Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (7) : 92    https://doi.org/10.1007/s11783-021-1500-9
RESEARCH ARTICLE
Potassium carbonate-based ternary transition temperature mixture (deep eutectic analogues) for CO2 absorption: Characterizations and DFT analysis
Hosein Ghaedi1, Payam Kalhor2, Ming Zhao1(), Peter T. Clough3, Edward J. Anthony3, Paul S. Fennell4
1. School of Environment, Tsinghua University, Beijing 100084, China
2. Department of Chemistry, Tsinghua University, Beijing 100084, China
3. Energy and Power Theme, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
4. Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
 Download: PDF(974 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

•Addition of hindered amine increased thermal stability and viscosity of TTTM.

•Addition of hindered amine improved the CO2 absorption performance of TTTM.

•Good the CO2 absorption of recycled solvents after two regenerations.

•Important role of amine group in CO2 absorption of TTTM confirmed by DFT analysis.

Is it possible to improve CO2 solubility in potassium carbonate (K2CO3)-based transition temperature mixtures (TTMs)? To assess this possibility, a ternary transition-temperature mixture (TTTM) was prepared by using a hindered amine, 2-amino-2-methyl-1,3-propanediol (AMPD). Fourier transform infrared spectroscopy (FT-IR) was employed to detect the functional groups including hydroxyl, amine, carbonate ion, and aliphatic functional groups in the prepared solvents. From thermogravimetric analysis (TGA), it was found that the addition of AMPD to the binary mixture can increase the thermal stability of TTTM. The viscosity findings showed that TTTM has a higher viscosity than TTM while their difference was decreased by increasing temperature. In addition, Eyring’s absolute rate theory was used to compute the activation parameters (ΔG*, ΔH*, and ΔS*). The CO2 solubility in liquids was measured at a temperature of 303.15 K and pressures up to 1.8 MPa. The results disclosed that the CO2 solubility of TTTM was improved by the addition of AMPD. At the pressure of about 1.8 MPa, the CO2 mole fractions of TTM and TTTM were 0.1697 and 0.2022, respectively. To confirm the experimental data, density functional theory (DFT) was employed. From the DFT analysis, it was found that the TTTM+ CO2 system has higher interaction energy (|ΔE |) than the TTM+ CO2 system indicating the higher CO2 affinity of the former system. This study might help scientists to better understand and to improve CO2 solubility in these types of solvents by choosing a suitable amine as HBD and finding the best combination of HBA and HBD.

Keywords Ternary transition-temperature mixture      FT-IR and thermal stability analysis      Viscosity and correlation study      Eyring’s absolute rate theory      CO2 solubility      Density functional theory (DFT).     
Corresponding Author(s): Ming Zhao   
Issue Date: 25 November 2021
 Cite this article:   
Hosein Ghaedi,Payam Kalhor,Ming Zhao, et al. Potassium carbonate-based ternary transition temperature mixture (deep eutectic analogues) for CO2 absorption: Characterizations and DFT analysis[J]. Front. Environ. Sci. Eng., 2022, 16(7): 92.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-021-1500-9
https://academic.hep.com.cn/fese/EN/Y2022/V16/I7/92
Chemical name CAS number Supplier Purity Melting point Purity analysis
Potassium carbonate 584-08-7 Sigma-Aldrich >?99.90 891 °C a Trace metals analysis
2-amino-2methyl-1,3-propanediol 115-69-5 Sigma-Aldrich >?99.00 109–111 °C a Titration with HClO4
Ethylene glycol 107-21-1 R & M Chemicals >?99.50 –13.0 °C a Gas chromatography
Tab.1  Description of materials used for the synthesis of TTM and TTTM.
Solvent HBA HBD Molar ratio Water content
(mass fraction) e
Glass transition, Tg (°C) f
Symbol MTTM/TTTM a Symbol MHBAb Symbol MHBD c HBA HBD
TTM 68.992 K2CO3 138.21 EG 62.07 1 10 0.0060 –121.5
TTTM 72.004 K2CO3 138.21 EG & AMPD 62.07
105.14
1 10:1d 0.0068 –83.3
Tab.2  The details of prepared TTM and TTTM
Fig.1  The spectrum of TTM.
Fig.2  The spectrum of TTTM.
Fig.3  (a) TGA curves for pure components and (b) TGA-DTA curves of prepared solvents from 300 K to 800 K at the heating rate of 10 K/min under Helium atmosphere with a flow rate of 100 mL/min. The black solid and dashed lines represent the TGA and DTA curves of TTM, respectively. The blue solid and dotted lines represent the TGA and DTA curves of TTTM, respectively.
Fig.4  Experimental viscosity (η) of pure EG, TTM, and TTTM at several temperatures. The solid lines show the viscosity data obtained by Eq. (1).
Fig.5  The E values of TTM and TTTM as a function of T obtained from Eq. (2).
T (K) TTM TTTM
293.15 24428.00 25572.34
298.15 24183.33 25277.27
303.15 23938.66 24982.21
308.15 23693.99 24687.14
313.15 23449.32 24392.08
318.15 23204.65 24097.01
323.15 22959.98 23801.95
328.15 22715.31 23506.88
333.15 22470.64 23211.82
Tab.3  The ΔG* (J/mol) values solvents at the studied temperatures
Solvent ΔH* (J/mol) ΔS* (J/(mol?K)) R2
TTM 38773 48.934 0.998
TTTM 42872 59.013 0.999
Tab.4  The ΔH* and ΔS* of solvents
Fresh First recycled Second recycled
PE (MPa) xCO2 PE (MPa) xCO2 PE (MPa) xCO2
TTM
1.794 0.1697 1.805 0.1654 1.815 0.1638
1.604 0.1428 1.613 0.1393 1.625 0.1375
1.324 0.1211 1.319 0.1180 1.331 0.1164
1.080 0.1013 1.092 0.0987 1.101 0.0977
TTTM
1.780 0.2022 1.794 0.1976 1.802 0.1961
1.598 0.1741 1.591 0.1694 1.609 0.1671
1.301 0.1483 1.316 0.1457 1.325 0.1443
1.010 0.1203 0.998 0.1175 1.015 0.1159
Tab.5  CO2 solubility in fresh and recycled TTM and TTM at the temperature of 303.15 K
Fig.6  CO2 solubility in TTTM compared to that in ILs at 303.15 K. Symbols are: (♦) TTTM in this work; (#) [THTDP][NTf2] (Carvalho et al., 2010); (?) [C6mim][BF4] (Shokouhi et al., 2010); () [C6mim][OTf] (Jalili et al., 2010b); ( + ) [C6mim][PF6] (Jalili et al., 2010b); (*) [C8mim][PF6] (Safavi et al., 2013); (?) [C2mim][EtSO4] (Jalili et al., 2010a), and (◊) [C8mim][NTf2] (Jalili et al., 2012).
Solvent T (K) PE (MPa) xCO2 Ref.
DES
Choline chloride /Urea (1:2.5) 313–333 1.06–12.55 0.032–0.203 Li et al., 2008
Choline chloride Ethanol amine (1:6) 298 1.0 0.11 Ali et al., 2014
Choline chloride /Diethanol amine (1:6) 298 1.0 0.0925 Ali et al., 2014
Choline chloride /Triethylene Glycol (1:6) 298 1.0 0.0419 Ali et al., 2014
Choline chloride /Glycerol (1:3) 298 1.0 0.0454 Ali et al., 2014
Methyltriphenylphosphonium Bromide/ Ethanol amine (1:6) 298 1.0 0.1441 Ali et al., 2014
Tetrabutylammonium Bromide/ Diethanol Amin (1:6) 298 1.0 0.0830 Ali et al., 2014
TTM
Choline chloride /Latic acid (1:2) 303–348 0.83–9.38 0.248–0.0995 Francisco et al., 2013
Tetramethylammonium chloride/ Latic acid (1:2) 308 0.8–2.0 0.025–0.059 Zubeir et al., 2014
Tetraethylammoniumchloride/ Latic acid (1:2) 308 0.8–2.0 0.031–0.073 Zubeir et al., 2014
Tetrabutylammonium chloride/ Latic acid (1:2) 308 0.8–2.0 0.053–0.127 Zubeir et al., 2014
K2CO3/EG (1:10): TTM 303 1.080–1.794 0.1013–0.1697 This work
K2CO3/EG/AMPD (1:10:1): TTTM 303 1.010–1.780 0.1203–0.2022 This work
Tab.6  The CO2 solubility comparison between solvents in this work and TTMs/DESs in literature.
Fig.7  Optimized structures of (a) TTM (І), (b) TTM (І)+CO2, (c) TTTM (І), (d) TTTM (І)+CO2 at the B3LYP/6-31+G (d, p) level. Atom color code: (gray) carbon, (light gray) hydrogen, (red) oxygen, (purple) potassium, and (blue) nitrogen.
System E| (kJ/mol)
K2CO3 1507.78
TTM (І) 541.42
TTM (ІІ) 565.05
TTM (І) +CO2 561.93
TTTM (І) 558.82
TTTM (ІІ) 598.60
TTTM (І) +CO2 596.36
Tab.7  Absolute interaction energy (|ΔE|) of systems with or without CO2
1 Q Abbas, L Binder (2010). Synthesis and characterization of choline chloride based binary mixtures. ECS Transactions, 33(7): 49–59
https://doi.org/10.1149/1.3484761
2 E Ali, M K Hadj-Kali, S Mulyono, I Alnashef, A Fakeeha, F Mjalli, A Hayyan (2014). Solubility of CO2 in deep eutectic solvents: Experiments and modelling using the Peng–Robinson equation of state. Chemical Engineering Research & Design, 92(10): 1898–1906
https://doi.org/10.1016/j.cherd.2014.02.004
3 T Altamash, M Atilhan, A Aliyan, R Ullah, G García, S Aparicio (2016). Insights into choline chloride–phenylacetic acid deep eutectic solvent for CO2 absorption. RSC Advances, 6(110): 109201–109210
https://doi.org/10.1039/C6RA22312E
4 T N G Borhani, A Azarpour, V Akbari, S R Wan Alwi, Z A Manan (2015). CO2 capture with potassium carbonate solutions: A state-of-the-art review. International Journal of Greenhouse Gas Control, 41: 142–162
https://doi.org/10.1016/j.ijggc.2015.06.026
5 P J Carvalho, V H Álvarez, I M Marrucho, M Aznar, J A P Coutinho (2010). High carbon dioxide solubilities in trihexyltetradecylphosphonium-based ionic liquids. Journal of Supercritical Fluids, 52(3): 258–265
https://doi.org/10.1016/j.supflu.2010.02.002
6 F Chemat, H Anjum, A M Shariff, P Kumar, T Murugesan (2016). Thermal and physical properties of (Choline chloride+ urea+ l-arginine) deep eutectic solvents. Journal of Molecular Liquids, 218: 301–308
https://doi.org/10.1016/j.molliq.2016.02.062
7 M Francisco, A van den Bruinhorst, L F Zubeir, C J Peters, M C Kroon (2013). A new low transition temperature mixture (LTTM) formed by choline chloride+lactic acid: Characterization as solvent for CO2 capture. Fluid Phase Equilibria, 340: 77–84
https://doi.org/10.1016/j.fluid.2012.12.001
8 G García, M Atilhan, S Aparicio (2015). A theoretical study on mitigation of CO2 through advanced deep eutectic solvents. International Journal of Greenhouse Gas Control, 39: 62–73
https://doi.org/10.1016/j.ijggc.2015.05.004
9 H Ghaedi, M Ayoub, S Sufian, S M Hailegiorgis, G Murshid, S Farrukh, S N Khan (2017a). Experimental and prediction of volumetric properties of aqueous solution of (allyltriphenylPhosphonium bromide—Triethylene glycol) deep eutectic solvents. Thermochimica Acta, 657: 123–133
https://doi.org/10.1016/j.tca.2017.09.025
10 H Ghaedi, M Ayoub, S Sufian, S M Hailegiorgis, G Murshid, S N Khan (2018a). Thermal stability analysis, experimental conductivity and pH of phosphonium-based deep eutectic solvents and their prediction by a new empirical equation. Journal of Chemical Thermodynamics, 116: 50–60
https://doi.org/10.1016/j.jct.2017.08.029
11 H Ghaedi, M Ayoub, S Sufian, B Lal, A M Shariff (2017b). Measurement and correlation of physicochemical properties of phosphonium-based deep eutectic solvents at several temperatures (293.15 K to 343.15 K) for CO2 capture. Journal of Chemical Thermodynamics, 113: 41–51
https://doi.org/10.1016/j.jct.2017.05.020
12 H Ghaedi, M Ayoub, S Sufian, B Lal, Y Uemura (2017c). Thermal stability and FT-IR analysis of Phosphonium-based deep eutectic solvents with different hydrogen bond donors. Journal of Molecular Liquids, 242: 395–403
https://doi.org/10.1016/j.molliq.2017.07.016
13 H Ghaedi, M Ayoub, S Sufian, G Murshid, S Farrukh, A M Shariff (2017d). Investigation of various process parameters on the solubility of carbon dioxide in phosphonium-based deep eutectic solvents and their aqueous mixtures: Experimental and modeling. International Journal of Greenhouse Gas Control, 66: 147–158
https://doi.org/10.1016/j.ijggc.2017.09.020
14 H Ghaedi, M Ayoub, S Sufian, A M Shariff, S M Hailegiorgis, S N Khan (2017e). CO2 capture with the help of Phosphonium-based deep eutectic solvents. Journal of Molecular Liquids, 243: 564–571
https://doi.org/10.1016/j.molliq.2017.08.046
15 H Ghaedi, M Ayoub, S Sufian, A M Shariff, B Lal (2017f). The study on temperature dependence of viscosity and surface tension of several phosphonium-based deep eutectic solvents. Journal of Molecular Liquids, 241: 500–510
https://doi.org/10.1016/j.molliq.2017.06.024
16 H Ghaedi, M Ayoub, S Sufian, A M Shariff, B Lal, C D Wilfred (2018b). Density and refractive index measurements of transition-temperature mixture (deep eutectic analogues) based on potassium carbonate with dual hydrogen bond donors for CO2 capture. Journal of Chemical Thermodynamics, 118: 147–158
https://doi.org/10.1016/j.jct.2017.11.008
17 H Ghaedi, M Ayoub, S Sufian, A M Shariff, G Murshid, S M Hailegiorgis, S N Khan (2017g). Density, excess and limiting properties of (water and deep eutectic solvent) systems at temperatures from 293.15 K to 343.15 K. Journal of Molecular Liquids, 248: 378–390
https://doi.org/10.1016/j.molliq.2017.10.074
18 H Ghaedi, M Zhao, M Ayoub, D Zahraa, A M Shariff, A Inayat (2019). Preparation and characterization of amine (N-methyl diethanolamine)-based transition temperature mixtures (deep eutectic analogues solvents). Journal of Chemical Thermodynamics, 137: 108–118
https://doi.org/10.1016/j.jct.2018.12.014
19 W Guo, Y Hou, S Ren, S Tian, W Wu (2013). Formation of deep eutectic solvents by phenols and choline chloride and their physical properties. Journal of Chemical & Engineering Data, 58(4): 866–872
https://doi.org/10.1021/je300997v
20 M C Gutierrez, D Carriazo, C O Ania, J B Parra, M L Ferrer, F del Monte (2011). Deep eutectic solvents as both precursors and structure directing agents in the synthesis of nitrogen doped hierarchical carbons highly suitable for CO2 capture. Energy & Environmental Science, 4(9): 3535–3544
https://doi.org/10.1039/c1ee01463c
21 M Hayyan, M A Hashim, A Hayyan, M A Al-Saadi, I M AlNashef, M E S Mirghani, O K Saheed (2013). Are deep eutectic solvents benign or toxic? Chemosphere, 90(7): 2193–2195
https://doi.org/10.1016/j.chemosphere.2012.11.004 pmid: 23200570
22 X Hu, M Cai, S Yang, S A Sejas (2018). Air temperature feedback and its contribution to global warming. Science China. Earth Sciences, 61(10): 1491–1509
https://doi.org/10.1007/s11430-017-9226-6
23 A H Jalili, A Mehdizadeh, M Shokouhi, A N Ahmadi, M Hosseini-Jenab, F Fateminassab (2010a). Solubility and diffusion of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate. Journal of Chemical Thermodynamics, 42(10): 1298–1303
https://doi.org/10.1016/j.jct.2010.05.008
24 A H Jalili, A Mehdizadeh, M Shokouhi, H Sakhaeinia, V Taghikhani (2010b). Solubility of CO2 in 1-(2-hydroxyethyl)-3-methylimidazolium ionic liquids with different anions. Journal of Chemical Thermodynamics, 42(6): 787–791
https://doi.org/10.1016/j.jct.2010.02.002
25 A H Jalili, M Safavi, C Ghotbi, A Mehdizadeh, M Hosseini-Jenab, V Taghikhani (2012). Solubility of CO2, H2S, and their mixture in the ionic liquid 1-octyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide.J Phys Chem B, 116(9): 2758–2774
https://doi.org/10.1021/jp2075572 pmid: 22372571
26 W J Jiang, J B Zhang, Y T Zou, H L Peng, K Huang (2020). Manufacturing Acidities of hydrogen-bond donors in deep eutectic solvents for effective and reversible NH3 capture. ACS Sustainable Chemistry & Engineering, 8(35): 13408–13417
https://doi.org/10.1021/acssuschemeng.0c04215
27 P Kalhor, K Ghandi, H Ashraf, Z Yu (2021). The structural properties of a ZnCl2-ethylene glycol binary system and the peculiarities at the eutectic composition. Phys Chem Chem Phys, 23(23): 13136–13147
https://doi.org/10.1039/D1CP00573A pmid: 34075959
28 M F S Khan, J Wu, C Cheng, M Akbar, B Liu, C Liu, J Shen, Y Xin (2020). Insight into fluorescence properties of 14 selected toxic single-ring aromatic compounds in water: Experimental and DFT study. Frontiers of Environmental Science & Engineering, 14(3): 42
29 P Larkin (2011). Infrared and raman spectroscopy: Principles and spectral interpretation. Elsevier, Waltham, USA
30 X Li, M Hou, B Han, X Wang, L Zou (2008). Solubility of CO2 in a choline chloride+ urea eutectic mixture. Journal of Chemical & Engineering Data, 53(2): 548–550
https://doi.org/10.1021/je700638u
31 N López-Salas, M C Gutiérrez, C O Ania, J L G Fierro, M Luisa Ferrer, F d Monte (2014a). Efficient nitrogen-doping and structural control of hierarchical carbons using unconventional precursors in the form of deep eutectic solvents. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2(41): 17387–17399
https://doi.org/10.1039/C4TA03266G
32 N López-Salas, E O Jardim, A Silvestre-Albero, M C Gutiérrez, M L Ferrer, F Rodríguez-Reinoso, J Silvestre-Albero, F del Monte (2014b). Use of eutectic mixtures for preparation of monolithic carbons with CO2-adsorption and gas-separation capabilities. Langmuir, 30(41): 12220–12228
https://doi.org/10.1021/la5034146 pmid: 25255054
33 S A Mat Hussin, P Varanusupakul, S Shahabuddin, B Yih Hui, S Mohamad (2020). Synthesis and characterization of green menthol-based low transition temperature mixture with tunable thermophysical properties as hydrophobic low viscosity solvent. Journal of Molecular Liquids, 308: 113015
https://doi.org/10.1016/j.molliq.2020.113015
34 H G Morrison, C C Sun, S Neervannan (2009). Characterization of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles. International Journal of Pharmaceutics, 378(1–2): 136–139
https://doi.org/10.1016/j.ijpharm.2009.05.039 pmid: 19477257
35 A Nawar, H Ghaedi, M Ali, M Zhao, N Iqbal, R Khan (2019). Recycling waste-derived marble powder for CO2 capture. Process Safety and Environmental Protection, 132: 214–225
https://doi.org/10.1016/j.psep.2019.10.005
36 R K Pachauri, A Reisinger 2007. Climate Change 2007: Synthesis Report. Geneva, Switzerland, p. 104
37 M Safavi, C Ghotbi, V Taghikhani, A H Jalili, A Mehdizadeh (2013). Study of the solubility of CO2, H2S and their mixture in the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate: Experimental and modelling. Journal of Chemical Thermodynamics, 65: 220–232
https://doi.org/10.1016/j.jct.2013.05.038
38 Scripps Institution of Oceanography 2021. Concentration of CO2. (Accessed 24 August 2021).
39 M Shokouhi, M Adibi, A H Jalili, M Hosseini-Jenab, A Mehdizadeh (2010). Solubility and Diffusion of H2S and CO2 in the Ionic Liquid 1-(2-Hydroxyethyl)-3-methylimidazolium Tetrafluoroborate. Journal of Chemical & Engineering Data, 55(4): 1663–1668
https://doi.org/10.1021/je900716q
40 United States Environmental Protection Agency 2014. Global Greenhouse Gas Emissions Data. (Accessed 25 August 2021)
41 M Vranes, S Dozic, V Djeric, S Gadzuric (2012). Physicochemical characterization of 1-butyl-3-methylimidazolium and 1-butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide. Journal of Chemical & Engineering Data, 57(4): 1072–1077
https://doi.org/10.1021/je2010837
42 X Wang, C Song (2020). Carbon capture from flue gas and the atmosphere: A perspective. Frontiers in Energy Research, 8: 560849
https://doi.org/10.3389/fenrg.2020.560849
43 Q Wen, J X Chen, Y L Tang, J Wang, Z Yang (2015). Assessing the toxicity and biodegradability of deep eutectic solvents. Chemosphere, 132: 63–69
https://doi.org/10.1016/j.chemosphere.2015.02.061 pmid: 25800513
44 J Xie, N Yan, F Liu, Z Qu, S Yang, P Liu (2014). CO2 adsorption performance of ZIF-7 and its endurance in flue gas components. Frontiers of Environmental Science & Engineering, 8(2): 162–168
45 G C Xu, J C Ding, R Z Han, J J Dong, Y Ni (2016). Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresource Technology, 203: 364–369
https://doi.org/10.1016/j.biortech.2015.11.002 pmid: 26597485
46 C Yang, P Ma, F Jing, D Tang (2003). Excess molar volumes, viscosities, and heat capacities for the mixtures of ethylene glycol+ water from 273.15 K to 353.15 K. Journal of Chemical & Engineering Data, 48(4): 836–840
https://doi.org/10.1021/je020140j
47 S Yang, X Fan, J Liu, W Zhao, B Hu, Q Lu (2021). Mechanism insight into the formation of H2S from thiophene pyrolysis: A theoretical study. Frontiers of Environmental Science & Engineering, 15(6): 120
48 L F Zubeir, M H M Lacroix, M C Kroon (2014). Low transition temperature mixtures as innovative and sustainable CO2 capture solvents. J Phys Chem B, 118(49): 14429–14441
https://doi.org/10.1021/jp5089004 pmid: 25387124
[1] FSE-21099-OF-GH_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed