Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (2) : 24    https://doi.org/10.1007/s11783-021-1455-x
RESEARCH ARTICLE
Quantification of emission variability for off-road equipment in China based on real-world measurements
Kaili Pang, Kaishan Zhang(), Shuai Ma, Xiangrui Meng
Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
 Download: PDF(2176 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Emissions from 53 in-use diesel-fueled off-road equipment were measured.

• There exists a large off-road equipment variability in emissions.

• Engine operations have significant impacts on real-world tailpipe emissions.

• Emission inventory development should take into account job duties and operations.

The objective of this paper is to quantify the variability in emissions of off-road equipment using a portable emission measurement system. A total of 53 commonly used equipment for agriculture, base construction, paving construction, and material handling were selected. Time-based and fuel-based emissions were quantified by different duty and engine modes. Three duty modes (idling, moving, and working) were used. Ten engine modes were defined based on normalized engine revolutions-per-minute and manifold absolute pressure, respectively. Composite emission factors taking into account both duty modes and its corresponding time percentage during a typical duty cycle were estimated. Results showed that there existed a large off-road equipment variability in emissions. Depending on duty and engine modes, time-based NO emissions ranged from 3.1 to 237.9, 29.1‒1475.6, 83.2‒681.6, and 3.2‒385.2 g/h for agriculture, base construction, paving construction and material handling equipment, respectively while for fuel-based NO emissions these ranges were 5.3‒52.0, 11.7‒69.0, 4.8‒30.8, and 11.0‒54.6 g/kg, respectively. Furthermore, emission factors derived from this study exhibited a much larger variability compared to those used in NONROAD by US EPA and National Guideline for Off-road Equipment of China. This implied that localized measurements of emissions are needed for improvement of accuracy of emission inventory. Furthermore, both equipment types and operations should be considered for development of emission inventory and control strategy.

Keywords Off-road equipment      Portable emission measurement system (PEMS)      Real-world emissions      Diesel engine     
Corresponding Author(s): Kaishan Zhang   
Just Accepted Date: 12 May 2021   Issue Date: 28 May 2021
 Cite this article:   
Kaili Pang,Kaishan Zhang,Shuai Ma, et al. Quantification of emission variability for off-road equipment in China based on real-world measurements[J]. Front. Environ. Sci. Eng., 2022, 16(2): 24.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-021-1455-x
https://academic.hep.com.cn/fese/EN/Y2022/V16/I2/24
Unit Item Model Range Precision Manufacturer
Gases CO CAP3300 0–10.0%vol 0.01%vol France CAPELEC Inc.
CO2 CAP3300 0–20.0%vol 0.01%vol France CAPELEC Inc.
HC CAP3300 0–10000 ppm 1 ppm France CAPELEC Inc.
NO A-22 0–5000 ppm 3 ppm Germany ITG Inc.
O2 PTB-18.10 0–25.0%vol 0.02%vol UK CITY Inc.
Engine parameters IAT MD-STT −50°C–100°C 0.5%FS a CN MST Inc. b
MAP MD-G 0–200 kPa 0.5%FS a CN MST Inc. b
RPM MEVS-03 10–10000 r/min 0.5%FS a CN YMT Inc. c
ET Thermoelectric couple 0°C–800°C 0.75%FS a CN KOIT Inc. d
PM2.5 Pump 107CDC20 0–39.6 L/min n/a US THOMAS Inc.
Diluter Self-made 15–20 times n/a n/a
Cutter URG-2000-30ENS-2 10 L/min, 2.5 μm n/a US URG Inc. e
Filter tray URG-2000-30FVI 46.7 mm n/a US URG Inc. e
Filter PTFE 37 mm 99.95% Beijing Safelab Inc.
Tab.1  Specifics of measuring units in the selected PEMS
Test count Equipment type Class Equipment model Engine model Model
year
EP a
(kW)
ED b
(L)
ESC c
(Stage)
1 Agricultural Tractors Dong Fang-hong LX-1004 LR4A3L-23 2011 50 4.33 II
2 Dong Fang-hong LX-904 LR 4M5-23 2011 66.2 5.13 II
3 Dong Fang-hong LX-950 LR 4M5-23 2013 70 5.13 II
4 Lavo TE-250 385 2010 18.8 2.24 II
5 Lavo M554-B QG4105T55 2013 40.4 4.08 II
6 Shanghai-50 495A-33 1993 35.3 4.00 Pre-I
7 Dong Fang-hong LX804 4B5-23 2013 59 4.58 III
8 Dong Fang-hong LX804 4B5-23 2013 59 4.58 III
9 Dong Fang-hong LX804 4B5-23 2013 59 4.58 III
10 Base construction Excavators Takeuchi TB150-C 4TNV88-QTBC 2010 27.3 2.19 III
11 Doosan DH60-7 YANMAR 2010 38.1 3.05 II
12 Hyundai H60-7 4TNV94L 2014 40 3.05 III
13 Hyundai R60-7 4TNV94L-XHYBC 2011 53.1 3.05 II
14 Hyundai H60-7 YANMAR 2014 66 3.05 III
15 Doosan DH225LC-7 DB58T1A 2010 115 8.07 I
16 Hitachi ZX210K-8 Isuzu AI-4HK1X 2006 122 5.19 Pre-I
17 Shinko SK260LC-8 LL13-H1526 2009 131 5.12 I
18 Hitachi ZX-230 ISUZU 2009 132.3 6.49 I
19 Shinko SK260LC-8 CA-J05E-TB 2009 137 5.12 II
20 Shinko SK260LC J05E-TB 2008 137 5.12 I
21 Shinko SK260LC J05E-TE 2009 137 5.12 II
22 Shinko 260LC CA-J05ETB 2011 137 5.12 II
23 Komatsu PC360-7 SAA6D114E-2 2011 180.5 8.27 II
24 Hyundai 275LC-9T 6C8.3 2008 186 8.30 II
25 Komatsu PC400-7 SAA6D125E-3 2009 246 11.0 II
26 Loaders Shen-gong ZL30 YN33GBZ 2009 65 3.80 II
27 Cheng-gong ZL30B 6110/125G-18 2009 81 6.75 II
28 Cheng-gong ZL30B 6110/125G-18 2008 86 7.13 I
29 Cheng-gong ZL30B 6110/125G-18 2008 86 7.13 I
30 Cheng-gong ZL50E-3 WD10G22CE23 2013 162 10.0 II
31 Paving construction Road rollers Humvee HD130 BF4M2012C 2012 98 4.76 II
32 Xia-gong XG6202M YC6108ZG 2001 128 6.87 Pre-I
33 Xu-gong XP301 SC8D180G2B1 2012 132 8.27 II
34 Xu-gong XS262J SC8D190.2G2 2012 140 8.30 II
35 Pavers Xin-zhu MT9000C 6CTA83-C215 2014 160 8.30 III
36 Material handling Forklifts Longing FD35-2 4C2-50V32 2016 36.8 2.16 III
37 Maximal FD35 C490BPG-221 2011 40 2.67 II
38 Maximal FD35T C490BPG-221 2011 40 2.67 II
39 Maximal FD35 C490BPG 2013 40 2.67 II
40 Maximal FD35T C480BPG 2014 40 2.67 II
41 Longing FD35 C490BPG 2009 40 2.67 II
42 Heli CPCD30 C490 2004 40.9 2.67 Pre-I
43 Tisiam FD30T3C CA498 2009 45 3.17 II
44 Heli FD40Z A498BPG 2014 45 3.17 II
45 Maximal FD60T CY6102BG 2010 81 5.79 I
46 Longing LG100DTIC 6BG1-NAABD 2008 82.4 6.49 I
47 Heli CPC30 YC6B125-T10 2007 92 6.87 I
48 Cranes Chang-jiang QZC5102JQZQY8 YC4E140-30 2008 105 4.26 I
49 Xu-gong XZJ5160JQZ12 D6114ZQ33A 2008 152 8.27 I
50 Xu-gong XAJ5164JQZ12 SC8DK230Q3 2009 170 8.27 I
51 Xu-gong XZJ5164JQZ12 SC8DK230Q3 2010 170 8.27 II
52 Xu-gong XZJ5164JQZ12 SC8DK230Q3 2011 170 8.27 II
53 Xu-gong XZJ4403JQ250K WD615.334 2014 247 9.73 III
Tab.2  Testing equipment selected in this study
Fig.1  Installation of PEMS to the selected equipment for emission measurements.
Pollutant ET a Time-based emissions (g/h) Fuel-based emissions (g/kg-fuel)
Idling Moving Working Idling Moving Working
CO AC b 28.7±17.9 44.6±26.9 205.8±227.9 41.8±31.0 23.2±20.8 39.6±28.7
BC c 45.3±12.9 120.7±83.0 178.4±94.1 18.0±5.6 13.2±5.3 11.2±4.2
PC d 193.1±190.7 267.9±267.8 203.4±106.5 16.6±13.4 12.4±8.2 14.3±10.4
MH e 28.0±17.8 51.6±19.8 38.7±21.7 20.1±5.7 15.5±3.5 13.7±3.5
HC AC b 4.4±1.6 7.6±2.2 7.3±2.2 6.5±3.2 4.0±1.8 3.8±2.0
BC c 13.7±5.1 27.1±14.7 47.4±23.9 4.1±1.6 2.6±1.5 2.5±1.0
PC d 31.7±27.5 52.0±23.8 25.6±17.8 3.3±2.8 3.3±1.5 1.3±0.9
MH e 4.9±1.5 14.4±4.6 9.4±4.0 6.0±2.2 5.7±1.7 4.7±1.8
NO AC b 26.2±8.6 93.9±40.1 127.8±53.8 34.3±11.3 37.7±14.3 34.0±10.9
BC c 67.2±29.7 378.8±239.1 478.9±229.6 17.5±5.8 22.4±9.2 19.2±6.7
PC d 267.2±184 368.4±118.5 415.1±247.3 19.0±9.4 20.7±4.7 16.3±7.9
MH e 30.5±11.0 109.0±52.2 73.1±33.6 28.1±6.7 24.4±4.6 30.3±7.3
PM2.5 AC b 4.8±2.9 20.8±13.4 63.1±42.9 6.4±4.4 9.2±5.0 16.2±6.3
BC c 3.5±1.5 18.4±9.8 46.7±21.0 2.8±1.6 3.1±1.4 2.9±1.1
PC d 43.0±37.6 53.3±30.6 78.3±44.4 3.0±2.0 3.1±1.7 4.5±3.4
MH e 2.0±1.0 13.9±6.8 4.7±1.8 2.2±0.8 5.3±2.2 3.2±1.2
Tab.3  Off-road equipment emissions by duty mode
Fig.2  RPM-based engine modal emissions of testing off-road equipment (a) time-based, and (b) fuel-based.
Fig.3  MAP-based engine modal emissions of testing off-road equipment (a) time-based, and (b) fuel-based.
Duty mode Equipment type
Agriculture Base construction Paving construction Material handling
Idling 5.5±3.0 17.6±16.9 6.9±5.2 9.6±5.3
Moving 17.0±15.2 20.8±11.3 24.9±13.9 22.8±4.6
Working 77.5±17.4 61.6±10.2 68.3±13.5 67.6±4.6
Tab.4  Modal time distribution for off-road equipment a (%)
Fig.4  Composite emissions factors of off-road equipment (a) time-based, and (b) fuel-based.
Equipment type Sources CO HC NOxa PM2.5
Average Max/Minb Average Max/Minb Average Max/Minb Average Max/Minb
Agriculture This study 36.9±25.4 5.4 3.9±2.0 3.1 37.4±11.9 1.9 14.5±5.1 2.1
NONROAD 14.9±0.8 1.1 2.8±0.1 1.1 24.6±0.3 1.0 2.2±0.1 1.1
National guideline c 23.5±1.7 1.2 5.3±0.4 1.2 34.2±5.9 1.4 2.6±0.6 1.6
Base construction This study 12.3±3.9 1.9 2.7±0.7 1.7 22.8±8.5 2.2 3.0±1.0 2.0
NONROAD 15.4±1.3 1.2 2.7±0.3 1.2 24.1±0.4 1.0 2.1±0.1 1.1
National guideline c 23.5±1.7 1.2 5.3±0.4 1.2 34.2±5.9 1.4 2.6±0.6 1.6
Xia et al. (2017) 18.7±5.0 1.7 40.6±6.7 1.4 3.7±1.4 2.2
Cao et al. (2016) 11.2±2.3 1.5 1.3±0.4 2.0 20.8±3.0 1.3 1.5±0.6 2.5
Fu et al. (2012) d 14.6 5.5 57.2 1.5
Frey et al. (2010) 12.8±2.9 1.6 5.9±1.5 1.7 41.5±4.5 1.2
Paving construction This study 14.1±9.7 5.4 1.8±1.1 4.1 18.2±8.5 2.8 4.1±2.6 4.5
NONROAD 13.5±1.7 1.3 2.5±0.3 1.2 24.6±0.7 1.1 1.9±0.1 1.2
National guideline c 23.5±1.7 1.2 5.3±0.4 1.2 34.2±5.9 1.4 2.6±0.6 1.6
Material handling This study 14.8±3.4 1.6 5.0±1.7 2.0 31.8±7.4 1.6 3.4±1.4 2.4
NONROAD 13.4±1.8 1.3 2.5±0.2 1.2 24.9±0.8 1.1 2.0±0.1 1.1
National guideline c 23.5±1.7 1.2 5.3±0.4 1.2 34.2±5.9 1.4 2.6±0.6 1.6
Xia et al. (2017) 24.1±5.4 1.6 36.9±7.0 1.5 2.7±0.7 1.7
Tab.5  The comparisons of emission factors by different studies (g/kg)
1 T Cao, T D Durbin, R L Russell, D R III Cocker, G Scora, H Maldonado, K C Johnson (2016). Evaluations of in-use emission factors from off-road construction equipment. Atmospheric Environment, 147: 234–245
https://doi.org/10.1016/j.atmosenv.2016.09.042
2 CARB (California Air Resources Board) (2007). User’s Guide for OFFROAD2007. California: USA
3 CCMA (China Construction Machinery Association) (2018a). China Construction Machinery Industry Yearbook 2017. Beijing: China Mechanical Industry Publishing4–5 (in Chinese)
4 CCMA (China Construction Machinery Association) (2018b). China Agricultural Machinery Industry Yearbook 2017. Beijing: China Mechanical Industry Publishing , 174–193 (in Chinese)
5 C D Desouza, D J Marsh, S D Beevers, N Molden, D C Green (2020). Real-world emissions from non-road mobile machinery in London. Atmospheric Environment, 223: 117301
https://doi.org/10.1016/j.atmosenv.2020.117301
6 T D Durbin, K Johnson, D R Cocker III, J W Miller, H Maldonado, A Shah, C Ensfield, C Weaver, M Akard, N Harvey, J Symon, T Lanni, W D Bachalo, G Payne, G Smallwood, M Linke (2007). Evaluation and comparison of portable emissions measurement systems and federal reference methods for emissions from a back-up generator and a diesel truck operated on a chassis dynamometer. Environmental Science & Technology, 41(17): 6199–6204
https://doi.org/10.1021/es0622251 pmid: 17937302
7 C Y Fan, C L Song, G Lv, G Y Wang, H Zhou, X J Jing (2018). Evaluation of carbonyl compound emissions from a non-road machinery diesel engine fueled with a methanol/diesel blend. Applied Thermal Engineering, 129: 1382–1391
https://doi.org/10.1016/j.applthermaleng.2017.10.086
8 H C Frey, W Rasdorf, P Lewis (2010). Comprehensive field study of fuel use and emissions of nonroad diesel construction equipment. Transportation Research Record: Journal of the Transportation Research Board, 2158(1): 69–76
https://doi.org/10.3141/2158-09
9 H C Frey, A Unal, N M Rouphail, J D Colyar (2003). On-road measurement of vehicle tailpipe emissions using a portable instrument. Journal of the Air & Waste Management Association, 53(8): 992–1002
https://doi.org/10.1080/10473289.2003.10466245 pmid: 12943319
10 M Fu, Y Ge, J Tan, T Zeng, B Liang (2012). Characteristics of typical non-road machinery emissions in China by using portable emission measurement system. Science of the Total Environment, 437: 255–261
https://doi.org/10.1016/j.scitotenv.2012.07.095 pmid: 22944217
11 A Gao, J Wang, J Luo, A Li, K Chen, P Wang, Y Wang, J Li, J Hu, H Zhang (2021). Temporal variation of PM2.5-associated health effects in Shijiazhuang, Hebei. Frontiers of Environmental Science & Engineering, 15(5): 9
https://doi.org/10.1007/s11783-020-1376-0
12 T Grigoratos, G Fontaras, B Giechaskiel, N Zacharof (2019). Real world emissions performance of heavy-duty Euro VI diesel vehicles. Atmospheric Environment, 201: 348–359
https://doi.org/10.1016/j.atmosenv.2018.12.042
13 B Heidari, L C Marr (2015). Real-time emissions from construction equipment compared with model predictions. Journal of the Air & Waste Management Association, 65(2): 115–125
https://doi.org/10.1080/10962247.2014.978485 pmid: 25947047
14 T Huai, S D Shah, T D Durbin, J M Norbeck (2005). Measurement of operational activity for nonroad diesel construction equipment. International Journal of Automotive Technology, 6(4): 333–340
15 Y Jiang, J Xing, S Wang, X Chang, S Liu, A Shi, B Liu, S K Sahu (2021). Understand the local and regional contributions on air pollution from the view of human health impacts. Frontiers of Environmental Science & Engineering, 15(5): 11
https://doi.org/10.1007/s11783-020-1382-2
16 P Lewis, M Leming, W Rasdorf (2012). Impact of engine idling on fuel use and CO2 emissions of nonroad diesel construction equipment. Journal of Management Engineering, 28(1): 31–38
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000068
17 M Li, H Liu, G N Geng, C P Hong, F Liu, Y Song, D Tong, B Zheng, H Y Cui, H Y Man, Q Zhang, K B He (2017). Anthropogenic emission inventories in China: A review. National Science Review, 4(6): 834–866
https://doi.org/10.1093/nsr/nwx150
18 Z Li, K Zhang, K Pang, B Di (2016). A fuel-based approach for emission factor development for highway paving construction equipment in China. Journal of the Air & Waste Management Association, 66(12): 1214–1223
https://doi.org/10.1080/10962247.2016.1209256 pmid: 27588939
19 P Lijewski, J Merkisz, P Fuc (2013). The analysis of the operating conditions of farm machinery engines in regard to exhaust emissions legislation. Applied Engineering in Agriculture, 29(4): 445–452
20 P Lijewski, J Merkisz, P Fuć, A Ziółkowski, Ł Rymaniak, W Kusiak (2017). Fuel consumption and exhaust emissions in the process of mechanized timber extraction and transport. European Journal of Forest Research, 136(1): 153–160
https://doi.org/10.1007/s10342-016-1015-2
21 M Lindgren, G Larsson, P A Hansson (2010). Evaluation of factors influencing emissions from tractors and construction equipment during realistic work operations using diesel fuel and bio-fuels as substitute. Biosystems Engineering, 107(2): 123–130
https://doi.org/10.1016/j.biosystemseng.2010.07.010
22 L Lv, Y Ge, Z Ji, J Tan, X Wang, L Hao, Z Wang, M Zhang, C Wang, H Liu (2020). Regulated emission characteristics of in-use LNG and diesel semi-trailer towing vehicles under real driving conditions using PEMS. Journal of Environmental Sciences (China), 88: 155–164
https://doi.org/10.1016/j.jes.2019.07.020 pmid: 31862057
23 S Ma, K S Zhang, F Wang, K L Pang, Y J Zhu, Z Li, H M Mao, B M Hu, J J Yang, B Wang (2019). Characterization of tailpipe emissions from in-use excavators. Environmental Sciences (Ruse), 40(4): 1670–1679 (in Chinese)
pmid: 31087907
24 A Mamakos, P Bonnel, A Perujo, M Carriero (2013). Assessment of portable emission measurement systems (PEMS) for heavy-duty diesel engines with respect to particulate matter. Journal of Aerosol Science, 57: 54–70
https://doi.org/10.1016/j.jaerosci.2012.10.004
25 MEE PCR (Ministry of Ecology and Environment of the People’s Republic of China) (2014). National guideline for emission inventory development for off-road equipment in China. Available online at (accessed February 4, 2021) (in Chinese)
26 MEE PCR (Ministry of Ecology and Environment of the People’s Republic of China) (2020). China Vehicle Environmental Management Annual Report. Available online at (accessed April 4, 2021) (in Chinese)
27 K Pang, K Zhang, S Ma (2021). Tailpipe emission characterizations of diesel-fueled forklifts under real-world operations using a portable emission measurement system. Journal of Environmental Sciences (China), 100: 34–42
https://doi.org/10.1016/j.jes.2020.07.011 pmid: 33279047
28 L Pirjola, T Rönkkö, E Saukko, H Parviainen, A Malinen, J Alanen, H Saveljeff (2017). Exhaust emissions of non-road mobile machine: Real-world and laboratory studies with diesel and HVO fuels. Fuel, 202: 154–164
https://doi.org/10.1016/j.fuel.2017.04.029
29 M Sandanayake, G Zhang, S Setunge, C M Malcolm (2015). Environmental emissions of construction equipment usage in pile foundation construction process—A case study. In: Proceedings of the 19th International Symposium on Advancement of Construction Management and Real Estate, Heidelberg.Berlin: Springer Press, 327–339
30 THU (Tsinghua university) (2012). Multi-resolution Emission Inventory for China (MEIC). Available online at (accessed February 4, 2021) (in Chinese)
31 US EPA (United States Environmental Protection Agency) (2005). User’s Guide for the Final NONROAD2005 Model. Washington, DC:USEPA
32 US EPA (United States Environmental Protection Agency) (2014). Profile of the 2011 National Air Emissions Inventory (NEI). Available online at (accessed February 4, 2021)
33 M Vojtisek-Lom, J E Allsop (2001). Development of heavy-duty diesel portable, on-board mass exhaust emissions monitoring system with NOx, CO2, and qualitative capabilities (No.2001–01–3641). In: SAE International Fall Fuels & Lubricants Meeting & Exhibition. SAE Technical Paper
34 Z Q Xia (2017). Study on Characteristics of Gaseous and Particulate Emission from Non-road Diesel Vehicles on Real-world Conditions. Dissertation for the Master’s Degree.Guangzhou: South China University of Technology (in Chinese)
35 F Yan, E Winijkul, D G Streets, Z Lu, T C Bond, Y Zhang (2014). Global emission projections for the transportation sector using dynamic technology modelling. Atmospheric Chemistry and Physics, 14(11): 5709–5733
https://doi.org/10.5194/acp-14-5709-2014
36 X Ye, C Li, Z Q Xia, Y L Wang, Y H Bian, X Xiao, S D Liao, J Y Zheng (2018). Characteristics of gaseous pollutants and fine particulates from diesel forklifts. Acta Scientiae Circumstantiae, 38(4): 1392–1403 (in Chinese)
37 M Zavala, J I Huertas, D Prato, A Jazcilevich, A Aguilar, M Balam, C Misra, L T Molina (2017). Real-world emissions of in-use off-road vehicles in Mexico. Journal of the Air & Waste Management Association, 67(9): 958–972
https://doi.org/10.1080/10962247.2017.1310677 pmid: 28379119
38 K Zhang (2006). Micro-scale On-road Vehicle-specific Emissions Measurements and Modeling. Dissertation for the Doctoral Degree. Raleigh: North Carolina State University
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed