Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (4) : 51    https://doi.org/10.1007/s11783-021-1485-4
RESEARCH ARTICLE
Assessment of popular techniques for co-processing municipal solid waste in Chinese cement kilns
Hua Long1,2, Yang Liao2, Changhao Cui1, Meijia Liu1, Zeiwei Liu1, Li Li1, Wenzheng Hu3, Dahai Yan1()
1. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
2. College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
3. Zibo Environmental Pollution Prevention and Control Center, Zibo 255000, China
 Download: PDF(1219 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Municipal solid waste (MSW) was fermented, screened, gasified, then co-processed.

• Co-processing MSW in cement kilns could cause excessive pollutant emissions.

• Bypass flue gas can be disposed of through the main flue system.

• Popular MSW co-processing methods do not affect cement quality.

Cement kiln co-processing techniques have been developed in the past 20 years in China, and more than 60 factories now use fermentation, screening, and gasification pre-treatment techniques to co-process municipal solid waste (MSW). There three complete MSW pre-treatment techniques, co-processing procedures, and environmental risk assessments have been described in few publications. In this study, we assessed the effectiveness of each technique. The results suggested that the pollutant content released by each pre-treatment technology was lower than the emission standard. To reveal the mechanisms of pollutant migration and enrichment, the substances in the kiln and kiln products are investigated. The input of co-processing materials (Co-M) produced by fermentation caused formation of polychlorinated dibenzo-p-dioxins and dibenzofuran (PCDD/Fs) in the bypass flue gas (By-gas) in excess of the regulatory standard. The Co-M input produced by the screening and gasifier technologies caused the total organic carbon (TOC) concentration to exceed the standard. In addition, the NOx, TOC, and PCDD/Fs in the By-gas exceeded the regulatory standard. Raw meal was the primary chlorine and heavy metals input stream, and clinker (CK) and cement kiln dust (CKD) accounted for>90% of the total chlorine output stream. Flue gas and CKD were the primary volatile heavy metal (Hg) output streams. Greater than 70% of the semi-volatile heavy metals (Cd, Pb, Tl and Se) distributed in hot raw meal and bypass cement kiln dust. The low-volatility heavy metals were concentrated in the CK. These results indicated that co-processing techniques used in China still require improvement.

Keywords Cement kiln      Co-processing      Environmental risk assessment      By-pass system     
Corresponding Author(s): Dahai Yan   
Issue Date: 07 September 2021
 Cite this article:   
Hua Long,Yang Liao,Changhao Cui, et al. Assessment of popular techniques for co-processing municipal solid waste in Chinese cement kilns[J]. Front. Environ. Sci. Eng., 2022, 16(4): 51.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-021-1485-4
https://academic.hep.com.cn/fese/EN/Y2022/V16/I4/51
Fig.1  Pre-treatment processes used in plants A, B, and C. D is the clinker production process.
Project A1-Ba A1-Co A2-Co B-Ba B-Co C-Ba C-Co
RM feed rate (t/h) 368.08 358.80 319.40 376.50 372.90 365.00 371.00
Coal feed rate (t/h) 33.13 29.27 26.23 29.40 24.91 30.50 31.00
RDF (MSW) feed rate (t/h) a) 11.54 15.50 10.08 12.90
CK output rate (t/h) 234.46 231.82 208.76 241.30 240.90 228.20 230.10
Flue gas (N m3/h) 4.18 × 105 4.25 × 105 3.23 × 105 4.99 × 105 4.94 × 105 8.04 × 105 7.92 × 105
By-gas (N m3/h) 3.78 × 104 1.18 × 104 1.91 × 104
CKD output rate (t/h) 18.40 17.94 22.80 18.83 18.65 18.25 18.55
By-CKD output rate (t/h) 0.52 0.38 0.10
CK consumption (kwh/t) 31.40 31.34 31.34 62.73 61.59 23.93 24.14
Preprocessing consumption (kwh/t) 33.50 33.50 14.31 32.40
Coal replacement rate (%) 10.61 14.9 13.22 −1.8
RM replacement rate (%) 1.15 1.41
Tab.1  Operating conditions used during baseline and municipal solid waste (MSW) co-processing tests
Project Compositions A1-Ba A1-Co A2-Co B-Ba B-Co C-Ba C-Co Limit
Flue gas O2 (%) 8.10±0.11 8.10±0.12 8.55±0.13 8.90±0.14 8.50±0.15 11.50±0.16 10.90±0.15
CO2 (%) 23.09±0.40 23.85±0.55 24.50±0.34 22.20±0.08 21.90±0.32 16.80±0.67 18.10±0.75
CO (mg/m3) 142.00±0.98 238.00±0.91 5230±0.45 279.00±1.21 1964±10.95 36.00±0.40 54.00±0.45
PM (mg/m3) 0.50±0.01 0.50±0.03 3.90±0.03 31.02±0.55 35.55±0.58 8.40±0.34 23.60±0.28 30
SO2 (mg/m3) 2.60±0.05 2.50±0.07 225.50±0.48 2.72±0.03 2.60±0.03 3.50±0.03 3.30±0.05 200
NOx (mg/m3) 355.00±2.67 358.00±1.02 169.90±2.31 408.00±1.98 331.00±1.45 400.00±0.85 395.00±1.98 400
NH3 (mg/m3) 0.90±0.03 1.20±0.02 1.09±0.01 0.57±0.02 0.62±0.01 0.03±0.01 0.21±0.02 10
HCl (mg/m3) 0.12±0.01 0.30±0.02 0.04±0.01 0.67±0.01 0.92±0.03 0.37±0.03 0.22±0.01 10
HF (mg/m3) ND ND ND 0.04±0.02 0.05±0.01 0.03±0.01 0.03±0.01 1
TOC (mg/m3) 1.74±0.03 2.91±0.02 1.80±0.03 11.5±0.07 118.2±0.98 10.40±0.80 87.00±0.25 10
By-gas O2 (%) 20.60±0.32 20.65±0.45 19.45±0.03
CO2 (%) 0.85±0.02 0.65±0.04 1.97±0.04
CO (mg/m3) 1.50±0.03 51.00±0.35 95.00±0.25
PM (mg/m3) 10.00±0.15 12.70±0.09 3.00±0.03 30
SO2 (mg/m3) 1.50±0.03 51.00±0.95 21.00±0.11 200
NOx (mg/m3) 46.50±0.05 998.00±2.25 1705±2.23 400
NH3 (mg/m3) 4.33±0.04 4.06±0.03 0.35±0.04 10
HCl (mg/m3) 0.03±0.01 8.72±0.07 0.74±0.05 10
HF (mg/m3) 0.05±0.01 1.02±0.03 0.21±0.03 1
TOC (mg/m3) 2.17±0.10 44.34±0.90 79.0±0.65 10
Tab.2  Pollutant concentrations in flue gas and bypass flue gas (O2 concentration 10%)
Project Metal (μg/m3) A1-Ba A1-Co A2-Co B-Ba B-Co C-Ba C-Co Zemba et al. (2011) Yan et al.
(2018)
Flue gas As 0.22±0.04 0.58±0.01 0.10±0.01 0.06±0.01 1.7±0.01 0.12±0.02 0.50±0.03 0.2–4.1 0.17–4.50
Hg 2.10±0.15 2.10±0.17 49.55±0.32 18±0.19 13±0.14 16±0.15 15±0.29 0.2–27 28.60–61.95
Cd ND 0.01 ND ND 0.19±0.02 ND 0.01±0.01 0.1–37 ND–0.04
Pb 0.05±0.03 0.02±0.01 0.34±0.02 0.28±0.03 0.07±0.01 2.05±0.02 2±0.05 0.3–88 ND–2.09
Sn 0.20±0.04 0.10±0.01 0.15±0.02 0.19±0.01 0.04±0.02 0.01±0.01 0.03±0.01
Co 0.17±0.01 0.17±0.02 ND 0.18±0.01 0.18±0.02 0.20±0.01 0.22±0.03 0.1–19 0.03–0.18
Cr 0.34±0.01 0.34±0.04 0.15±0.01 0.50±0.03 0.35±0.01 0.49±0.02 0.43±0.02 0.4–83 6.12–12.38
Cu 0.17±0.02 0.17±0.01 0.10±0.01 0.18±0.02 0.43±0.01 0.63±0.03 0.80±0.05 0.4–37 0.27–1.16
Mn 0.17±0.02 0.17±0.03 0.23±0.01 2±0.08 1±0.02 2.12±0.07 2±0.04 0.1–210 2.16–4.50
Ni 0.03±0.01 0.03±0.02 0.05±0.01 0.03±0.01 0.03±0.01 0.05±0.01 0.03±0.01 0.3–44 0.78–4.23
Sb 0.07±0.01 0.07±0.02 0.01±0.01 0.07±0.01 0.07±0.01 0.08±0.02 0.09±0.01 0.2–30 0.17–8.75
Tl 0.04±0.01 0.04±0.01 0.46±0.04 0.04±0.01 0.04±0.01 0.04±0.02 0.05±0.01 0.12–2.8 0.03–1.06
V 0.03±0.01 0.03±0.01 0.02±0.02 0.04±0.02 0.04±0.01 0.04±0.02 0.04±0.01 0.2–30 0.17–8.75
Zn 0.58±0.01 0.36±0.09 0.45±0.04 8±0.24 0.26±0.01 8.2±0.09 7±0.08 0.01–329.63 1.30–5.99
Mo 0.34 0.34 0.01 0.26 0.35 0.32 0.43 0.184–0.25
Be ND ND ND ND ND ND ND ND
Tl+ Cd+ Pb+ As 0.32±0.03 0.65±0.03 0.91±0.02 0.38±0.02 2±0.03 2.21±0.04 3±0.01 1000 1.07–5.34
Be+ Cr+ Sn+ Sb+ Cu+
Co+ Mn+ Ni+ V
1.20±0.02 1.10±0.04 0.71±0.06 3±0.07 2±0.04 3.58±0.04 3±0.01 500 13.05–22.90
By-gas
As 0.10±0.01 1±0.04 6±0.09
Hg 2.76±0.04 40±0.41 18±0.21
Cd 0.09±0.01 0.05±0.01 3±0.03
Pb 6.4±0.05 0.14±0.01 49±0.23
Sn 0.15±0.01 1.3±0.03 1±0.12
Co 0.02±0.01 3.4±0.04 1±0.05
Cr 1.08±0.01 16±0.12 26±0.43
Cu 0.37±0.01 3.4±0.06 21±0.05
Mn 1.43±0.01 7±0.09 21±0.12
Ni 0.42±0.04 0.5±0.01 9±0.12
Sb 0.01±0.01 1.4±0.12 0.57±0.01
Tl 0.01±0.01 0.8±0.02 0.36±0.01
V 0.02±0.01 0.7±0.02 0.28±0.01
Zn 0.45±0.08 5.1±0.01 89±0.01
Mo 0.01±0.01 6.8±0.12 21±0.09
Be ND ND 0.02±0.01
Tl+ Cd+ Pb+ As 6.89±0.01 2±0.02 58±0.11
Be+ Cr+ Sn+ Sb+ Cu+
Co+ Mn+ Ni+ V
3.48±0.11 34±0.45 80±0.33
Tab.3  Heavy metal concentrations in the flue gas and bypass flue gas (By-gas) (O2 concentration 10%)
Fig.2  (a) Polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs) concentrations in the flue gas and bypass flue gas (By) samples. (b) PCDD/Fs contents of the cement kiln dust (CKD) and bypass cement kiln dust (By) samples. A1 means that the bypass system was not used. A2 means that the bypass system was used. Ba means the baseline test. Co means the co-processing test.
Fig.3  Flow chart showing chlorine inputs and outputs for the cement kiln co-processing of municipal solid waste. Co-M indicates the refuse derived fuel (RDF) in plant A; RDF and inert components in plant B; and municipal solid waste in plant C. By-gas means the bypass flue gas. By-CKD means the bypass cement kiln dust.
Fig.4  (a) Chlorine mass inputs and outputs. Chlorine (b) inputs and (c) outputs for the different sources in the different plants. Co-M means refuse-derived fuel (RDF) in plant A; RDF and inert components in plant B; and municipal solid waste in plant C. A1 means that the bypass system was not used; A2 means that the bypass system was used; Ba indicates the baseline test. Co indicates the co-processing test. By-gas means the bypass flue gas. By-CKD means the bypass cement kiln dust.
HM A1-Ba
-OCR
A1-Co
-OCR
A2-Co
-OCR
A2-Co
-ICR
A2-By
-CR
B-Ba
-OCR
B-Ba
-ICR
B-Co
-OCR
B-Co
-ICR
B-By
-CR
C-Ba
-OCR
C-Ba
-ICR
C-Co
-OCR
C-Co
-ICR
C-By
-CR
Be 1.59 0.82 2.86 1.29 2.29 1.01 0.83 0.90 0.90 0.79 1.20 0.67 0.87 0.80 0.63
V 0.86 0.70 2.17 1.27 1.94 1.03 1.20 0.98 1.24 1.21 1.21 1.21 1.26 1.15 1.16
Cr 0.81 0.78 1.42 1.19 1.78 0.85 0.92 0.54 0.79 0.90 1.00 1.30 1.06 1.03 1.30
Mn 0.17 0.71 1.64 1.28 1.75 0.78 1.22 0.82 1.30 0.77 0.82 0.93 1.13 1.05 2.57
Co 1.12 1.02 2.46 1.26 2.07 0.94 1.16 0.93 1.24 0.84 1.19 1.31 1.15 1.28 1.24
Ni 1.56 1.01 1.72 0.91 1.48 0.69 0.74 1.68 1.46 1.15 1.12 1.38 1.19 1.22 1.36
Cu 1.22 1.08 2.85 1.94 8.91 1.06 1.38 1.28 1.61 1.65 1.18 1.40 1.06 1.31 1.73
Zn 1.42 1.90 2.38 1.27 2.74 1.96 0.52 3.52 1.78 1.52 1.18 1.20 1.07 0.99 1.28
Se 1.16 0.92 2.16 6.53 8.89 0.90 6.39 1.13 6.28 24.30 1.19 19.19 1.67 22.58 94.17
Mo 0.90 0.80 2.17 1.43 5.87 0.82 1.28 1.01 1.65 5.77 1.12 1.94 1.24 2.05 3.88
Cd 0.87 1.04 6.58 6.53 93.21 0.85 2.75 0.36 5.95 8.36 1.54 1.76 1.17 1.83 4.24
Sb 2.91 1.04 7.14 1.91 15.36 1.49 0.91 2.07 1.84 1.48 1.25 1.16 1.04 0.74 1.00
Hg 2.00 3.19 3.30 0.00 4.00 3.57 1.45 4.04 0.65 0.28 2.26 0.85 3.96 0.34 1.07
Tl 6.30 5.51 0.07 0.06 0.00 2.70 1.19 3.26 0.21 0.29 14.48 0.31 13.30 0.20 1.33
Pb 1.67 1.20 10.78 6.09 0.40 0.94 2.85 1.11 7.58 16.10 1.65 2.34 1.43 3.12 7.62
Tab.4  Heavy metal outer-circulating ratio (OCR), inner-circulating ratio (ICR), and bypass-circulating ratio (By-CR)
1 Z T Abd Ali, L A Naji, S A A A N Almuktar, A A H Faisal, S N Abed, M Scholz, M Naushad, T Ahamad (2020). Predominant mechanisms for the removal of nickel metal ion from aqueous solution using cement kiln dust. Journal of Water Process Engineering, 33: 101033
https://doi.org/10.1016/j.jwpe.2019.101033
2 R Addink, R H W L Paulus, K Olie (1996). Prevention of polychlorinated dibenzo-p-dioxins/dibenzofurans formation on municipal waste in-cinerator fly ash using nitrogen and sulfur compounds. Environmental Science & Technology, 30(7): 2350–2354
https://doi.org/10.1021/es9508075
3 F Alves (1993). The alternative of incineration. Saneamento Ambienta, 4: 14–18
4 U Arena (2012). Process and technological aspects of municipal solid waste gasification. A review. Waste Management (New York, N.Y.), 32(4): 625–639
https://doi.org/10.1016/j.wasman.2011.09.025 pmid: 22035903
5 D Brown, R Sadiq, K Hewage (2014). An overview of air emission intensities and environmental performance of grey cement manufacturing in Canada. Clean Technologies and Environmental Policy, 16(6): 1119–1131
https://doi.org/10.1007/s10098-014-0714-y
6 Y Cai, X Yang, B Li, G Xiao, S Ding, S Wu (2015). Study on TOC generation and emission during Co-processing of municipal solid waste by cement kiln. China International Cement summit. Beijing: China Cement Association, 87–104 (In Chinese)
7 C Cimpan, A Maul, M Jansen, T Pretz, H Wenzel (2015). Central sorting and recovery of MSW recyclable materials: A review of technological state-of-the-art, cases, practice and implications for materials recycling. Journal of Environmental Management, 156: 181–199
https://doi.org/10.1016/j.jenvman.2015.03.025 pmid: 25845999
8 K A Clavier, B Watts, Y Liu, C C Ferraro, T G Townsend (2019). Risk and performance assessment of cement made using municipal solid waste incinerator bottom ash as a cement kiln feed. Resources, Conservation and Recycling, 146: 270–279
https://doi.org/10.1016/j.resconrec.2019.03.047
9 J A Conesa, L Rey, S Egea, M D Rey (2011). Pollutant formation and emissions from cement kiln stack using a solid recovered fuel from municipal solid waste. Environmental Science & Technology, 45(13): 5878–5884
https://doi.org/10.1021/es200448u pmid: 21627160
10 M C Di Lonardo, M Franzese, G Costa, R Gavasci, F Lombardi (2016). The application of SRF vs. RDF classification and specifications to the material flows of two mechanical-biological treatment plants of Rome: Comparison and implications. Waste Management (New York, N.Y.), 47(Pt B): 195–205
https://doi.org/10.1016/j.wasman.2015.07.018 pmid: 26243051
11 W Fan, T Zhu, Y Sun, D Lv (2014). Effects of gas compositions on NOx reduction by selective non-catalytic reduction with ammonia in a simulated cement precalciner atmosphere. Chemosphere, 113: 182–187
https://doi.org/10.1016/j.chemosphere.2014.05.034 pmid: 25065808
12 N Ferronato, E C Rada, M A Gorritty Portillo, L I Cioca, M Ragazzi, V Torretta (2019). Introduction of the circular economy within developing regions: A comparative analysis of advantages and opportunities for waste valorization. Journal of Environmental Management, 230: 366–378
https://doi.org/10.1016/j.jenvman.2018.09.095 pmid: 30293021
13 J García-Pérez, G López-Abente, D Gómez-Barroso, A Morales-Piga, E Pardo Romaguera, I Tamayo, P Fernández-Navarro, R Ramis (2015). Childhood leukemia and residential proximity to industrial and urban sites. Environmental Research, 140: 542–553
https://doi.org/10.1016/j.envres.2015.05.014 pmid: 26025512
14 A Hasanbeigi, L Price, H Lu, W Lan (2010). Analysis of energy-efficiency opportunities for the cement industry in Shandong Province, China: a case study of 16 cement plants. Energy, 35(8): 3461–3473
https://doi.org/10.1016/j.energy.2010.04.046
15 R Jin, L Yang, M Zheng, Y Xu, C Li, G Liu (2018). Source identification and quantification of chlorinated and brominated polycyclic aromatic hydrocarbons from cement kilns co-processing solid wastes. Environmental Pollution, 242(Pt B): 1346–1352
https://doi.org/10.1016/j.envpol.2018.08.025 pmid: 30125845
16 M Kara (2012). Environmental and economic advantages associated with the use of RDF in cement kilns. Resources, Conservation and Recycling, 68: 21–28
https://doi.org/10.1016/j.resconrec.2012.06.011
17 K H Karstensen (2008). Formation, release and control of dioxins in cement kilns. Chemosphere, 70(4): 543–560
https://doi.org/10.1016/j.chemosphere.2007.06.081 pmid: 17698165
18 K H Karstensen, A M Mubarak, H N Gunadasa, B Wijagunasekara, N Ratnayake, A D Alwis, J Fernando (2010). Test burn with PCB-oil in a local cement kiln in Sri Lanka. Chemosphere, 78(6): 717–723
https://doi.org/10.1016/j.chemosphere.2009.11.025 pmid: 20004933
19 W D Q Lamas, J C F Palau, De J R Camargo (2013). Waste materials co-processing in cement industry: Ecological efficiency of waste reuse. Renewable & Sustainable Energy Reviews, 19: 200–207
https://doi.org/10.1016/j.rser.2012.11.015
20 G Liu, J Zhan, M Zheng, L Li, C Li, X Jiang, M Wang, Y Zhao, R Jin (2015). Field pilot study on emissions, formations and distributions of PCDD/Fs from cement kiln co-processing fly ash from municipal solid waste incinerations. Journal of Hazardous Materials, 299: 471–478
https://doi.org/10.1016/j.jhazmat.2015.07.052 pmid: 26241773
21 M Mian M, X Zeng, A N B Nasry, S M Z F Al-Hamadani (2017). Municipal solid waste management in China: a comparative analysis. Journal of Material Cycles and Waste Management, 19: 1127–1135
https://doi.org/10.1007/s10163-016-0509-9
22 National Bureau of Statistics of China (2019). China Statistical Yearbook 2019. Beijing: National Bureau of Statistics (in Chinese)
23 M Schuhmacher, J L Domingo, J Hagberg, G Lindström (2004). PCDD/F and non-ortho PCB concentrations in adipose tissue of individuals living in the vicinity of a hazardous waste incinerator. Chemosphere, 57(5): 357–364
https://doi.org/10.1016/j.chemosphere.2004.05.033 pmid: 15331262
24 M Schuhmacher, M Nadal, J L Domingo (2009). Environmental monitoring of PCDD/Fs and metals in the vicinity of a cement plant after using sewage sludge as a secondary fuel. Chemosphere, 74(11): 1502–1508
https://doi.org/10.1016/j.chemosphere.2008.11.055 pmid: 19150726
25 P Sharma, P N Sheth, B N Mohapatra (2020). Waste-to-Energy: Issues, Challenges, and Opportunities for RDF Utilization in Indian Cement Industry. In: Proceedings of the 7th International Conference on Advances in Energy Research. Springer Proceedings in Energy. Singapore: Springer Singapore, 891–899
26 X C Sun, Y Xu, Y Q Liu, C X Nai, L Dong, J C Liu, Q F Huang (2019). Evolution of geomembrane degradation and defects in a landfill: Impacts on long-term leachate leakage and groundwater quality. Journal of Cleaner Production, 224: 335–345
https://doi.org/10.1016/j.jclepro.2019.03.200
27 K Sutou, H Harada, N Ueno (1999). Chlorine bypass system for stable kiln operation and the recycling of waste. Roanoke Virginia: IEEE/PCA Cem Ind Tech Conf., 179–193
28 Z Tang, Q Huang, Y Yang (2013). PCDD/Fs in fly ash from waste incineration in China: A need for effective risk management. Environmental Science & Technology, 41: 257–262
pmid: 23701703
29 L A Tokheim, T Gautestad, E P Axelsen, D Bjerketvedt (2001). Energy recovery of wastes: Experience with solid alternative fuels combustion in a precalciner cement kiln. In: Conference proceedings on International Symposium on Incineration and Flue Gas Treatment Technologies, vol. 3. Brussels: USN open archive
30 G Wehenpohl, B Dubach, J P Degre, D Mutz (2006). Guidelines On Co-Processing Waste Materials in Cement Production.Basel: Holcim Group
31 E Wikström, S Ryan, A Touati, M Telfer, D Tabor, B K Gullett (2003). Importance of chlorine speciation on de novo formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Environmental Science & Technology, 37(6): 1108–1113
https://doi.org/10.1021/es026262d pmid: 12680662
32 H Xiao, Q Cheng, M Liu, L Li, Y Ru, D Yan (2020). Industrial disposal processes for treatment of polychlorinated dibenzo-p-dioxins and dibenzofurans in municipal solid waste incineration fly ash. Chemosphere, 243: 125351
https://doi.org/10.1016/j.chemosphere.2019.125351 pmid: 31756654
33 H Xiao, Y Ru, Z Peng, D Yan, L Li, K H Karstensen, N Wang, Q Huang (2018). Destruction and formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during pretreatment and co-processing of municipal solid waste incineration fly ash in a cement kiln. Chemosphere, 210: 779–788
https://doi.org/10.1016/j.chemosphere.2018.07.058 pmid: 30036826
34 Y Xiao, B Zhou (2020). Does the development of delivery industry increase the production of municipal solid waste? An empirical study of China. Resources, Conservation and Recycling, 155: 104577
https://doi.org/10.1016/j.resconrec.2019.104577
35 D Yan, Z Peng, Q Ding, K H Karstensen, C J Engelsen, L Li, Y Ren, C Jiang (2015). Distribution of Hg, As and Se in material and flue gas streams from preheater-precalciner cement kilns and vertical shaft cement kilns in China. Journal of the Air & Waste Management Association, 65(8): 1002–1010
https://doi.org/10.1080/10962247.2015.1051607 pmid: 26037967
36 D Yan, Z Peng, K H Karstensen, Q Ding, K Wang, Z Wang (2014). Destruction of DDT wastes in two preheater/precalciner cement kilns in China. Science of the Total Environment, 476– 477: 250–257
https://doi.org/10.1016/j.scitotenv.2014.01.009 pmid: 24468499
37 D Yan, Z Peng, L Yu, Y Sun, R Yong, K Helge Karstensen (2018). Characterization of heavy metals and PCDD/Fs from water-washing pretreatment and a cement kiln co-processing municipal solid waste incinerator fly ash. Waste Management (New York, N.Y.), 76: 106–116
https://doi.org/10.1016/j.wasman.2018.03.006 pmid: 29573924
38 Y Yang, Q Huang, Z Tang, Q Wang, X Zhu, W Liu (2012). Deca-brominated diphenyl ether destruction and PBDD/F and PCDD/F emissions from coprocessing deca-BDE mixture-contaminated soils in cement kilns. Environmental Science & Technology, 46(24): 13409–13416
https://doi.org/10.1021/es3037274 pmid: 23194181
39 Z Yang, C Wang, J Wang, L Liu, X Ge, Z Zhang (2019). Investigation of formation mechanism of particulate matter in a laboratory-scale simulated cement kiln co-processing municipal sewage sludge. Journal of Cleaner Production, 234: 822–831
https://doi.org/10.1016/j.jclepro.2019.06.280
40 J Yao, Q Kong, Z Qiu, L Chen, D Shen (2019). Patterns of heavy metal immobilization by MSW during the landfill process. Chemical Engineering Journal, 375: 122060
https://doi.org/10.1016/j.cej.2019.122060
41 Y Yin, D Lv, T Zhu, X Li, Y Sun, S Li (2021). Removal and transformation of unconventional air pollutants in flue gas in the cement kiln-end facilities. Chemosphere, 268: 128810
https://doi.org/10.1016/j.chemosphere.2020.128810 pmid: 33160656
42 S Zemba, M Ames, L Green, M J Botelho, D Gossman, I Linkov, J Palma-Oliveira (2011). Emissions of metals and polychlorinated dibenzo(p)dioxins and furans (PCDD/Fs) from Portland cement manufacturing plants: inter-kiln variability and dependence on fuel-types. Science of the Total Environment, 409(20): 4198–4205
https://doi.org/10.1016/j.scitotenv.2011.06.047 pmid: 21835438
43 M X Zhan, J Fu, T Chen, Y Li, J Zhang, X D Li, J H Yan, A Buekens (2016). Effects of bypass system on PCDD/F emission and chlorine circulation in cement kilns. Environmental Science and Pollution Research International, 23(19): 19657–19666
https://doi.org/10.1007/s11356-016-7082-6 pmid: 27394422
44 J Zhang, J Liu, C Li, Y Jin, Y Nie, J Li (2009). Comparison of the fixation effects of heavy metals by cement rotary kiln co-processing and cement based solidification/stabilization. Journal of Hazardous Materials, 165(1–3): 1179–1185
https://doi.org/10.1016/j.jhazmat.2008.10.109 pmid: 19091467
[1] FSE-21061-OF-LH_suppl_1 Download
[1] Bin WANG, Jun HUANG, Shubo DENG, Xiaoling YANG, Gang YU. Addressing the environmental risk of persistent organic pollutants in China[J]. Front Envir Sci Eng, 2012, 6(1): 2-16.
[2] CHANG Miao, PENG Lijuan, WANG Shiwen. Development of environmental management system in China's financial sector[J]. Front.Environ.Sci.Eng., 2008, 2(2): 172-177.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed