Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (11) : 138    https://doi.org/10.1007/s11783-022-1572-1
RESEARCH ARTICLE
Separation/degradation behavior and mechanism for cationic/anionic dyes by Ag-functionalized Fe3O4-PDA core-shell adsorbents
Qingqing Li1, Chao Lv1, Xiangwei Xia2, Chao Peng3, Yan Yang4, Feng Guo4, Jianfeng Zhang1,4()
1. College of Mechanics and Materials, Hohai University, Nanjing 210098, China
2. Sinosteel Maanshan General Institute of Mining Research Co., Ltd, Maanshan 243004, China
3. Productivity Centre of Jiangsu Province, Nanjing 210042, China
4. Engineering Research Center on Utilization of Alternative Water Resources, Nanjing 210000, China
 Download: PDF(12181 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● PDA-Fe3O4-Ag was made by hydrothermal and oxidation self-polymerization method.

● PDA-Fe3O4-Ag had great magnetic separation performance.

● PDA-Fe3O4-Ag had good adsorption and degradation performance for ionic dyes.

● PDA-Fe3O4-Ag showed NR and MO degradation potential of 91.2% and 87.5%, respectively.

High-performance adsorbents have been well-studied for the removal of organic dye pollutants to promote environment remediation. In this study, an Ag nanoparticle-functionalized Fe3O4-PDA nanocomposite adsorbent (PDA-Fe3O4-Ag) was synthesized, and the adsorption/separation performance of commonly used cationic and anionic organic dyes by the PDA-Fe3O4-Ag adsorbent were assessed. Overall, PDA-Fe3O4-Ag exhibited a significantly higher adsorption capacity for cationic dyes compared to anionic dyes, the highest of which was more than 110.0 mg/g (methylene blue (MB)), which was much higher than not only the adsorption capacities of the anionic dyes in this study but also other dye adsorption capacities reported in the literature. The dye adsorption kinetics data fitted well to both the pseudo second-order kinetics model and the Langmuir isotherm model, suggesting a monolayer-chemisorption-dominated adsorption mode. Thermodynamics analysis indicated that the adsorption process was both endothermic and spontaneous. Furthermore, the PDA-Fe3O4-Ag adsorbent achieved high photodegradation removal rates of the dyes, especially neutral red (NR) and methyl orange (MO), which were 91.2% and 87.5%, respectively. With the addition of PDA-Fe3O4-Ag, the degradation rate constants of NR and MO increased from 0.08 × 10−2 and 0 min−1 to 2.11 × 10−2 and 1.73 × 10−2 min−1, respectively. The high adsorption and photocatalytic degradation performance of the PDA-Fe3O4-Ag adsorbent make it an excellent candidate for removing cationic and anionic dyes from the industrial effluents.

Keywords PDA      Fe3O4      Magnetic adsorbent      Cationic dyes      Anionic dyes     
Corresponding Author(s): Jianfeng Zhang   
Issue Date: 23 May 2022
 Cite this article:   
Qingqing Li,Chao Lv,Xiangwei Xia, et al. Separation/degradation behavior and mechanism for cationic/anionic dyes by Ag-functionalized Fe3O4-PDA core-shell adsorbents[J]. Front. Environ. Sci. Eng., 2022, 16(11): 138.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-022-1572-1
https://academic.hep.com.cn/fese/EN/Y2022/V16/I11/138
Fig.1  Illustration for the fabrication of PDA-Fe3O4-Ag nanomaterials by hydrothermal method and oxidation self-polymerization (a) the fabrication of Fe3O4 nanoparticles; (b,c) the fabrication of PDA -Fe3O4-Ag.
Fig.2  Microstructural morphology of PDA-Fe3O4-Ag: (a) SEM image; (b) HRTEM images, (c) EDS mapping.
Fig.3  Effect of contact time on adsorption capacity of different dyes by PDA-Fe3O4-Ag. Experimental conditions: Initial dye (MB, JGB, MG, RhB, NR, CR, MO) = 100 mg/L; adsorbents dosage = 0.5 g/L; temperature = 25±1 °C.
Dyes Pseudo-second-order model Experimental qe (mg/g)
k2 (g/mg/min) qe (mg/g) R2
MB 0.000259 117 0.9990 115
JGB 0.000148 106 0.9962 102
MG 0.000172 89.1 0.9962 86.0
RhB 0.000193 76.5 0.9965 74.0
NR 0.000322 39.9 0.9916 38.0
CR 0.000609 29.2 0.9941 29.0
MO 0.000802 19.3 0.9939 19.0
Tab.1  Quasi-secondary kinetic parameters of PDA-Fe3O4-Ag for dyes adsorption at 298 K
Dyes Intra-particle diffusion model
First stage Second stage
ki,1 (mg/g/min0.5) R12 ki,2 (mg/g/min0.5) R22
MB 19.3 0.9899 1.62 0.9334
JGB 12.7 0.9833 2.19 0.9680
MG 7.70 0.9706 1.96 0.9436
RhB 7.35 0.9555 1.50 0.9247
NR 4.62 0.9949 0.889 0.9736
CR 4.24 0.9752 0.491 0.9755
MO 1.72 0.9485 0.418 0.9555
Tab.2  Intra-particle diffusion kinetic of PDA-Fe3O4-Ag for dyes adsorption at 298 K
Dyes T (K) Langmuir constants Freundlich constants
KL (L/mg) qmax (mg/g) R2 1/n KF (L/g) R2
MB 298 0.00298 156 0.9932 0.910 3.94 0.9860
313 0.00392 191 0.9888 1.00 5.00 0.9748
333 0.00691 212 0.9901 0.967 9.82 0.9358
JGB 298 0.0124 128 0.9907 0.755 5.00 0.9961
313 0.00117 109 0.9815 0.997 3.90 0.9381
333 0.00262 159 0.9997 1.08 4.11 0.9715
MG 298 0.00678 79.1 0.9947 0.735 3.94 0.9826
313 0.00923 126 0.9995 0.751 4.72 0.9868
333 0.0123 134 0.9993 0.706 6.58 0.9736
RhB 298 0.00118 75.4 0.9971 0.723 3.30 0.9958
313 0.0195 118 0.9991 0.617 5.82 0.9976
333 0.0110 127 0.9999 0.590 7.34 0.9974
NR 298 0.00788 44.3 0.9558 0.463 4.14 0.9559
313 0.00142 56.8 0.9965 0.525 4.38 0.9966
333 0.0171 88.9 0.9985 0.509 6.33 0.9982
CR 298 0.00201 22.3 0.9519 0.644 1.58 0.9520
313 0.00355 28.3 0.9997 0.390 7.72 0.9974
333 0.00531 41.1 0.9973 0.460 4.74 0.9874
MO 298 0.000860 19.0 0.9873 0.955 0.239 0.9602
313 0.00284 21.3 0.9817 0.718 0.893 0.9149
333 0.0101 37.1 0.9999 0.648 1.53 0.9882
Tab.3  Isothermal parameters of PDA-Fe3O4-Ag for different dyes adsorption
Fig.4  Photocatalytic degradation behavior and kinetics of dyes; (a, b) blank; (c, d) PDA-Fe3O4-Ag. Experimental conditions: Initial dye (MB, JGB, MG, RhB, NR, CR, MO) = 5 mg/L; catalysts dosage = 1.25 g/L; temperature=25±1 °C.
Fig.5  (a) FTIR spectra of MB, PDA-Fe3O4-Ag before and after MB adsorption in aqueous solution; (b) XPS spectra of PDA-Fe3O4-Ag before and after MB adsorption; (c–h) Peak-fitting XPS spectra in the C 1s, N 1s, and O 1s regions of PDA-Fe3O4-Ag and PDA-Fe3O4-Ag-MB: C 1s of (c) PDA-Fe3O4-Ag and (d) PDA-Fe3O4-Ag-MB; N 1s of (e) PDA-Fe3O4-Ag and (f) PDA-Fe3O4-Ag-MB; O 1s of (g) PDA-Fe3O4-Ag and (h) PDA-Fe3O4-Ag-MB.
Fig.6  Schematic treatment mechanism illustration for dyes by PDA-Fe3O4-Ag: (a) Adsorption; (b) Catalytic degradation.
1 M M Chong , L S Tan , N W C Jusoh , M Goto , S Sethupathi . (2021). Potential of functionalised cellulose from oil palm biomass as nitrogen and phosphorus-based nutrient adsorbent: A review. Journal of Oil Palm Research, 33( 3): 387– 399
https://doi.org/10.21894/jopr.2020.0088
2 C Dalal , A K Garg , S K Sonkar . (2021). Carboxylic acid-terminated carbon nanoflakes for selective adsorption of water-soluble cationic dyes. ACS Applied Nano Materials, 4( 5): 5611– 5620
https://doi.org/10.1021/acsanm.1c01148
3 T H Do V T Nguyen N Q Dung M N Chu D V Kiet T T K Ngan L V (2021) Tan. Study on methylene blue adsorption of activated carbon made from Moringa oleifera leaf . Hyderabad, INDIA. Materials Today: Proceedings, 38: 3405– 3413
4 J Feng , Y Cai , X Wang , X Wang , M Zhu , M Fang , Z Liu , X Tan . (2021a). Designed core-shell Fe3O4@polydopamine for effectively removing uranium(VI) from aqueous solution. Bulletin of Environmental Contamination and Toxicology, 106( 1): 165– 174
https://doi.org/10.1007/s00128-020-02883-0
5 M L Feng , S C Yu , P C Wu , Z W Wang , S H Liu , J W Fu . (2021b). Rapid, high-efficient and selective removal of cationic dyes from wastewater using hollow polydopamine microcapsules: Isotherm, kinetics, thermodynamics and mechanism. Applied Surface Science, 542 : 148633
https://doi.org/10.1016/j.apsusc.2020.148633
6 J Fu , Q Xin , X Wu , Z Chen , Y Yan , S Liu , M Wang , Q Xu . (2016). Selective adsorption and separation of organic dyes from aqueous solution on polydopamine microspheres. Journal of Colloid and Interface Science, 461 : 292– 304
https://doi.org/10.1016/j.jcis.2015.09.017
7 J W Fu , Z H Chen , M H Wang , S J Liu , J H Zhang , J N Zhang , R P Han , Q Xu . (2015). Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): Kinetics, isotherm, thermodynamics and mechanism analysis. Chemical Engineering Journal, 259 : 53– 61
https://doi.org/10.1016/j.cej.2014.07.101
8 M Hinojosa-Reyes , R Camposeco-Solis , F Ruiz , V Rodríguez-González , E Moctezuma . (2019). Promotional effect of metal doping on nanostructured TiO2 during the photocatalytic degradation of 4-chlorophenol and naproxen sodium as pollutants. Materials Science in Semiconductor Processing, 100 : 130– 139
https://doi.org/10.1016/j.mssp.2019.04.050
9 Y X Huo , H Wu , Z L Wang , F Wang , Y L Liu , Y Y Feng , Y N Zhao . (2018). Preparation of core/shell nanocomposite adsorbents based on amine polymer-modified magnetic materials for the efficient adsorption of anionic dyes. Colloids and Surfaces−Physicochemical and Engineering Aspects, 549 : 174– 183
10 J Jang , S H Song , H Kim , J Moon , H Ahn , K I Jo , J Bang , H Kim , J Koo . (2021). Janus graphene oxide sheets with Fe3O4 nanoparticles and polydopamine as anodes for lithium-ion batteries. ACS Applied Materials & Interfaces, 13( 12): 14786– 14795
https://doi.org/10.1021/acsami.1c02892
11 H Kaur , R Kumar , A Kumar , V Krishnan , R R Koner . (2019). Trifunctional metal-organic platform for environmental remediation: Structural features with peripheral hydroxyl groups facilitate adsorption, degradation and reduction processes. Dalton Transactions, 48( 3): 915– 927
https://doi.org/10.1039/C8DT04180F
12 J W Lee , S R Choi , J H Heo . (2021). Simultaneous stabilization and functionalization of gold nanoparticles via biomolecule conjugation: Progress and perspectives. ACS Applied Materials & Interfaces, 13( 36): 42311– 42328
https://doi.org/10.1021/acsami.1c10436
13 J L Liu W C Qian J Z Guo Y Shen B Li ( 2021a). Selective removal of anionic and cationic dyes by magnetic Fe3O4-loaded amine-modified hydrochar . Bioresource Technology, 320(Pt A): 124374
pmid: 33176234
14 J Y Liu Q Huang J Li T Wu G P Zeng C Z Yang ( 2021b). Research progress on the treatment technologies of industrial printing and dyeing wastewater. Technology of Water Treatment, 47( 3): 1− 6 (in Chinese)
15 X Liu , W Y Zhang , L Q Mao , Y Yin , L C Hu . (2021c). Synthesis of FeOCl-MoS2 with excellent adsorption performance for methyl orange. Journal of Materials Science, 56( 11): 6704– 6718
https://doi.org/10.1007/s10853-020-05715-y
16 Y Y Lu , H Zhu , W J Wang , B G Li , S P Zhu . (2017). Collectable and recyclable mussel-inspired poly(ionic liquid)-based sorbents for ultrafast water treatment. ACS Sustainable Chemistry & Engineering, 5( 4): 2829– 2835
https://doi.org/10.1021/acssuschemeng.7b00150
17 C Lv J Zhang G Li H Xi M Ge T Goto ( 2020). Facile fabrication of self-assembled lamellar PANI-GO-Fe3O4 hybrid nanocomposites with enhanced adsorption capacities and easy recyclicity towards ionic dyes . Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 585: 124147
18 J Ma , L Chen , Y Liu , T Xu , H Ji , J Duan , F Sun , W Liu . (2021). Oxygen defective titanate nanotubes induced by iron deposition for enhanced peroxymonosulfate activation and acetaminophen degradation: Mechanisms, water chemistry effects, and theoretical calculation. Journal of Hazardous Materials, 418 : 126180
https://doi.org/10.1016/j.jhazmat.2021.126180
19 K S Ranjith , P Manivel , R T Rajendrakumar , T Uyar . (2017). Multifunctional ZnO nanorod-reduced graphene oxide hybrids nanocomposites for effective water remediation: Effective sunlight driven degradation of organic dyes and rapid heavy metal adsorption. Chemical Engineering Journal, 325 : 588– 600
https://doi.org/10.1016/j.cej.2017.05.105
20 C R (2017) Ren. Preparation of magnetic nanocomposites for adsorption of heavy metal ions. Dissertation for the Doctoral Degree. Hangzhou: Zhejiang University (in Chinese)
21 A Riaz , C M Zhou , J J Xu , Z L Hong . (2020). Photocatalytic performance of MWCNTs/TiO2 nanocomposites: conventional vs. microwave-assisted synthesis. Integrated Ferroelectrics, 211( 1): 175– 183
https://doi.org/10.1080/10584587.2017.1336916
22 V Rogé , C Guignard , G Lamblin , F Laporte , I Fechete , F Garin , A Dinia , D Lenoble . (2018). Photocatalytic degradation behavior of multiple xenobiotics using MOCVD synthesized ZnO nanowires. Catalysis Today, 306 : 215– 222
https://doi.org/10.1016/j.cattod.2017.05.088
23 J Saleem , U B Shahid , M Hijab , H Mackey , G McKay . (2019). Production and applications of activated carbons as adsorbents from olive stones. Biomass Conversion and Biorefinery, 9( 4): 775– 802
https://doi.org/10.1007/s13399-019-00473-7
24 A Saxena , S Gupta . (2020). Bioefficacies of microbes for mitigation of azo dyes in textile industry effluent: A review. BioResources, 15( 4): 9858– 9881
https://doi.org/10.15376/biores.15.4.Saxena
25 L Saya , D Gautam , V Malik , W R Singh , S Hooda . (2021). Natural polysaccharide based graphene oxide nanocomposites for removal of dyes from wastewater: A review. Journal of Chemical & Engineering Data, 66( 1): 11– 37
https://doi.org/10.1021/acs.jced.0c00743
26 M Singh , D Vaya , R Kumar , B K Das . (2021a). Role of EDTA capped cobalt oxide nanomaterial in photocatalytic degradation of dyes. Journal of the Serbian Chemical Society, 86( 3): 327– 340
https://doi.org/10.2298/JSC200711074S
27 S Singh , D Kapoor , S Khasnabis , J Singh , P C Ramamurthy . (2021b). Mechanism and kinetics of adsorption and removal of heavy metals from wastewater using nanomaterials. Environmental Chemistry Letters, 19( 3): 2351– 2381
https://doi.org/10.1007/s10311-021-01196-w
28 E T Wahyuni , D Rendo , S Suherman . (2021). Removal of methylene blue dye in water by using recoverable natural zeolite/Fe3O4 adsorbent. Global NEST Journal, 23( 1): 119– 126
29 Y H Wang , Z W Wang , S M Wang , Z M Chen , J F Chen , Y Chen , J W Fu . (2019). Magnetic poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) nanotubes modified with glacial acetic acid for removing methylene blue: Adsorption performance and mechanism. European Polymer Journal, 120 : 109198
https://doi.org/10.1016/j.eurpolymj.2019.08.025
30 C Xiong , S J Cao , Y Wang , X J Wang , S R Long , G Zhang , J Yang . (2019). Surface modification of polyarylene sulfide sulfone membrane by coating with polydopamine. Journal of Coatings Technology and Research, 16( 3): 643– 650
https://doi.org/10.1007/s11998-018-00172-4
31 S Xue , C Wu , S Pu , Y Hou , T Tong , G Yang , Z Qin , Z Wang , J Bao . (2019). Direct Z-Scheme charge transfer in heterostructured MoO3/g-C3N4 photocatalysts and the generation of active radicals in photocatalytic dye degradations. Environmental Pollution, 250 : 338– 345
https://doi.org/10.1016/j.envpol.2019.04.010
32 T T Yang , D Xie , Z H Li , H W Zhu . (2017). Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance. Materials Science and Engineering R Reports, 115 : 1– 37
https://doi.org/10.1016/j.mser.2017.02.001
33 M Zaman , M Kim , G Nakhla , A Singh , F Yang . (2019). Enhanced biological phosphorus removal using thermal alkaline hydrolyzed municipal wastewater biosolids. Journal of Environmental Sciences-China, 86 : 164– 174
https://doi.org/10.1016/j.jes.2019.05.025
34 S Zhan C Li H Tian C Ma H Liu J Luo M (2019) Li. Synthesis, characterization and dye removal behavior of core-shell-shell Fe3O4/Ag/polyoxometalates ternary nanocomposites . Nanomaterials (Basel, Switzerland), 9(9): 1255
pmid: 31487818
35 Q R Zhang , Q G Yang , P Phanlavong , Y X Li , Z K Wang , T F Jiao , Q M Peng . (2017). Highly efficient lead(II) sequestration using size-controllable polydopamine microspheres with superior application capability and rapid capture. ACS Sustainable Chemistry & Engineering, 5( 5): 4161– 4170
https://doi.org/10.1021/acssuschemeng.7b00129
36 Z Y Zhang H M Wang Y Y Chen Z B Bing Y G (2020) Yang. Regeneration treatment application in waste transformer oil with a new type of silicon aluminum mineral adsorbent. Chemical Industry and Engineering Progress, 39(10): 4297− 4304 (in Chinese)
37 Y Zhou , T Li , J Shen , Y Meng , S Tong , Q Guan , X Xia . (2021). Core-shell structured magnetic carboxymethyl cellulose-based hydrogel nanosorbents for effective adsorption of methylene blue from aqueous solution. Polymers, 13( 18): 3054
https://doi.org/10.3390/polym13183054
[1] FSE-22011-OF-LQQ_suppl_1 Download
[1] Canhui Deng, Qing Tang, Zemao Yang, Zhigang Dai, Chaohua Cheng, Ying Xu, Xiaojun Chen, Xiaoyu Zhang, Jianguang Su. Effects of iron oxide nanoparticles on phenotype and metabolite changes in hemp clones (Cannabis sativa L.)[J]. Front. Environ. Sci. Eng., 2022, 16(10): 134-.
[2] Shejiang Liu, Hongyang Yang, Yongkui Yang, Yupeng Guo, Yun Qi. Novel coprecipitation–oxidation method for recovering iron from steel waste pickling liquor[J]. Front. Environ. Sci. Eng., 2017, 11(1): 9-.
[3] Amin Mohammad Mehdi,Bina Bijan,Majd Amir Masoud Samani,Pourzamani Hamidreza. Benzene removal by nano magnetic particles under continuous condition from aqueous solutions[J]. Front.Environ.Sci.Eng., 2014, 8(3): 345-356.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed