Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (10) : 127    https://doi.org/10.1007/s11783-022-1562-3
RESEARCH ARTICLE
Phylogenetic diversity of NO reductases, new tools for nor monitoring, and insights into N2O production in natural and engineered environments
Sung-Geun Woo1,2(), Holly L. Sewell1, Craig S. Criddle1,2
1. Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
2. NSF Engineering Research Center, Re-Inventing the Nation’s Urban Water Infrastructure (ReNUWIt), Stanford University, Stanford, CA 94305, USA
 Download: PDF(5273 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● 548 representative nor genes were collected to create complete phylogenetic trees.

● The distribution of nor and nod genes were detected in 18 different phyla.

● The most conserved amino acids in NOR were located adjacent to the active site.

nor-universal and Clade-specific primers were designed, suggested, and tested.

Nitric oxide reductases (NORs) have a central role in denitrification, detoxification of nitric oxide (NO) in host-pathogen interactions, and NO-mediated cell-cell signaling. In this study, we focus on the phylogeny and detection of qNOR and cNOR genes because of their nucleotide sequence similarity and evolutionary relatedness to cytochrome oxidases, their key role in denitrification, and their abundance in natural, agricultural, and wastewater ecosystems. We also include nitric oxide dismutase (NOD) due to its similarity to qNOR. Using 548 nor sequences from publicly accessible databases and sequenced isolates from N2O-producing bioreactors, we constructed phylogenetic trees for 289 qnor/nod genes and 259 cnorB genes. These trees contain evidence of horizontal gene transfer and gene duplication, with 13.4% of the sequenced strains containing two or more nor genes. By aligning amino acid sequences for qnor + cnor, qnor, and cnor, we identified four highly conserved regions for NOR and NOD, including two highly conserved histidine residues at the active site for qNOR and cNOR. Extending this approach, we identified conserved sequences for: 1) all nor (nor-universal); 2) all qnor (qnor-universal) and all cnor (cnor-universal); 3) qnor of Comamonadaceae; 4) Clade-specific sequences; and 5) nod of Candidatus Methylomirabilis oxyfera. Examples of primer performance were confirmed experimentally.

Keywords N2O      Greenhouse gas      NO reductase      NO dismutase      Primer      Crystal structure     
Corresponding Author(s): Sung-Geun Woo   
Issue Date: 17 March 2022
 Cite this article:   
Sung-Geun Woo,Holly L. Sewell,Craig S. Criddle. Phylogenetic diversity of NO reductases, new tools for nor monitoring, and insights into N2O production in natural and engineered environments[J]. Front. Environ. Sci. Eng., 2022, 16(10): 127.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-022-1562-3
https://academic.hep.com.cn/fese/EN/Y2022/V16/I10/127
Fig.1  Crystal structures of qNOR (left) from Neisseria meningitidis alpha14 (6L1X) and cNOR (right) from Pseudomonas aeruginosa PAO1 (5GUW). The top two panels show profile views of NOR with a top segment located within the periplasmic space and alpha helices spanning the cytoplasmic membrane and extending into the cytoplasm. Primers in this study for qnor and cnor universal (qcU), qnor-universal (qU), and cnor-universal (cU) based on the conserved amino acids are shown in red, green and blue, respectively. The bottom two panels show views looking up into the transmembrane helices from inside the cytoplasm. Roman numerals indicate transmembrane domains.
Fig.2  qnor + cnorC and qnor + cnorB nucleotide sequence alignments. The colored nucleotide positions represent 95% conserved nucleotides across all 548 qnor + cnor sequences (Red: A, Yellow: G, Green: T, Blue: C). α-helices and β-sheets are indicated with blue boxes and orange arrows, respectively. The α4 helix between alignments for cnorC + qnor and cnorB + qnor was omitted, and TM XIV (i.e., TM XII of cNOR) at the end of the sequence are not shown.
Fig.3  qnor and cnor nucleotide sequence alignments. The colored nucleotide positions represent 99% conserved nucleotides across all 289 qnor or 259 cnor sequences (Red: A, Yellow: G, Green: T, Blue: C).
Primer name Primer direction Primer sequence (5'?3') Amino acid number Nucleotide sequence (5'?3') Amino acid type Amino acid (%)
qcU 1F Forward GGNVANGGNDSNTAYBWNGSNCC 1 GGN G 100
2 VAN E 40.3
H 40.1
N 10.0
3 GGN G 100
4 DSN A 75.4
S 15.1
5 TAY Y 95.3
6 BWN F 32.5
Q 18.6
Y 18.1
L 12.0
V 10.4
7 GSN A 78.1
G 20.4
8 CC P 91.8
qcU 1R Reverse CCYTCNACCCANARRTGNAYNAY 1 RTN V 77.6
I 10.9
2 RTN V 80.3
I 19.7
3 CAY H 100
4 YTN L 88.1
5 TGG W 97.6
6 GTN V 99.3
7 GAR E 100
8 GG G 83.2
qcU 2R Reverse RAANCCNMRNAVNCCNGCNCC 1 GGN G 100
2 GCN A 98.4
3 GGN G 97.4
4 BTN V 69.3
L 16.2
5 YKN W 38.1
F 34.3
L 24.3
6 GGN G 100
7 TTY F 87.8
qcU 3R Reverse CCVWWNADNGCNRNRTGNSCRTG 1 CAY H 100
2 GSN G 50.5
A 33.0
3 CAY H 100
4 NYN A 37.8
L 32.7
M 11.3
5 GCN A 94.7
6 HTN F 50.4
L 37.6
M 11.3
7 WWB F 53.5
Y 26.1
M 11.9
8 GG G 97.4
Tab.1  Conserved amino acids and primer sets for qnor + cnor (nor-universal, qcU) designed in this study
Fig.4  Evolutionary relationship of 289 qnor and 259 cnorB using the maximum likelihood method. Four qnor sequences and one cnor sequence (marked with red dots) are from the sequenced genomes of N2O-producing bioreactor isolates. All other sequences were obtained from databases.
Pure strains   Primer sets Results
Comamonadaceae(qnor Clade I)* Comamonas sp. CD01** Alicycliphilus sp. CD02 qU2F (qnor Clade I)qcU1R (nor-universal) * +
qU2F (qnor Clade I)qcU3R (nor-universal) * +
qU2F (qnor Clade I)qSComa1R (family-specific) ** +
Castellaniella sp. CD04(qnor Clade V) qU2F (qnor Clade V) qcU1R (nor-universal) +
qU2F (qnor Clade V)qcU2R (nor-universal) +
qU1R (qnor Clade V)qcU1F (nor-universal) +
Castellaniella sp. CD04(cnor Clade VI) cU2F (cnor Clade VI)qcU1R (nor-universal) +
cU2F (cnor Clade VI)qcU2R (nor-universal) +
cU1R (cnor Clade VI)qcU1F (nor-universal) +
Pseudomonas stutzeri KC(cnor Clade III) cU2F (cnor Clade III)qcU1R (nor-universal) +
cU2F (cnor Clade III)qcU2R (nor-universal) +
cU1R (cnor Clade III)qcU1F (nor-universal) +
Nocardioides daeguensis 2C1-5(Negative Control) qU2F (qnor Clade I)qcU1R (nor-universal)
qU2F (qnor Clade I)qcU2R (nor-universal)
qU2F (qnor Clade I)qcU3R (nor-universal)
cU2F (cnor Clade III)qcU1R (nor-universal)
cU2F (cnor Clade III)qcU2R (nor-universal)
cU1R (cnor Clade III)qcU1F (nor-universal)
Tab.2  Application of newly designed nor-universal (qcU), qnor and cnor Clade-specific (based on qnor-universal (qU) and cnor-universal (cU) primers), and Comamonadaceae-specific (qSComa1R) primer sets to pure strains
1 S Al-Attar , S de Vries . An electrogenic nitric oxide reductase. FEBS Letters, 2015, 589( 16): 2050– 2057
https://doi.org/10.1016/j.febslet.2015.06.033
2 S Andrews ( 2010). FastQC: A quality control tool for high throughput sequence data (Babraham Bioinformatics). Cambridge, England: Babraham Institute
3 D P Arora , S Hossain , Y Xu , E M Boon . Nitric oxide regulation of bacterial biofilms. Biochemistry, 2015, 54( 24): 3717– 3728
https://doi.org/10.1021/bi501476n
4 R K Aziz , D Bartels , A A Best , M DeJongh , T Disz , R A Edwards , K Formsma , S Gerdes , E M Glass , M Kubal , F Meyer , G J Olsen , R Olson , A L Osterman , R A Overbeek , L K McNeil , D Paarmann , T Paczian , B Parrello , G D Pusch , C Reich , R Stevens , O Vassieva , V Vonstein , A Wilke , O Zagnitko . The RAST server: rapid annotations using subsystems technology. BMC Genomics, 2008, 9( 1): 75–
https://doi.org/10.1186/1471-2164-9-75
5 A Bankevich , S Nurk , D Antipov , A A Gurevich , M Dvorkin , A S Kulikov , V M Lesin , S I Nikolenko , S Pham , A D Prjibelski , A V Pyshkin , A V Sirotkin , N Vyahhi , G Tesler , M A Alekseyev , P A Pevzner . SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 2012, 19( 5): 455– 477
https://doi.org/10.1089/cmb.2012.0021
6 M R A Blomberg , P E M Siegbahn . Why is the reduction of NO in cytochrome c dependent nitric oxide reductase (cNOR) not electrogenic? Biochimica et Biophysica Acta (BBA). Bioenergetics, 2013, 1827( 7): 826– 833
https://doi.org/10.1016/j.bbabio.2013.04.005
7 G Braker , J M Tiedje . Nitric oxide reductase (norB) genes from pure cultures and environmental samples. Applied and Environmental Microbiology, 2003, 69( 6): 3476– 3483
https://doi.org/10.1128/AEM.69.6.3476-3483.2003
8 J D Caranto , K M Lancaster . Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114( 31): 8217– 8222
https://doi.org/10.1073/pnas.1704504114
9 K L Casciotti , B B Ward . Phylogenetic analysis of nitric oxide reductase gene homologues from aerobic ammonia-oxidizing bacteria. FEMS Microbiology Ecology, 2005, 52( 2): 197– 205
https://doi.org/10.1016/j.femsec.2004.11.002
10 P S G Chain , V J Denef , K T Konstantinidis , L M Vergez , L Agullo , V L Reyes , L Hauser , M Cordova , L Gomez , M Gonzalez , M Land , V Lao , F Larimer , J J LiPuma , E Mahenthiralingam , S A Malfatti , C J Marx , J J Parnell , A Ramette , P Richardson , M Seeger , D Smith , T Spilker , W J Sul , T V Tsoi , L E Ulrich , I B Zhulin , J M Tiedje . Burkholderia xenovorans LB400 harbors a multi-replicon, 9. 73-Mbp genome shaped for versatility. Proceedings of the National Academy of Sciences, 2006, 103( 42): 15280– 15287
11 Y Cui , S G Woo , J Lee , S Sinha , M S Kang , L Jin , K K Kim , J Park , M Lee , S T Lee . Nocardioides daeguensis sp. nov., a nitrate-reducing bacterium isolated from activated sludge of an industrial wastewater treatment plant. International Journal of Systematic and Evolutionary Microbiology, 2013, 63( 10): 3727– 3732
12 C E Dandie , M N Miller , D L Burton , B J Zebarth , J T Trevors , C Goyer . Nitric oxide reductase-targeted real-time PCR quantification of denitrifier populations in soil. Applied and Environmental Microbiology, 2007, 73( 13): 4250– 4258
https://doi.org/10.1128/AEM.00081-07
13 A L Ducluzeau , B Schoepp-Cothenet , R van Lis , F Baymann , M J Russell , W Nitschke . The evolution of respiratory O2/NO reductases: An out-of-the-phylogenetic-box perspective. Journal of the Royal Society, Interface, 2014, 11( 98): 20140196–
https://doi.org/10.1098/rsif.2014.0196
14 K F Ettwig , M K Butler , D Le Paslier , E Pelletier , S Mangenot , M M M Kuypers , F Schreiber , B E Dutilh , J Zedelius , D de Beer , J Gloerich , H J C T Wessels , T van Alen , F Luesken , M L Wu , K T van de Pas-Schoonen , H J M Op den Camp , E M Janssen-Megens , K J Francoijs , H Stunnenberg , J Weissenbach , M S M Jetten , M Strous . Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 2010, 464( 7288): 543– 548
https://doi.org/10.1038/nature08883
15 K F Ettwig , D R Speth , J Reimann , M L Wu , M S M Jetten , J T Keltjens . Bacterial oxygen production in the dark. Frontiers in Microbiology, 2012, 3 : 273–
https://doi.org/10.3389/fmicb.2012.00273
16 D Fowler , M Coyle , U Skiba , M A Sutton , J N Cape , S Reis , L J Sheppard , A Jenkins , B Grizzetti , J N Galloway , P Vitousek , A Leach , A F Bouwman , K Butterbach-Bahl , F Dentener , D Stevenson , M Amann , M Voss . The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2013, 368 : 20130164–
https://doi.org/org/10.1098/rstb.2013.0164
17 H Gao , M Liu , J S Griffin , L Xu , D Xiang , Y D Scherson , W T Liu , G F Wells . Complete nutrient removal coupled to nitrous oxide production as a bioenergy source by denitrifying polyphosphate-accumulating organisms. Environmental Science & Technology, 2017, 51( 8): 4531– 4540
https://doi.org/10.1021/acs.est.6b04896
18 D R H Graf , C M Jones , S Hallin . Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PLoS One, 2014, 9( 12): e114118–
https://doi.org/10.1371/journal.pone.0114118
19 K Heylen , B Vanparys , D Gevers , L Wittebolle , N Boon , P De Vos . Nitric oxide reductase (norB) gene sequence analysis reveals discrepancies with nitrite reductase (nir) gene phylogeny in cultivated denitrifiers. Environmental Microbiology, 2007, 9( 4): 1072– 1077
https://doi.org/10.1111/j.1462-2920.2006.01194.x
20 S A Higgins , A Welsh , L H Orellana , K T Konstantinidis , J C Chee-Sanford , R A Sanford , C W Schadt , F E Löffler . Detection and diversity of fungal nitric oxide reductase genes (p450nor) in agricultural soils. Applied and Environmental Microbiology, 2016, 82( 10): 2919– 2928
https://doi.org/10.1128/AEM.00243-16
21 H W Hu , D Chen , J Z He . Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiology Reviews, 2015, 39( 5): 729– 749
https://doi.org/10.1093/femsre/fuv021
22 Z Hu , H J C T Wessels , T van Alen , M S M Jetten , B Kartal . Nitric oxide-dependent anaerobic ammonium oxidation. Nature Communications, 2019, 10( 1): 1244–
https://doi.org/10.1038/s41467-019-09268-w
23 S Ishii , Y Song , L Rathnayake , A Tumendelger , H Satoh , S Toyoda , N Yoshida , S Okabe . Identification of key nitrous oxide production pathways in aerobic partial nitrifying granules. Environmental Microbiology, 2014, 16( 10): 3168– 3180
https://doi.org/10.1111/1462-2920.12458
24 M A M Jamali , C C Gopalasingam , R M Johnson , T Tosha , K Muramoto , S P Muench , S V Antonyuk , Y Shiro , S S Hasnain . The active form of quinol-dependent nitric oxide reductase from Neisseria meningitidis is a dimer. IUCrJ, 2020, 7( 3): 404– 415
https://doi.org/10.1107/S2052252520003656
25 M Kahle , Beek J ter , J P Hosler , P Ädelroth . The insertion of the non-heme FeB cofactor into nitric oxide reductase from P. denitrificans depends on norq and nord accessory proteins. Biochimica et Biophysica Acta (BBA). Bioenergetics, 2018, 1859( 10): 1051– 1058
https://doi.org/10.1016/j.bbabio.2018.05.020
26 M Kearse , R Moir , A Wilson , S Stones-Havas , M Cheung , S Sturrock , S Buxton , A Cooper , S Markowitz , C Duran , T Thierer , B Ashton , P Meintjes , A Drummond . Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics (Oxford, England), 2012, 28( 12): 1647– 1649
https://doi.org/10.1093/bioinformatics/bts199
27 S Kumar , G Stecher , K Tamura . MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33( 7): 1870– 1874
https://doi.org/10.1093/molbev/msw054
28 M M M Kuypers , H K Marchant , B Kartal . The microbial nitrogen-cycling network. Nature Reviews. Microbiology, 2018, 16( 5): 263– 276
https://doi.org/10.1038/nrmicro.2018.9
29 A M Lewis , S S Matzdorf , J L Endres , I H Windham , K W Bayles , K C Rice . Examination of the Staphylococcus aureus nitric oxide reductase (saNOR) reveals its contribution to modulating intracellular NO levels and cellular respiration. Molecular Microbiology, 2015, 96( 3): 651– 669
https://doi.org/10.1111/mmi.12962
30 W Li , H Li , Y Liu , P Zheng , J P Shapleigh . Salinity-aided selection of progressive onset denitrifiers as a means of providing nitrite for anammox. Environmental Science & Technology, 2018, 52( 18): 10665– 10672
https://doi.org/10.1021/acs.est.8b02314
31 Y Liu , L Peng , H H Ngo , W Guo , D Wang , Y Pan , J Sun , B J Ni . Evaluation of nitrous oxide emission from sulfide- and sulfur-based autotrophic denitrification processes. Environmental Science & Technology, 2016, 50( 17): 9407– 9415
https://doi.org/10.1021/acs.est.6b02202
32 Y Ma , J L Zilles , A D Kent . An evaluation of primers for detecting denitrifiers via their functional genes. Environmental Microbiology, 2019, 21( 4): 1196– 1210
https://doi.org/10.1111/1462-2920.14555
33 Y Matsumoto , T Tosha , A V Pisliakov , T Hino , H Sugimoto , S Nagano , Y Sugita , Y Shiro . Crystal structure of quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus. Nature Structural & Molecular Biology, 2012, 19( 2): 238– 245
https://doi.org/10.1038/nsmb.2213
34 R L Meyer , R J Zeng , V Giugliano , L L Blackall . Challenges for simultaneous nitrification, denitrification, and phosphorus removal in microbial aggregates: Mass transfer limitation and nitrous oxide production. FEMS Microbiology Ecology, 2005, 52( 3): 329– 338
https://doi.org/10.1016/j.femsec.2004.11.011
35 L L Moroz , A B Kohn . Parallel evolution of nitric oxide signaling: Diversity of synthesis & memory pathways. Frontiers in Bioscience, 2011, 16( 1): 2008– 2051
https://doi.org/10.2741/3837
36 J Myung , Z Wang , T Yuan , P Zhang , J D Van Nostrand , J Zhou , C S Criddle . Production of nitrous oxide from nitrite in stable Type II methanotrophic enrichments. Environmental Science & Technology, 2015, 49( 18): 10969– 10975
https://doi.org/10.1021/acs.est.5b03385
37 Academy of Engineering National ( 2016). Grand Challenges for Engineering: Imperatives, Prospects, and Priorities: Summary of a Forum. Washington, DC: The National Academies Press
38 R Navarro-González , M J Molina , L T Molina . Nitrogen fixation by volcanic lightning in the early Earth. Geophysical Research Letters, 1998, 25( 16): 3123– 3126
https://doi.org/10.1029/98GL02423
39 J R Onley , S Ahsan , R A Sanford , F E Löffler . Denitrification by Anaeromyxobacter dehalogenans, a common soil bacterium lacking the nitrite reductase genes nirS and nirK. Applied and Environmental Microbiology, 2018, 84( 4): e01985– 17
https://doi.org/10.1128/AEM.01985-17
40 R Overbeek , R Olson , G D Pusch , G J Olsen , J J Davis , T Disz , R A Edwards , S Gerdes , B Parrello , M Shukla , V Vonstein , A R Wattam , F Xia , R Stevens . The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research, 2014, 42( D1): D206– D214
https://doi.org/10.1093/nar/gkt1226
41 D H Parks , M Imelfort , C T Skennerton , P Hugenholtz , G W Tyson . CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research, 2015, 25( 7): 1043– 1055
https://doi.org/10.1101/gr.186072.114
42 L Philippot . Denitrifying genes in bacterial and Archaeal genomes. Biochimica et Biophysica Acta (BBA), 2002, 1577( 3): 355– 376
https://doi.org/10.1016/S0167-4781(02)00420-7
43 M M Santana , J M Gonzalez , C Cruz . Nitric oxide accumulation: The evolutionary trigger for phytopathogenesis. Frontiers in Microbiology, 2017, 8 : 1947–
https://doi.org/10.3389/fmicb.2017.01947
44 S Schalk-Otte . Nitrous oxide (N2O) production by Alcaligenes faecalis during feast and famine regimes. Water Research, 2000, 34( 7): 2080– 2088
https://doi.org/10.1016/S0043-1354(99)00374-7
45 Y D Scherson , C S Criddle . Recovery of freshwater from wastewater: Upgrading process configurations to maximize energy recovery and minimize residuals. Environmental Science & Technology, 2014, 48( 15): 8420– 8432
https://doi.org/10.1021/es501701s
46 Y D Scherson , G F Wells , S G Woo , J Lee , J Park , B J Cantwell , C S Criddle . Nitrogen removal with energy recovery through N2O decomposition. Energy & Environmental Science, 2013, 6( 1): 241– 248
https://doi.org/10.1039/C2EE22487A
47 Y D Scherson , S G Woo , C S Criddle . Production of nitrous oxide from anaerobic digester centrate and its use as a co-oxidant of biogas to enhance energy recovery. Environmental Science & Technology, 2014, 48( 10): 5612– 5619
https://doi.org/10.1021/es501009j
48 F Schreiber , P Wunderlin , K M Udert , G F Wells . Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: Biological pathways, chemical reactions, and novel technologies. Frontiers in Microbiology, 2012, 3 : 372–
https://doi.org/10.3389/fmicb.2012.00372
49 T Seemann . Prokka: Rapid prokaryotic genome annotation. Bioinformatics (Oxford, England), 2014, 30( 14): 2068– 2069
https://doi.org/10.1093/bioinformatics/btu153
50 J Shan , R A Sanford , J Chee-Sanford , S K Ooi , F E Löffler , K T Konstantinidis , W H Yang . Beyond denitrification: The role of microbial diversity in controlling nitrous oxide reduction and soil nitrous oxide emissions. Global Change Biology, 2021, 27( 12): 2669– 2683
https://doi.org/10.1111/gcb.15545
51 C L Stanton , C T Reinhard , J F Kasting , N E Ostrom , J A Haslun , T W Lyons , J B Glass . Nitrous oxide from chemodenitrification: A possible missing link in the Proterozoic greenhouse and the evolution of aerobic respiration. Geobiology, 2018, 16( 6): 597– 609
https://doi.org/10.1111/gbi.12311
52 L Y Stein , M A Campbell , M G Klotz . Energy-mediated vs. ammonium-regulated gene expression in the obligate ammonia-oxidizing bacterium, Nitrosococcus oceani. Frontiers in Microbiology, 2013, 4 : 277–
https://doi.org/10.3389/fmicb.2013.00277
53 E Terasaka , K Yamada , P H Wang , K Hosokawa , R Yamagiwa , K Matsumoto , S Ishii , T Mori , K Yagi , H Sawai , H Arai , H Sugimoto , Y Sugita , Y Shiro , T Tosha . Dynamics of nitric oxide controlled by protein complex in bacterial system. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114( 37): 9888– 9893
https://doi.org/10.1073/pnas.1621301114
54 J D Thompson , T J Gibson , F Plewniak , F Jeanmougin , D G Higgins . The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997, 25( 24): 4876– 4882
https://doi.org/10.1093/nar/25.24.4876
55 H Tian , R Xu , J G Canadell , R L Thompson , W Winiwarter , P Suntharalingam , E A Davidson , P Ciais , R B Jackson , G Janssens-Maenhout , M J Prather , P Regnier , N Pan , S Pan , G P Peters , H Shi , F N Tubiello , S Zaehle , F Zhou , A Arneth , G Battaglia , S Berthet , L Bopp , A F Bouwman , E T Buitenhuis , J Chang , M P Chipperfield , S R S Dangal , E Dlugokencky , J W Elkins , B D Eyre , B Fu , B Hall , A Ito , F Joos , P B Krummel , A Landolfi , G G Laruelle , R Lauerwald , W Li , S Lienert , T Maavara , M MacLeod , D B Millet , S Olin , P K Patra , R G Prinn , P A Raymond , D J Ruiz , G R van der Werf , N Vuichard , J Wang , R F Weiss , K C Wells , C Wilson , J Yang , Y Yao . A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 2020, 586( 7828): 248– 256
https://doi.org/10.1038/s41586-020-2780-0
56 I Verbaendert , S Hoefman , P Boeckx , N Boon , P De Vos . Primers for overlooked nirK, qnorB, and nosZ genes of thermophilic Gram-positive denitrifiers. FEMS Microbiology Ecology, 2014, 89( 1): 162– 180
https://doi.org/10.1111/1574-6941.12346
57 Z Wang , S G Woo , Y Yao , H H Cheng , Y J Wu , C S Criddle . Nitrogen removal as nitrous oxide for energy recovery: Increased process stability and high nitrous yields at short hydraulic residence times. Water Research, 2020, 173 : 115575–
https://doi.org/10.1016/j.watres.2020.115575
58 M Weißbach , P Thiel , J E Drewes , K Koch . Nitrogen removal and intentional nitrous oxide production from reject water in a coupled nitritation/nitrous denitritation system under real feed-stream conditions. Bioresource Technology, 2018, 255 : 58– 66
https://doi.org/10.1016/j.biortech.2018.01.080
59 C Woehle , A S Roy , N Glock , T Wein , J Weissenbach , P Rosenstiel , C Hiebenthal , J Michels , J Schönfeld , T Dagan . A novel eukaryotic denitrification pathway in foraminifera. Current Biology, 2018, 28( 16): 2536– 2543.e5
https://doi.org/10.1016/j.cub.2018.06.027
60 B Zhu , L Bradford , S Huang , A Szalay , C Leix , M Weissbach , A Táncsics , J E Drewes , T Lueders . Unexpected diversity and high abundance of putative nitric oxide dismutase (Nod) genes in contaminated aquifers and wastewater treatment systems. Applied and Environmental Microbiology, 2017, 83( 4): e02750– e16
https://doi.org/10.1128/AEM.02750-16
61 B Zhu , J Wang , L M Bradford , K Ettwig , B Hu , T Lueders . Nitric oxide dismutase (nod) genes as a functional marker for the diversity and phylogeny of methane-driven oxygenic denitrifiers. Frontiers in Microbiology, 2019, 10 : 1577–
https://doi.org/10.3389/fmicb.2019.01577
62 Y Zhuge , X Shen , Y Liu , J Shapleigh , W Li . Application of acidic conditions and inert-gas sparging to achieve high-efficiency nitrous oxide recovery during nitrite denitrification. Water Research, 2020, 182 : 116001–
https://doi.org/10.1016/j.watres.2020.116001
63 W Zumft . Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme-copper oxidase type. Journal of Inorganic Biochemistry, 2005, 99( 1): 194– 215
https://doi.org/10.1016/j.jinorgbio.2004.09.024
[1] FSE-22001-OF-WSG_suppl_1 Download
[1] Xiaoqiang Gong, Jinbiao Li, Scott X. Chang, Qian Wu, Zhengfeng An, Chengpeng Huang, Xiangyang Sun, Suyan Li, Hui Wang. Cattle manure biochar and earthworm interactively affected CO2 and N2O emissions in agricultural and forest soils: Observation of a distinct difference[J]. Front. Environ. Sci. Eng., 2022, 16(3): 39-.
[2] Boyi Cheng, Yi Wang, Yumei Hua, Kate V. Heal. The performance of nitrate-reducing Fe(II) oxidation processes under variable initial Fe/N ratios: The fate of nitrogen and iron species[J]. Front. Environ. Sci. Eng., 2021, 15(4): 73-.
[3] Mingxin Dong, Jun Wang, Jinxin Zhu, Jianqiang Wang, Wulin Wang, Meiqing Shen. Effects of Pd doping on N2O formation over Pt/BaO/Al2O3 during NOx storage and reduction process[J]. Front. Environ. Sci. Eng., 2017, 11(6): 11-.
[4] Takashi Osada, Makoto Shiraishi, Teruaki Hasegawa, Hirofumi Kawahara. Methane, Nitrous Oxide and Ammonia generation in full-scale swine wastewater purification facilities[J]. Front. Environ. Sci. Eng., 2017, 11(3): 10-.
[5] Conor Dennehy, Peadar G. Lawlor, Yan Jiang, Gillian E. Gardiner, Sihuang Xie, Long D Nghiem, Xinmin Zhan. Greenhouse gas emissions from different pig manure management techniques: a critical analysis[J]. Front. Environ. Sci. Eng., 2017, 11(3): 11-.
[6] Xiying Hao, Francis J. Larney. Greenhouse gas emissions during co-composting of cattle feedlot manure with construction and demolition (C&D) waste[J]. Front. Environ. Sci. Eng., 2017, 11(3): 15-.
[7] Lei SHEN,Yuntao GUAN,Guangxue WU,Xinmin ZHAN. N2O emission from a sequencing batch reactor for biological N and P removal from wastewater[J]. Front.Environ.Sci.Eng., 2014, 8(5): 776-783.
[8] Youkui GONG,Yongzhen PENG,Shuying WANG,Sai WANG. Production of N2O in two biologic nitrogen removal processes: a comparison between conventional and short-cut Nitrogen removal processes[J]. Front.Environ.Sci.Eng., 2014, 8(4): 589-597.
[9] Jingbo GUO, Fang MA, Yuanyuan QU, Ang LI, Liang WANG. Systematical strategies for wastewater treatment and the generated wastes and greenhouse gases in China[J]. Front Envir Sci Eng, 2012, 6(2): 271-279.
[10] Qi YING. Physical and chemical processes of wintertime secondary nitrate aerosol formation[J]. Front Envir Sci Eng Chin, 2011, 5(3): 348-361.
[11] Juntaek LIM, Seung Gu SHIN, Seungyong LEE, Seokhwan HWANG. Design and use of group-specific primers and probes for real-time quantitative PCR[J]. Front Envir Sci Eng Chin, 2011, 5(1): 28-39.
[12] Hongjing LI, Xiurong CHEN, Yinguang CHEN. Effect of the addition of organic carbon sources on nitrous oxide emission in anaerobic-aerobic (low dissolved oxygen) sequencing batch reactors[J]. Front Envir Sci Eng Chin, 2010, 4(4): 490-499.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed