Y X Shen, E Barbieri, P Saboe, H Feroz, H Yan, S McCuskey, J F Hall, A B Schantz, G C Bazan, P J Butler, M Grzelakowski, M Kumar (2017). Membrane protein insertion into and compatibility with biomimetic membranes. Advanced Biosystems, 1(7): 1700053
https://doi.org/10.1002/adbi.201700053
159 V Rhoden, S M Goldin (1979). Formation of unilamellar lipid vesicles of controllable dimensions by detergent dialysis. Biochemistry, 18(19): 4173–4176
https://doi.org/10.1021/bi00586a020
160 L M Robeson (1991). Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 62(2): 165–185
https://doi.org/10.1016/0376-7388(91)80060-J
161 L M Robeson (2008). The upper bound revisited. Journal of Membrane Science, 320(1–2): 390–400
https://doi.org/10.1016/j.memsci.2008.04.030
162 P O Saboe, C Rapisarda, S Kaptan, Y S Hsiao, S R Summers, R de Zorzi, D Dukovski, J Yu, B L de Groot, M Kumar, T Walz (2017). Role of pore-lining residues in defining the rate of water conduction by aquaporin-0. Biophysical Journal, 112(5): 953–965
https://doi.org/10.1016/j.bpj.2017.01.026
163 I Sabolic, G Valenti, J M Verbavatz, A N Van Hoek, A S Verkman, D A Ausiello, D Brown (1992). Localization of the CHIP28 water channel in rat kidney. American Journal of Physiology. Cell Physiology, 263(6): C1225–C1233
https://doi.org/10.1152/ajpcell.1992.263.6.C1225
164 N Sakai, S Matile (2013). Synthetic ion channels. Langmuir, 29(29): 9031–9040
https://doi.org/10.1021/la400716c
165 S Sakipov, A I Sobolevsky, M G Kurnikova (2018). Ion permeation mechanism in epithelial calcium channel TRVP6. Scientific Reports, 8(1): 5715
https://doi.org/10.1038/s41598-018-23972-5
166 J R Sanborn, X Chen, Y Yao, J A Hammons, R H Tunuguntla, Y Zhang, C C Newcomb, J A Soltis, J J de Yoreo, A Van Buuren, A N Parikh, A Noy (2018). Membranes: Carbon nanotube porins in amphiphilic block copolymers as fully synthetic mimics of biological membranes. Advanced Materials, 30(51): 1803355
https://doi.org/10.1002/adma.201803355
167 C Sanchez, H Arribart, M M Giraud Guille(2005). Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Materials, 4(4): 277–288
https://doi.org/10.1038/nmat1339
168 C R Sanders II, G C Landis (1995). Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies. Biochemistry, 34(12): 4030–4040
https://doi.org/10.1021/bi00012a022
169 D F Sanders, Z P Smith, R Guo, L M Robeson, J E McGrath, D R Paul, B D Freeman (2013). Energy-efficient polymeric gas separation membranes for a sustainable future: A review. Polymer, 54(18): 4729–4761
https://doi.org/10.1016/j.polymer.2013.05.075
170 S Schneider, E D Licsandru, I Kocsis, A Gilles, F Dumitru, E Moulin, J Tan, J M Lehn, N Giuseppone, M Barboiu (2017). Columnar self-assemblies of triarylamines as scaffolds for artificial biomimetic channels for ion and for water transport. Journal of the American Chemical Society, 139(10): 3721–3727
https://doi.org/10.1021/jacs.6b12094
171 R K Scopes (1982). In: Scopes R K, eds. Protein purification: Principles and practice. 1st ed. Berlin: Springer
172 A M Seddon, P Curnow, P J Booth (2004). Membrane proteins, lipids and detergents: Not just a soap opera. Biochimica et Biophysica Acta- Biomembranes, 1666(1–2): 105–117
173 M A Shannon, P W Bohn, M Elimelech, J G Georgiadis, B J Mariñas, A M Mayes (2008). Science and technology for water purification in the coming decades. Nature, 452(7185): 301–310
https://doi.org/10.1038/nature06599
174 J Shen, J Fan, R Ye, N Li, Y Mu, H Zeng (2020a). Polypyridine-based helical amide foldamer channels: Rapid transport of water and protons with high ion rejection. Angewandte Chemie International Edition, 59(32): 13328–13334
https://doi.org/10.1002/anie.202003512
175 J Shen, R Ye, A Romanies, A Roy, F Chen, C Ren, Z Liu, H Zeng (2020b). Aquafoldmer-based aquaporin-like synthetic water channel. Journal of the American Chemical Society, 142(22): 10050–10058
https://doi.org/10.1021/jacs.0c02013
176 Y X Shen, P O Saboe, I T Sines, M Erbakan, M Kumar (2014). Biomimetic membranes: A review. Journal of Membrane Science, 454: 359–381
https://doi.org/10.1016/j.memsci.2013.12.019
177 Y X Shen, W Si, M Erbakan, K Decker, R de Zorzi, P O Saboe, Y J Kang, S Majd, P J Butler, T Walz, A Aksimentiev, J Hou, M Kumar (2015). Highly permeable artificial water channels that can self-assemble into two-dimensional arrays. Proceedings of the National Academy of Sciences of the United States of America, 112(32): 9810–9815
https://doi.org/10.1073/pnas.1508575112
178 Y X Shen, W C Song, D R Barden, T Ren, C Lang, H Feroz (2018). Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes. Nature Communications, 9(1): 2294
https://doi.org/10.1038/s41467-018-04604-y
179 B Shi, P Marchetti, D Peshev, S Zhang, A G Livingston (2017). Will ultra-high permeance membranes lead to ultra-efficient processes? Challenges for molecular separations in liquid systems. Journal of Membrane Science, 525: 35–47
https://doi.org/10.1016/j.memsci.2016.10.014
180 D S Sholl, R P Lively (2016). Seven chemical separations to change the world. Nature, 532(7600): 435–437
https://doi.org/10.1038/532435a
181 W Si, P Xin, Z T Li, J L Hou (2015). Tubular unimolecular transmembrane channels: Construction strategy and transport activities. Accounts of Chemical Research, 48(6): 1612–1619
https://doi.org/10.1021/acs.accounts.5b00143
182 M Sianipar, S H Kim, K Khoiruddin, F Iskandar, I G Wenten (2017). Functionalized carbon nanotube (CNT) membrane: Progress and challenges. RSC Advances, 7(81): 51175–51198
https://doi.org/10.1039/C7RA08570B
183 A L Sisson, M R Shah, S Bhosale, S Matile (2006). Synthetic ion channels and pores (2004–2005). Chemical Society Reviews, 35(12): 1269–1286
https://doi.org/10.1039/B512423A
184 W Song, H Joshi, R Chowdhury, J S Najem, Y X Shen, C Lang, C B Henderson, Y M Tu, M Farell, M E Pitz, C D Maranas, P S Cremer, R J Hickey, S A Sarles, J Hou, A Aksimentiev, M Kumar (2020). Artificial water channels enable fast and selective water permeation through water-wire networks. Nature Nanotechnology, 15(1): 73–79
https://doi.org/10.1038/s41565-019-0586-8
185 W Song, M Kumar (2019). Artificial water channels: toward and beyond desalination. Current Opinion in Chemical Engineering, 25: 9–17
https://doi.org/10.1016/j.coche.2019.06.007
186 W Song, C Lang, Y Shen, M Kumar (2018). Design considerations for artificial water channel–based membranes. Annual Review of Materials Research, 48(1): 57–82
https://doi.org/10.1146/annurev-matsci-070317-124544
187 W Song, Y M Tu, H Oh, L Samineni, M Kumar (2019). Hierarchical optimization of high-performance biomimetic and bioinspired membranes. Langmuir, 35(3): 589–607
https://doi.org/10.1021/acs.langmuir.8b03655
188 M Spulber, K Gerstandt (2018). Diblock copolymer vesicles and separation membranes comprising aquaporin water channels and methods of making and using them. WO2018141985A1
189 K Sullivan, Y Zhang, J Lopez, M Lowe, A Noy (2020). Carbon nanotube porin diffusion in mixed composition supported lipid bilayers. Scientific Reports, 10(1): 11908
https://doi.org/10.1038/s41598-020-68059-2
190 G Sun, T S Chung, N Chen, X Lu, Q Zhao (2013a). Highly permeable aquaporin-embedded biomimetic membranes featuring a magnetic-aided approach. RSC Advances, 3(24): 9178–9184
https://doi.org/10.1039/c3ra40608c
191 G Sun, T S Chung, K Jeyaseelan, A Armugam (2013b). A layer-by-layer self-assembly approach to developing an aquaporin-embedded mixed matrix membrane. RSC Advances, 3(2): 473–481
https://doi.org/10.1039/C2RA21767H
192 G Sun, T S Chung, K Jeyaseelan, A Armugam (2013c). Stabilization and immobilization of aquaporin reconstituted lipid vesicles for water purification. Colloids and Surfaces. B, Biointerfaces, 102: 466–471
https://doi.org/10.1016/j.colsurfb.2012.08.009
193 I Tabushi, Y Kuroda, K Yokota (1982). A,B,D,F-tetrasubstituted β-cyclodextrin as artificial channel compound. Tetrahedron Letters, 23(44): 4601–4604
https://doi.org/10.1016/S0040-4039(00)85664-6
194 Z Tan, S Chen, X Peng, L Zhang, C Gao (2018). Polyamide membranes with nanoscale Turing structures for water purification. Science, 360(6388): 518–521
https://doi.org/10.1126/science.aar6308
195 C Tang, C Qiu, Y Zhao, W Shen, A Vararattanavech, R Wang (2014). Aquaporin based thin film composite membranes. US2014332468
196 C Tang, Z Wang, I Petrinić, A G Fane, C Hélix-Nielsen (2015). Biomimetic aquaporin membranes coming of age. Desalination, 368: 89–105
https://doi.org/10.1016/j.desal.2015.04.026
197 C Y Tang, Y Zhao, R Wang, C Hélix-Nielsen, A G Fane (2013). Desalination by biomimetic aquaporin membranes: Review of status and prospects. Desalination, 308: 34–40
https://doi.org/10.1016/j.desal.2012.07.007
198 Y M Tu, W Song, T Ren, Y X Shen, R Chowdhury, P Rajapaksha, T E Culp, L Samineni, C Lang, A Thokkadam, D Carson, Y Dai, A Mukthar, M Zhang, A Parshin, J N Sloand, S H Medina, M Grzelakowski, D Bhattacharya, W A Phillip, E D Gomez, R J Hickey, Y Wei, M Kumar (2020). Rapid fabrication of precise high-throughput filters from membrane protein nanosheets. Nature Materials, 19(3): 347–354
https://doi.org/10.1038/s41563-019-0577-z
199 R H Tunuguntla, F I Allen, K Kim, A Belliveau, A Noy (2016a). Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins. Nature Nanotechnology, 11(7): 639–644
https://doi.org/10.1038/nnano.2016.43
200 R H Tunuguntla, A Escalada, V A Frolov, A Noy (2016b). Synthesis, lipid membrane incorporation, and ion permeability testing of carbon nanotube porins. Nature Protocols, 11(10): 2029–2047
https://doi.org/10.1038/nprot.2016.119
201 R H Tunuguntla, R Y Henley, Y C Yao, T A Pham, M Wanunu, A Noy (2017). Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science, 357(6353): 792–796
https://doi.org/10.1126/science.aan2438
202 Y P Venkata Subbaiah, K J Saji, A Tiwari (2016). Atomically Thin MoS2 : A Versatile nongraphene 2D material. Advanced Functional Materials, 26(13): 2046–2069
https://doi.org/10.1002/adfm.201504202
203 A S Verkman, A K Mitra (2000). Structure and function of aquaporin water channels. American Journal of Physiology. Renal Physiology, 278(1): F13–F28
https://doi.org/10.1152/ajprenal.2000.278.1.F13
204 L V Virkki, G J Cooper, W F Boron (2001). Cloning and functional expression of an MIP (AQP0) homolog from killifish (Fundulus heteroclitus) lens. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 281(6): R1994–R2003
https://doi.org/10.1152/ajpregu.2001.281.6.R1994
205 N Voyer, M Robitaille (1995). A novel functional artificial ion channel. Journal of the American Chemical Society, 117(24): 6599–6600
https://doi.org/10.1021/ja00129a027
206 P Wagh, I C Escobar (2019). Biomimetic and bioinspired membranes for water purification: A critical review and future directions. Environmental Progress & Sustainable Energy, 38(3): e13215
https://doi.org/10.1002/ep.13215
207 P Wagh, G Parungao, R E Viola, I C Escobar (2015). A new technique to fabricate high-performance biologically inspired membranes for water treatment. Separation and Purification Technology, 156: 754–765
https://doi.org/10.1016/j.seppur.2015.10.073
208 S Wagner, M L Bader, D Drew, J W de Gier (2006). Rationalizing membrane protein overexpression. Trends in Biotechnology, 24(8): 364–371
https://doi.org/10.1016/j.tibtech.2006.06.008
209 T Walz, T Hirai, K Murata, J B Heymann, K Mitsuoka, Y Fujiyoshi, B L Smith, P Agre, A Engel (1997). The three-dimensional structure of aquaporin-1. Nature, 387(6633): 624–627
https://doi.org/10.1038/42512
210 H Wang, T S Chung, Y W Tong, K Jeyaseelan, A Armugam, Z Chen, M Hong, W Meier (2012). Highly permeable and selective pore-spanning biomimetic membrane embedded with aquaporin Z. Small, 8(8): 1185–1190
https://doi.org/10.1002/smll.201102120
211 H Wang, T S Chung, Y W Tong, W Meier, Z Chen, M Hong, K Jeyaseelan, A Armugam (2011). Preparation and characterization of pore-suspending biomimetic membranes embedded with Aquaporin Z on carboxylated polyethylene glycol polymer cushion. Soft Matter, 7(16): 7274–7280
https://doi.org/10.1039/c1sm05527e
212 H L Wang, T S Chung, Y W Tong, K Jeyaseelan, A Armugam, H H P Duong, F Fu, H Seah, J Yang, M Hong (2013). Mechanically robust and highly permeable AquaporinZ biomimetic membranes. Journal of Membrane Science, 434: 130–136
https://doi.org/10.1016/j.memsci.2013.01.031
213 M Wang, Z Wang, X Wang, S Wang, W Ding, C Gao (2015). Layer-by-layer assembly of aquaporin z-incorporated biomimetic membranes for water purification. Environmental Science & Technology, 49(6): 3761–3768
https://doi.org/10.1021/es5056337
214 Z Wang, Z Wang, S Lin, H Jin, S Gao, Y Zhu, J Jin (2018). Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination. Nature Communications, 9(1): 2004
https://doi.org/10.1038/s41467-018-04467-3
215 U G K Wegst, H Bai, E Saiz, A P Tomsia, R O Ritchie (2015). Bioinspired structural materials. Nature Materials, 14(1): 23–36
https://doi.org/10.1038/nmat4089
216 J R Werber, A Deshmukh, M Elimelech (2016a). The critical need for increased selectivity, not increased water permeability for desalination membranes. Environmental Science & Technology Letters, 3(4): 112–120
https://doi.org/10.1021/acs.estlett.6b00050
217 J R Werber, M Elimelech (2018). Permselectivity limits of biomimetic desalination membranes. Science Advances, 4(6): eaar8266
218 J R Werber, C O Osuji, M Elimelech (2016b). Materials for next-generation desalination and water purification membranes. Nature Reviews Materials, 1(5): 16018
https://doi.org/10.1038/natrevmats.2016.18
219 L Xia, M F Andersen, C Hélix-Nielsen, J R McCutcheon (2017). Novel commercial aquaporin flat-sheet membrane for forward osmosis. Industrial & Engineering Chemistry Research, 56(41): 11919–11925
https://doi.org/10.1021/acs.iecr.7b02368
220 M Xie, W Luo, H Guo, L D Nghiem, C Y Tang, S R Gray (2018). Trace organic contaminant rejection by aquaporin forward osmosis membrane: Transport mechanisms and membrane stability. Water Research, 132: 90–98
https://doi.org/10.1016/j.watres.2017.12.072
221 W Xie, F He, B Wang, T S Chung, K Jeyaseelan, A Armugam, Y W Tong (2013). An aquaporin-based vesicle-embedded polymeric membrane for low energy water filtration. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 1(26): 7592–7600
https://doi.org/10.1039/c3ta10731k
222 Y Yang, A Walton, R Sheridan, K Güth, R Gauß, O Gutfleisch, M Buchert, B M Steenari, T Van Gerven, P T Jones, K Binnemans (2017). REE recovery from end-of-life NdFeB permanent magnet scrap: A critical review. Journal of Sustainable Metallurgy, 3(1): 122–149
https://doi.org/10.1007/s40831-016-0090-4
223 Y C Yao, A Taqieddin, M A Alibakhshi, M Wanunu, N R Aluru, A Noy (2019). Strong electroosmotic coupling dominates ion conductance of 1.5 nm diameter carbon nanotube porins. ACS Nano, 13(11): 12851–12859
https://doi.org/10.1021/acsnano.9b05118
224 M L Zeidel, S V Ambudkar, B L Smith, P Agre (1992). Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry, 31(33): 7436–7440
https://doi.org/10.1021/bi00148a002
225 X Zhang, W Fu, C G Palivan, W Meier (2013). Natural channel protein inserts and functions in a completely artificial, solid-supported bilayer membrane. Scientific Reports, 3(1): 2196
https://doi.org/10.1038/srep02196
226 X Zhang, P Tanner, A Graff, C G Palivan, W Meier (2012). Mimicking the cell membrane with block copolymer membranes. Journal of Polymer Science. Part A, Polymer Chemistry, 50(12): 2293–2318
https://doi.org/10.1002/pola.26000
227 H Zhao, W Q Ong, X Fang, F Zhou, M N Hii, S F Y Li, H Su, H Zeng (2012a). Synthesis, structural investigation and computational modelling of water-binding aquafoldamers. Organic & Biomolecular Chemistry, 10(6): 1172–1180
https://doi.org/10.1039/C1OB06609A
228 H Zhao, S Sheng, Y Hong, H Zeng (2014a). Proton gradient-induced water transport mediated by water wires inside narrow aquapores of aquafoldamer molecules. Journal of the American Chemical Society, 136(40): 14270–14276
https://doi.org/10.1021/ja5077537
229 J Zhao, X Zhao, Z Jiang, Z Li, X Fan, J Zhu, H Wu, Y Su, D Yang, F Pan, J Shi (2014b). Biomimetic and bioinspired membranes: Preparation and application. Progress in Polymer Science, 39(9): 1668–1720
https://doi.org/10.1016/j.progpolymsci.2014.06.001
230 Y Zhao, C Qiu, X Li, A Vararattanavech, W Shen, J Torres, C Hélix-Nielsen, R Wang, X Hu, A G Fane, C Y Tang (2012b). Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization. Journal of Membrane Science, 423–424: 422–428
https://doi.org/10.1016/j.memsci.2012.08.039
231 P S Zhong, T S Chung, K Jeyaseelan, A Armugam (2012). Aquaporin-embedded biomimetic membranes for nanofiltration. Journal of Membrane Science, 407–408: 27–33
https://doi.org/10.1016/j.memsci.2012.03.033
232 X Zhou, G Liu, K Yamato, Y Shen, R Cheng, X Wei, W Bai, Y Gao, H Li, Y Liu, F Liu, D M Czajkowsky, J Wang, M J Dabney, Z Cai, J Hu, F V Bright, L He, X C Zeng, Z Shao, B Gong (2012). Self-assembling subnanometer pores with unusual mass-transport properties. Nature Communications, 3(1): 949
https://doi.org/10.1038/ncomms1949
233 F Zhu, E Tajkhorshid, K Schulten (2004). Collective diffusion model for water permeation through microscopic channels. Physical Review Letters, 93(22): 224501
https://doi.org/10.1103/PhysRevLett.93.224501
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed