Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (12) : 151    https://doi.org/10.1007/s11783-022-1586-8
RESEARCH ARTICLE
Cadmium removal mechanistic comparison of three Fe-based nanomaterials: Water-chemistry and roles of Fe dissolution
Xiaoge Huang1, Lihao Chen1, Ziqi Ma1, Kenneth C. Carroll2, Xiao Zhao1(), Zailin Huo1
1. College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
2. Plant & Environmental Science Department, New Mexico State University, Las Cruces, NM 88003, USA
 Download: PDF(17714 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● nZVI, S-nZVI, and nFeS were systematically compared for Cd(II) removal.

● Cd(II) removal by nZVI involved coprecipitation, complexation, and reduction.

● The predominant reaction for Cd(II) removal by S-nZVI and nFeS was replacement.

● A simple pseudo-second-order kinetic can adequately fit Fe(II) dissolution.

Cadmium (Cd) is a common toxic heavy metal in the environment. Taking Cd(II) as a target contaminant, we systematically compared the performances of three Fe-based nanomaterials (nano zero valent iron, nZVI; sulfidated nZVI, S-nZVI; and nano FeS, nFeS) for Cd immobilization under anaerobic conditions. Effects of nanomaterials doses, initial pH, co-existing ions, and humic acid (HA) were examined. Under identical conditions, at varied doses or initial pH, Cd(II) removal by three materials followed the order of S-nZVI > nFeS > nZVI. At pH 6, the Cd(II) removal within 24 hours for S-nZVI, nFeS, and nZVI (dose of 20 mg/L) were 93.50%, 89.12% and 4.10%, respectively. The fast initial reaction rate of nZVI did not lead to a high removal capacity. The Cd removal was slightly impacted or even improved with co-existing ions (at 50 mg/L or 200 mg/L) or HA (at 2 mg/L or 20 mg/L). Characterization results revealed that nZVI immobilized Cd through coprecipitation, surface complexation, and reduction, whereas the mechanisms for sulfidated materials involved replacement, coprecipitation, and surface complexation, with replacement as the predominant reaction. A strong linear correlation between Cd(II) removal and Fe(II) dissolution was observed, and we proposed a novel pseudo-second-order kinetic model to simulate Fe(II) dissolution.

Keywords Nano zero valent iron      Sulfided zero valent iron      FeS      Cd(II) immobilization      Fe dissolution     
Corresponding Author(s): Xiao Zhao   
Issue Date: 09 June 2022
 Cite this article:   
Xiaoge Huang,Lihao Chen,Ziqi Ma, et al. Cadmium removal mechanistic comparison of three Fe-based nanomaterials: Water-chemistry and roles of Fe dissolution[J]. Front. Environ. Sci. Eng., 2022, 16(12): 151.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-022-1586-8
https://academic.hep.com.cn/fese/EN/Y2022/V16/I12/151
Fig.1  Effect of doses of three Fe-based nanomaterials (10, 20, and 50 mg/L) on Cd(II) removal efficiency: (a) removal of aqueous Cd and final pH (pHe) values; (b) Fe dissolution; and (c) redox potential (ORP) values (Experimental conditions: initial Cd(II) = 10 mg/L, t = 24 h, initial pH = 6.0. Data plotted as mean of duplicates and the error bars (calculated as standard deviation) indicate data reproducibility).
Fig.2  Effect of pH on Cd(II) removal kinetics by three Fe-based nanomaterials, (a) nZVI, (b) S-nZVI, and (c) nFeS (Experimental conditions: initial Cd(II) = 10 mg/L, material dose = 20 mg/L).
Fig.3  Effect of pH on Cd(II) removal by three Fe-based nanomaterials. (a) changes of pH after the reaction equilibrium (arrowed from pH0 to pHe); (b) Fe dissolution; and (c) ORP values (Experimental conditions: initial Cd(II) = 10 mg/L, material dose = 20 mg/L, t = 24 h, initial pH0 = 4, 6, or 8).
Fig.4  Effect of co-existing ions on Cd(II) removal by three Fe-based nanomaterials: (a) nZVI, (b) S-nZVI, (c) nFeS (Experimental conditions: initial Cd(II) = 10 mg/L, initial pH = 6.0, material dose = 20 mg/L, t = 24 h, the introduced ions = 0, 50, or 200 mg/L).
Fig.5  Effect of HA (expressed as TOC) concentration on Cd(II) removal by three Fe-based nanomaterials (Experimental conditions: initial Cd(II) = 10 mg/L, initial pH = 6.0, material dose = 20 mg/L, t = 24 h).
Fig.6  XRD analysis results for Fe-nanomaterials before (labelled with superscript b) and after (labelled with superscript a) reaction with Cd.
Fig.7  Spectra results for Fe 2p for (a) nZVI, (b) S-nZVI, and (c) nFeS.
Fig.8  XPS spectra results for S 2p for (a) S-nZVI and (b) nFeS.
Fig.9  Illustrations for the mechanism comparison schemes of (a) nZVI, (b) S-nZVI, and (c) nFeS.
Fig.10  Comprehensive comparison of the performance of Cd removal by nZVI, S-nZVI, and nFeS (Experimental conditions: initial Cd(II) = 10 mg/L, initial pH = 6.0, material dose = 20 mg/L, t = 24 h).
Fig.11  Correlation between dissolved Fe(II) and (a) the removed Cd(II) at designed time intervals within 24 h; (b) the removed Cd(II) at various pH at 24 h, (c) the removed Cd(II) with different materials dosage at 24 h; and (d) the pseudo-second-order rate constants for Fe(II) dissolution and Cd(II) removal within 24 h at different pH values.
1 M Abdel Salam , N Y Owija , S Kosa . (2021). Removal of the toxic cadmium ions from aqueous solutions by zero-valent iron nanoparticles. International Journal of Environmental Science and Technology, 18( 8): 2391– 2404
https://doi.org/10.1007/s13762-020-02990-9
2 X Bi , X Pan , S Zhou . (2013). Soil security is alarming in China’s main grain producing areas. Environmental Science & Technology, 47( 14): 7593– 7594
https://doi.org/10.1021/es402545j
3 H K Boparai , M Joseph , D M O’Carroll . (2013). Cadmium (Cd2+) removal by nano zerovalent iron: Surface analysis, effects of solution chemistry and surface complexation modeling. Environmental Science and Pollution Research International, 20( 9): 6210– 6221
https://doi.org/10.1007/s11356-013-1651-8
4 M Brigante G Zanini M (2009) Avena. Effect of pH, anions and cations on the dissolution kinetics of humic acid particles. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 347(1−3): 180− 186
5 Z Cai , X Zhao , J Duan , D Zhao , Z Dang , Z Lin . (2020). Remediation of soil and groundwater contaminated with organic chemicals using stabilized nanoparticles: Lessons from the past two decades. Frontiers of Environmental Science & Engineering, 14( 5): 84
https://doi.org/10.1007/s11783-020-1263-8
6 A P Davis , V Bhatnagar . (1995). Adsorption of cadmium and humic acid onto hematite. Chemosphere, 30( 2): 243– 256
https://doi.org/10.1016/0045-6535(94)00387-A
7 D Dong , Y M Nelson , L W Lion , M L Shuler , W C Ghiorse . (2000). Adsorption of Pb and Cd onto metal oxides and organic material in natural surface coatings as determined by selective extractions: New evidence for the importance of Mn and Fe oxides. Water Research, 34( 2): 427– 436
https://doi.org/10.1016/S0043-1354(99)00185-2
8 H Dong , C Zhang , J Deng , Z Jiang , L Zhang , Y Cheng , K Hou , L Tang , G Zeng . (2018). Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution. Water Research, 135 : 1– 10
https://doi.org/10.1016/j.watres.2018.02.017
9 J Du , J Bao , C Lu , D Werner . (2016). Reductive sequestration of chromate by hierarchical FeS@Fe0 particles. Water Research, 102 : 73– 81
https://doi.org/10.1016/j.watres.2016.06.009
10 J Duan , H Ji , X Zhao , S Tian , X Liu , W Liu , D Zhao . (2020). Immobilization of U(VI) by stabilized iron sulfide nanoparticles: Water chemistry effects, mechanisms, and long-term stability. Chemical Engineering Journal, 393 : 124692
https://doi.org/10.1016/j.cej.2020.124692
11 D Fan , Y Lan , P G Tratnyek , R L Johnson , J Filip , D M O’Carroll , Garcia A Nunez , A Agrawal . (2017). Sulfidation of iron-based materials: A review of processes and implications for water treatment and remediation. Environmental Science & Technology, 51( 22): 13070– 13085
https://doi.org/10.1021/acs.est.7b04177
12 R Fu , N Mu , X Guo , Z Xu , D Bi . (2015). Removal of decabromodiphenyl ether (BDE-209) by sepiolite-supported nanoscale zerovalent iron. Frontiers of Environmental Science & Engineering, 9( 5): 867– 878
https://doi.org/10.1007/s11783-015-0800-3
13 Y Gong , L Gai , J Tang , J Fu , Q Wang , E Y Zeng . (2017). Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles. Science of the Total Environment, 595 : 743– 751
https://doi.org/10.1016/j.scitotenv.2017.03.282
14 F He , Z Li , S Shi , W Xu , H Sheng , Y Gu , Y Jiang , B Xi . (2018). Dechlorination of excess trichloroethene by bimetallic and sulfidated nanoscale zero-valent iron. Environmental Science & Technology, 52( 15): 8627– 8637
https://doi.org/10.1021/acs.est.8b01735
15 F He , D Zhao . (2007). Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environmental Science & Technology, 41( 17): 6216– 6221
https://doi.org/10.1021/es0705543
16 F He , D Zhao , J Liu , C B Roberts . (2007). Stabilization of Fe−Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial & Engineering Chemistry Research, 46( 1): 29– 34
https://doi.org/10.1021/ie0610896
17 C Hou , J Zhao , Y Zhang , Y Qian , J Chen , M Yang , J Du , T Chen , B Huang , X Zhou . (2022). Enhanced simultaneous removal of cadmium, lead, and acetochlor in hyporheic zones with calcium peroxide coupled with zero-valent iron: Mechanisms and application. Chemical Engineering Journal, 427 : 130900
https://doi.org/10.1016/j.cej.2021.130900
18 J Huang , W Yin , P Li , H Bu , S Lv , Z Fang , M Yan , J Wu . (2020). Nitrate mediated biotic zero valent iron corrosion for enhanced Cd(II) removal. Science of the Total Environment, 744 : 140715
https://doi.org/10.1016/j.scitotenv.2020.140715
19 P Huang , Z Ye , W Xie , Q Chen , J Li , Z Xu , M Yao . (2013). Rapid magnetic removal of aqueous heavy metals and their relevant mechanisms using nanoscale zero valent iron (nZVI) particles. Water Research, 47( 12): 4050– 4058
https://doi.org/10.1016/j.watres.2013.01.054
20 S P Hyun , B A Kim , S Son , K D Kwon , E Kim , K F Hayes . (2021). Cadmium(II) removal by mackinawite under anoxic conditions. ACS Earth & Space Chemistry, 5( 6): 1306– 1315
https://doi.org/10.1021/acsearthspacechem.0c00276
21 H Y Jeong , Y S Han , S W Park , K F Hayes . (2010). Aerobic oxidation of mackinawite (FeS) and its environmental implication for arsenic mobilization. Geochimica et Cosmochimica Acta, 74( 11): 3182– 3198
https://doi.org/10.1016/j.gca.2010.03.012
22 E J Kim , K Murugesan , J H Kim , P G Tratnyek , Y S Chang . (2013). Remediation of trichloroethylene by FeS-coated iron nanoparticles in simulated and real groundwater: Effects of water chemistry. Industrial & Engineering Chemistry Research, 52( 27): 9343– 9350
https://doi.org/10.1021/ie400165a
23 H Lee , H J Lee , H E Kim , J Kweon , B D Lee , C Lee . (2014). Oxidant production from corrosion of nano- and microparticulate zero-valent iron in the presence of oxygen: a comparative study. Journal of Hazardous Materials, 265 : 201– 207
https://doi.org/10.1016/j.jhazmat.2013.11.066
24 J Li , H Qin , X Guan . (2015). Premagnetization for enhancing the reactivity of multiple zerovalent iron samples toward various contaminants. Environmental Science & Technology, 49( 24): 14401– 14408
https://doi.org/10.1021/acs.est.5b04215
25 X Q Li , W X Zhang . (2007). Sequestration of metal cations with zerovalent iron nanoparticles–A study with high resolution X-ray photoelectron spectroscopy (HR-XPS). Journal of Physical Chemistry C, 111( 19): 6939– 6946
https://doi.org/10.1021/jp0702189
26 J Li , X Zhang , Y Sun , L Liang , B Pan , W Zhang , X Guan . (2017). Advances in sulfidation of zerovalent iron for water decontamination. Environmental Science & Technology, 51( 23): 13533– 13544
https://doi.org/10.1021/acs.est.7b02695
27 Y H Li , S Wang , Z Luan , J Ding , C Xu , D Wu . (2003). Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon, 41( 5): 1057– 1062
https://doi.org/10.1016/S0008-6223(02)00440-2
28 L Liang , W Li , Y Li , W Zhou , J Chen . (2021a). Removal of EDTA-chelated CdII by sulfidated nanoscale zero-valent iron: Removal mechanisms and influencing factors. Separation and Purification Technology, 276 : 119332
https://doi.org/10.1016/j.seppur.2021.119332
29 L Liang X Li Y Guo Z Lin X Su B Liu ( 2021b). The removal of heavy metal cations by sulfidated nanoscale zero-valent iron (S-nZVI): The reaction mechanisms and the role of sulfur. Journal of Hazardous Materials, 404(Pt A): 124057
pmid: 33022528
30 L Liang , X Li , Z Lin , C Tian , Y Guo . (2020). The removal of Cd by sulfidated nanoscale zero-valent iron: the structural, chemical bonding evolution and the reaction kinetics. Chemical Engineering Journal, 382 : 122933
https://doi.org/10.1016/j.cej.2019.122933
31 L Liang , W Yang , X Guan , J Li , Z Xu , J Wu , Y Huang , X Zhang . (2013). Kinetics and mechanisms of pH-dependent selenite removal by zero valent iron. Water Research, 47( 15): 5846– 5855
https://doi.org/10.1016/j.watres.2013.07.011
32 L Ling , X Huang , M Li , W X Zhang . (2017). Mapping the reactions in a single zero-valent iron nanoparticle. Environmental Science & Technology, 51( 24): 14293– 14300
https://doi.org/10.1021/acs.est.7b02233
33 B Liu , K Hu , Z Jiang , F Qu , X Su . (2011). A 50-year sedimentary record of heavy metals and their chemical speciations in the Shuangtaizi River estuary (China): implications for pollution and biodegradation. Frontiers of Environmental Science & Engineering in China, 5( 3): 435– 444
https://doi.org/10.1007/s11783-011-0352-0
34 D Lv , X Zhou , J Zhou , Y Liu , Y Li , K Yang , Z Lou , S A Baig , D Wu , X Xu . (2018). Design and characterization of sulfide-modified nanoscale zerovalent iron for cadmium(II) removal from aqueous solutions. Applied Surface Science, 442 : 114– 123
https://doi.org/10.1016/j.apsusc.2018.02.085
35 D Ma , H Gao . (2014). Reuse of heavy metal-accumulating Cynondon dactylon in remediation of water contaminated by heavy metals. Frontiers of Environmental Science & Engineering, 8( 6): 952– 959
https://doi.org/10.1007/s11783-013-0619-8
36 J A Mielczarski , G M Atenas , E Mielczarski . (2005). Role of iron surface oxidation layers in decomposition of azo-dye water pollutants in weak acidic solutions. Applied Catalysis B: Environmental, 56( 4): 289– 303
https://doi.org/10.1016/j.apcatb.2004.09.017
37 Y Min , M Akbulut , K Kristiansen , Y Golan , J Israelachvili . (2008). The role of interparticle and external forces in nanoparticle assembly. Nature Materials, 7( 7): 527– 538
https://doi.org/10.1038/nmat2206
38 S Mustafa , D Misbahud , Y H Sammad , M I Zaman , K Sadullah . (2010). Sorption mechanism of cadmium from aqueous solution on iron sulphide. Chinese Journal of Chemistry, 28( 7): 1153– 1158
https://doi.org/10.1002/cjoc.201090200
39 M Naushad , T Ahamad , Z A Alothman , M A Shar , N S Alhokbany , S M Alshehri . (2015). Synthesis, characterization and application of curcumin formaldehyde resin for the removal of Cd2+ from wastewater: kinetics, isotherms and thermodynamic studies. Journal of Industrial and Engineering Chemistry, 29 : 78– 86
https://doi.org/10.1016/j.jiec.2015.03.019
40 A Neumann M Sander T B Hofstetter ( 2011). Chapter 17: Redox Properties of Structural Fe in Smectite Clay Minerals. In: Tratnyek P, Grundl T, Haderlein S, editors. Aquatic Redox Chemistry. San Francisco: American Chemical Society, 361– 379
41 T Phenrat , N Saleh , K Sirk , R D Tilton , G V Lowry . (2007). Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology, 41( 1): 284– 290
https://doi.org/10.1021/es061349a
42 J T Qiao , T X Liu , X Q Wang , F B Li , Y H Lv , J H Cui , X D Zeng , Y Z Yuan , C P Liu . (2018). Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils. Chemosphere, 195 : 260– 271
https://doi.org/10.1016/j.chemosphere.2017.12.081
43 S R Rajajayavel , S Ghoshal . (2015). Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron. Water Research, 78 : 144– 153
https://doi.org/10.1016/j.watres.2015.04.009
44 B E Reed , M R Matsumoto . (1993). Modeling cadmium adsorption by activated carbon using the Langmuir and Freundlich isotherm expressions. Separation Science and Technology, 28( 13-14): 2179– 2195
https://doi.org/10.1080/01496399308016742
45 Y Su , A S Adeleye , Y Huang , X Sun , C Dai , X Zhou , Y Zhang , A A Keller . (2014). Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles. Water Research, 63 : 102– 111
https://doi.org/10.1016/j.watres.2014.06.008
46 Y Su , A S Adeleye , A A Keller , Y Huang , C Dai , X Zhou , Y Zhang . (2015). Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal. Water Research, 74 : 47– 57
https://doi.org/10.1016/j.watres.2015.02.004
47 Y Sun , J Li , T Huang , X Guan . (2016). The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: A review. Water Research, 100 : 277– 295
https://doi.org/10.1016/j.watres.2016.05.031
48 Y Sun , Z Lou , J Yu , X Zhou , D Lv , J Zhou , S A Baig , X Xu . (2017). Immobilization of mercury (II) from aqueous solution using Al2O3-supported nanoscale FeS. Chemical Engineering Journal, 323 : 483– 491
https://doi.org/10.1016/j.cej.2017.04.095
49 A K Thakur , G M Nisola , L A Limjuco , K J Parohinog , R E C Torrejos , V K Shahi , W J Chung . (2017). Polyethylenimine-modified mesoporous silica adsorbent for simultaneous removal of Cd(II) and Ni(II) from aqueous solution. Journal of Industrial and Engineering Chemistry, 49 : 133– 144
https://doi.org/10.1016/j.jiec.2017.01.019
50 S Tian , Y Gong , H Ji , J Duan , D Zhao . (2020). Efficient removal and long-term sequestration of cadmium from aqueous solution using ferrous sulfide nanoparticles: Performance, mechanisms, and long-term stability. Science of the Total Environment, 704 : 135402
https://doi.org/10.1016/j.scitotenv.2019.135402
51 M Touomo-Wouafo , J Donkeng-Dazie , B D Btatkeu-K , J B Tchatchueng , C Noubactep , J Ludvík . (2018). Role of pre-corrosion of Fe0 on its efficiency in remediation systems: An electrochemical study. Chemosphere, 209 : 617– 622
https://doi.org/10.1016/j.chemosphere.2018.06.080
52 D Turcio-Ortega , D Fan , P G Tratnyek , E J Kim , Y S Chang . (2012). Reactivity of Fe/FeS nanoparticles: electrolyte composition effects on corrosion electrochemistry. Environmental Science & Technology, 46( 22): 12484– 12492
https://doi.org/10.1021/es303422w
53 Q Wang S Wang M Liu ( 2004). Safety evaluation on pollution of xiang river valley in hunan province. Zhongguo Jishui Paishui, 20: 104- 106 (in Chinese)
54 WHO ( 2004). Background document for development of WHO guidelines for drinking-water quality and guidelines for safe recreational water environments. Geneva: World Health Organisation
55 L Wu J C Yu X Z Fu ( 2006). Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation . Journal of Molecular Catalysis, A-Chemical, 244( 1– 2): 1– 2
56 Y Xie , D M Cwiertny . (2012). Influence of anionic cosolutes and pH on nanoscale zerovalent iron longevity: Time scales and mechanisms of reactivity loss toward 1,1,1,2-tetrachloroethane and Cr(VI). Environmental Science & Technology, 46( 15): 8365– 8373
https://doi.org/10.1021/es301753u
57 H Xu , Y Sun , J Li , F Li , X Guan . (2016). Aging of zerovalent iron in synthetic groundwater: X-ray photoelectron spectroscopy depth profiling characterization and depassivation with uniform magnetic field. Environmental Science & Technology, 50( 15): 8214– 8222
https://doi.org/10.1021/acs.est.6b01763
58 T Yamashita , P Hayes . (2008). Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science, 254( 8): 2441– 2449
https://doi.org/10.1016/j.apsusc.2007.09.063
59 C Zhang , Y Li , T J Wang , Y Jiang , H Wang . (2016a). Adsorption of drinking water fluoride on a micron-sized magnetic Fe3O4@Fe-Ti composite adsorbent. Applied Surface Science, 363 : 507– 515
https://doi.org/10.1016/j.apsusc.2015.12.071
60 Q Zhang , W Guo , X Yue , Z Liu , X Li . (2016b). Degradation of rhodamine B using FeS-coated zero-valent iron nanoparticles in the presence of dissolved oxygen. Environmental Progress & Sustainable Energy, 35( 6): 1673– 1678
https://doi.org/10.1002/ep.12412
61 Y Zhang , Y Li , C Dai , X Zhou , W Zhang . (2014). Sequestration of Cd(II) with nanoscale zero-valent iron (nZVI): Characterization and test in a two-stage system. Chemical Engineering Journal, 244 : 218– 226
https://doi.org/10.1016/j.cej.2014.01.061
62 X Zhao , W Liu , Z Cai , B Han , T Qian , D Zhao . (2016). An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Research, 100 : 245– 266
https://doi.org/10.1016/j.watres.2016.05.019
[1] FSE-22028-OF-HXG_suppl_1 Download
[1] Yanfei Wang, Xiaona Zheng, Guangxue Wu, Yuntao Guan. Removal of ammonium and nitrate through Anammox and FeS-driven autotrophic denitrification[J]. Front. Environ. Sci. Eng., 2023, 17(6): 74-.
[2] Heidelore Fiedler, Mohammad Sadia, Thomas Krauss, Abeer Baabish, Leo W.Y. Yeung. Perfluoroalkane acids in human milk under the global monitoring plan of the Stockholm Convention on Persistent Organic Pollutants (2008–2019)[J]. Front. Environ. Sci. Eng., 2022, 16(10): 132-.
[3] Rongrong Zhang, Daohao Li, Jin Sun, Yuqian Cui, Yuanyuan Sun. In situ synthesis of FeS/Carbon fibers for the effective removal of Cr(VI) in aqueous solution[J]. Front. Environ. Sci. Eng., 2020, 14(4): 68-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed