Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (2) : 26    https://doi.org/10.1007/s11783-023-1626-z
REVIEW ARTICLE
Catalytic reduction of water pollutants: knowledge gaps, lessons learned, and new opportunities
Jinyong Liu(), Jinyu Gao()
Department of Chemical & Environmental Engineering, University of California-Riverside, Riverside, CA 92521, USA
 Download: PDF(4801 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Advances, challenges, and opportunities for catalytic water pollutant reduction.

● Cases of Pd-based catalysts for nitrate, chlorate, and perchlorate reduction.

● New functionalities developed by screening and design of catalytic metal sites.

● Facile catalyst preparation approaches for convenient catalyst optimization.

● Rational design and non-decorative effort are essential for future work.

In this paper, we discuss the previous advances, current challenges, and future opportunities for the research of catalytic reduction of water pollutants. We present five case studies on the development of palladium-based catalysts for nitrate, chlorate, and perchlorate reduction with hydrogen gas under ambient conditions. We emphasize the realization of new functionalities through the screening and design of catalytic metal sites, including (i) platinum group metal (PGM) nanoparticles, (ii) the secondary metals for improving the reaction rate and product selectivity of nitrate reduction, (iii) oxygen-atom-transfer metal oxides for chlorate and perchlorate reduction, and (iv) ligand-enhanced coordination complexes for substantial activity enhancement. We also highlight the facile catalyst preparation approach that brought significant convenience to catalyst optimization. Based on our own studies, we then discuss directions of the catalyst research effort that are not immediately necessary or desirable, including (1) systematic study on the downstream aspects of under-developed catalysts, (2) random integration with hot concepts without a clear rationale, and (3) excessive and decorative experiments. We further address some general concerns regarding using H2 and PGMs in the catalytic system. Finally, we recommend future catalyst development in both “fundamental” and “applied” aspects. The purpose of this perspective is to remove major misconceptions about reductive catalysis research and bring back significant innovations for both scientific advancements and engineering applications to benefit environmental protection.

Keywords Molybdenum      Rhenium      Rhodium      Ruthenium      Catalyst Support      Bromate     
Corresponding Author(s): Jinyong Liu   
Issue Date: 03 November 2022
 Cite this article:   
Jinyong Liu,Jinyu Gao. Catalytic reduction of water pollutants: knowledge gaps, lessons learned, and new opportunities[J]. Front. Environ. Sci. Eng., 2023, 17(2): 26.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1626-z
https://academic.hep.com.cn/fese/EN/Y2023/V17/I2/26
Fig.1  Representative pollutants reported to be degraded by reductive catalysis.
Fig.2  Major catalysts for nitrate reduction.
Fig.3  Major catalysts for bromate, chlorate, and perchlorate reduction.
Fig.4  Catalytic systems for perchlorate reduction and the proposed or determined structures of organic ligand-coordinated ReV and MoIV metal sites on the carbon surface.
Fig.5  Examples of robustness tests of the [(NH2)2bpy]MoOx−Pd/C catalyst: continuous treatment of highly concentrated ClO4; long-term exposure to H2; and Pd/C reuse after the deactivation of Mo species. The data have been reported by Ren et al. (2022) and shown here with modified displays.
Fig.6  Facile preparation of Pd/C catalysts and the scanning transmission electron microscopy (STEM) imagings of 5 wt% Pd/C and 0.5 wt% Pd/C. The two images are reproduced from Gao et al. (2021) with permission. Note that some large Pd particles are present with the expected small ones. This is a common phenomenon (but often not shown in literature for a “good size control”) and similar to the commercial Pd/C catalyst (Fig. 7).
Fig.7  Facile preparation of the [(NH2)2bpy]MoOx−Pd/C catalyst and STEM−energy dispersive X-ray (EDX) elemental mapping of a ~10 μm sized catalyst particle. Note that the Pd particles shown here in a commercial 5 wt% Pd/C have a wide size distribution. But this Pd/C showed very similar catalytic performance as the 5 wt% Pd/C prepared by the all-in-situ method in Fig. 6.
  
1 M M Abu-Omar, J H Espenson. (1995). Facile abstraction of successive oxygen atoms from perchlorate ions by methylrhenium dioxide. Inorganic Chemistry, 34(25): 6239–6240
https://doi.org/10.1021/ic00129a005
2 M M Abu-Omar, L D McPherson, J Arias, V M Béreau. (2000). Clean and efficient catalytic reduction of perchlorate. Angewandte Chemie International Edition in English, 39(23): 4310–4313
https://doi.org/10.1002/1521-3773(20001201)39:23<4310::AID-ANIE4310>3.0.CO;2-D pmid: 29711910
3 T E Barder, S L Buchwald. (2007a). Insights into amine binding to biaryl phosphine palladium oxidative addition complexes and reductive elimination from biaryl phosphine arylpalladium amido complexes via density functional theory. Journal of the American Chemical Society, 129(39): 12003–12010
https://doi.org/10.1021/ja073747z pmid: 17850080
4 T E Barder, S L Buchwald. (2007b). Rationale behind the resistance of dialkylbiaryl phosphines toward oxidation by molecular oxygen. Journal of the American Chemical Society, 129(16): 5096–5101
https://doi.org/10.1021/ja0683180 pmid: 17388595
5 R Baumgartner, K McNeill. (2012). Hydrodefluorination and hydrogenation of fluorobenzene under mild aqueous conditions. Environmental Science & Technology, 46(18): 10199–10205
https://doi.org/10.1021/es302188f pmid: 22871102
6 R Baumgartner, G K Stieger, K McNeill. (2013). Complete hydrodehalogenation of polyfluorinated and other polyhalogenated benzenes under mild catalytic conditions. Environmental Science & Technology, 47(12): 6545–6553
https://doi.org/10.1021/es401183v pmid: 23663092
7 A BeckerV KochM SellH SchindlerG Neuenfeldt (1998). Method of removing chlorate and bromate compounds from water by catalytic reduction. European Patent EP0779880B1
8 J L Cerrillo, C W Lopes, F Rey, A E Palomares. (2021). The Influence of the support nature and the metal precursor in the activity of Pd-based catalysts for the bromate reduction reaction. ChemCatChem, 13(4): 1230–1238
https://doi.org/10.1002/cctc.202001797
9 B P Chaplin, M Reinhard, W F Schneider, C Schüth, J R Shapley, T J Strathmann, C J Werth. (2012). Critical review of Pd-based catalytic treatment of priority contaminants in water. Environmental Science & Technology, 46(7): 3655–3670
https://doi.org/10.1021/es204087q pmid: 22369144
10 C Chen, K Li, C Li, T Sun, J Jia. (2019). Combination of Pd–Cu catalysis and electrolytic H2 evolution for selective nitrate reduction using protonated polypyrrole as a cathode. Environmental Science & Technology, 53(23): 13868–13877
https://doi.org/10.1021/acs.est.9b04447 pmid: 31577132
11 F Y Chen, Z Y Wu, S Gupta, D J Rivera, S V Lambeets, S Pecaut, J Y T Kim, P Zhu, Y Z Finfrock, D M Meira. et al.. (2022). Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nature Nanotechnology, 17(7): 759–767
https://doi.org/10.1038/s41565-022-01121-4 pmid: 35501378
12 G F Chen, Y Yuan, H Jiang, S Y Ren, L X Ding, L Ma, T Wu, J Lu, H Wang. (2020). Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst. Nature Energy, 5(8): 605–613
https://doi.org/10.1038/s41560-020-0654-1
13 H Chen, Z Xu, H Wan, J Zheng, D Yin, S Zheng. (2010). Aqueous bromate reduction by catalytic hydrogenation over Pd/Al2O3 catalysts. Applied Catalysis B: Environmental, 96(3–4): 307–313
https://doi.org/10.1016/j.apcatb.2010.02.021
14 X Chen, X Huo, J Liu, Y Wang, C J Werth, T J Strathmann. (2017). Exploring beyond palladium: catalytic reduction of aqueous oxyanion pollutants with alternative platinum group metals and new mechanistic implications. Chemical Engineering Journal, 313: 745–752
https://doi.org/10.1016/j.cej.2016.12.058
15 J K Choe, M I Boyanov, J Liu, K M Kemner, C J Werth, T J Strathmann. (2014). X-ray spectroscopic characterization of immobilized rhenium species in hydrated rhenium–palladium bimetallic catalysts used for perchlorate water treatment. Journal of Physical Chemistry C, 118(22): 11666–11676
https://doi.org/10.1021/jp5006814
16 J K Choe, J R Shapley, T J Strathmann, C J Werth. (2010). Influence of rhenium speciation on the stability and activity of Re/Pd bimetal catalysts used for perchlorate reduction. Environmental Science & Technology, 44(12): 4716–4721
https://doi.org/10.1021/es100227z pmid: 20481620
17 C Chu, D Huang, S Gupta, S Weon, J Niu, E Stavitski, C Muhich, J H Kim. (2021). Neighboring Pd single atoms surpass isolated single atoms for selective hydrodehalogenation catalysis. Nature Communications, 12(1): 5179
https://doi.org/10.1038/s41467-021-25526-2 pmid: 34462434
18 J Chung, R Nerenberg, B E Rittmann. (2007). Evaluation for biological reduction of nitrate and perchlorate in brine water using the hydrogen-based membrane biofilm reactor. Journal of Environmental Engineering, 133(2): 157–164
https://doi.org/10.1061/(ASCE)0733-9372(2007)133:2(157
19 R G Clem, E Huffman. (1968). Amperometric titration of palladium(II) by oxidation with hypochlorite. Analytical Chemistry, 40(6): 945–948
https://doi.org/10.1021/ac60262a047
20 W R Crowell, D M Yost, J D Roberts. (1940). The catalytic effect of osmium compounds on the reduction of perchloric acid by hydrobromic acid. Journal of the American Chemical Society, 62(8): 2176–2178
https://doi.org/10.1021/ja01865a073
21 D P Durkin, T Ye, J Choi, K J Livi, H C D Long, P C Trulove, D H Fairbrother, L M Haverhals, D Shuai. (2018). Sustainable and scalable natural fiber welded palladium-indium catalysts for nitrate reduction. Applied Catalysis B: Environmental, 221: 290–301
https://doi.org/10.1016/j.apcatb.2017.09.029
22 D Fontana, M Pietrantonio, S Pucciarmati, G N Torelli, C Bonomi, F Masi. (2018). Palladium recovery from monolithic ceramic capacitors by leaching, solvent extraction and reduction. Journal of Material Cycles and Waste Management, 20(2): 1199–1206
https://doi.org/10.1007/s10163-017-0684-3
23 F Fotouhi-Far, H Bashiri, M Hamadanian, M H Keshavarz. (2021). A new approach for the leaching of palladium from spent Pd/C catalyst in HCl–H2O2 system. Protection of Metals and Physical Chemistry of Surfaces, 57(2): 297–305
https://doi.org/10.1134/S2070205121010093
24 J Gao, C Ren, X Huo, R Ji, X Wen, J Guo, J Liu. (2021). Supported palladium catalysts: a facile preparation method and implications to reductive catalysis technology for water treatment. ACS ES&T Engineering, 1(3): 562–570
25 C Grittini, M Malcomson, Q Fernando, N Korte. (1995). Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system. Environmental Science & Technology, 29(11): 2898–2900
https://doi.org/10.1021/es00011a029 pmid: 22206541
26 B Gu, G M Brown, C C Chiang. (2007). Treatment of perchlorate-contaminated groundwater using highly selective, regenerable ion-exchange technologies. Environmental Science & Technology, 41(17): 6277–6282
https://doi.org/10.1021/es0706910 pmid: 17937315
27 S Guo, K Heck, S Kasiraju, H Qian, Z Zhao, L C Grabow, J T Miller, M S Wong. (2018). Insights into nitrate reduction over indium-decorated palladium nanoparticle catalysts. ACS Catalysis, 8(1): 503–515
https://doi.org/10.1021/acscatal.7b01371
28 S Guo, H Li, K N Heck, X Luan, W Guo, G Henkelman, M S Wong. (2022). Gold boosts nitrate reduction and deactivation resistance to indium-promoted palladium catalysts. Applied Catalysis B: Environmental, 305: 121048
https://doi.org/10.1016/j.apcatb.2021.121048
29 G Jr Haight. (1954). Mechanism of the tungstate catalyzed reduction of perchlorate by stannous chloride. Journal of the American Chemical Society, 76(18): 4718–4721
https://doi.org/10.1021/ja01647a067
30 G Jr Haight, W Sager. (1952). Evidence for preferential one-step divalent changes in the molybdate-catalyzed reduction of perchlorate by stannous ion in sulfuric acid solution. Journal of the American Chemical Society, 74(23): 6056–6059
https://doi.org/10.1021/ja01143a068
31 S Hamid, S Bae, W Lee. (2018). Novel bimetallic catalyst supported by red mud for enhanced nitrate reduction. Chemical Engineering Journal, 348: 877–887
https://doi.org/10.1016/j.cej.2018.05.016
32 W He, J Zhang, S Dieckhöfer, S Varhade, A C Brix, A Lielpetere, S Seisel, J R C Junqueira, W Schuhmann. (2022). Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nature Communications, 13(1): 1129
https://doi.org/10.1038/s41467-022-28728-4 pmid: 35236840
33 K N Heck, S Garcia-Segura, P Westerhoff, M S Wong. (2019). Catalytic converters for water treatment. Accounts of Chemical Research, 52(4): 906–915
https://doi.org/10.1021/acs.accounts.8b00642 pmid: 30793879
34 R H Holm. (1987). Metal-centered oxygen atom transfer reactions. Chemical Reviews, 87(6): 1401–1449
https://doi.org/10.1021/cr00082a005
35 S Hörold, K D Vorlop, T Tacke, M Sell. (1993). Development of catalysts for a selective nitrate and nitrite removal from drinking water. Catalysis Today, 17(1–2): 21–30
https://doi.org/10.1016/0920-5861(93)80004-K
36 J L Howe, F N Mercer. (1925). Contributions to the study of ruthenium IX. Solubility of ruthenium in hypochlorite solutions and an attempt to utilize the reaction for the quantitative determination of the metal. Journal of the American Chemical Society, 47(12): 2926–2932
https://doi.org/10.1021/ja01689a010
37 X Huo, D J Van Hoomissen, J Liu, S Vyas, T J Strathmann. (2017). Hydrogenation of aqueous nitrate and nitrite with ruthenium catalysts. Applied Catalysis B: Environmental, 211: 188–198
https://doi.org/10.1016/j.apcatb.2017.04.045
38 K D Hurley, J R Shapley. (2007). Efficient heterogeneous catalytic reduction of perchlorate in water. Environmental Science & Technology, 41(6): 2044–2049
https://doi.org/10.1021/es0624218 pmid: 17410803
39 K D Hurley, Y Zhang, J R Shapley. (2009). Ligand-enhanced reduction of perchlorate in water with heterogeneous Re-Pd/C catalysts. Journal of the American Chemical Society, 131(40): 14172–14173
https://doi.org/10.1021/ja905446t pmid: 19772317
40 I Kolthoff. (1921). Jodometrische studien. Fresenius’ Zeitschrift für Analytische Chemie, 60(12): 448–457
https://doi.org/10.1007/BF01383656
41 X KongJ XiaoA ChenL ChenC Li L FengX RenX FanW SunZ Sun (2022). Enhanced catalytic denitrification performance of ruthenium-based catalysts by hydrogen spillover from a palladium promoter. Journal of Colloid and Interface Science, 608(Pt 3): 2973–2984
42 L I Kuznetsova, N I Kuznetsova, S V Koscheev, V I Zaikovskii, A S Lisitsyn, K M Kaprielova, N V Kirillova, Z Twardowski. (2012). Carbon-supported iridium catalyst for reduction of chlorate ions with hydrogen in concentrated solutions of sodium chloride. Applied Catalysis A, General, 427–428: 8–15
https://doi.org/10.1016/j.apcata.2012.03.024
43 C Y Lai, M Wu, X Lu, Y Wang, Z Yuan, J Guo. (2021). Microbial perchlorate reduction driven by ethane and propane. Environmental Science & Technology, 55(3): 2006–2015
https://doi.org/10.1021/acs.est.0c04103 pmid: 33434000
44 J Li, M Li, N An, S Zhang, Q Song, Y Yang, J Li, X Liu. (2022). Boosted ammonium production by single cobalt atom catalysts with high Faradic efficiencies. Proceedings of the National Academy of Sciences of the United States of America, 119(29): e2123450119
https://doi.org/10.1073/pnas.2123450119 pmid: 35858301
45 J Li, G Zhan, J Yang, F Quan, C Mao, Y Liu, B Wang, F Lei, L Li, A W M Chan, L Xu, Y Shi, Y Du, W Hao, P K Wong, J Wang, S X Dou, L Zhang, J C Yu. (2020). Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters. Journal of the American Chemical Society, 142(15): 7036–7046
https://doi.org/10.1021/jacs.0c00418 pmid: 32223152
46 J Lim, C Y Liu, J Park, Y H Liu, T P Senftle, S W Lee, M C Hatzell. (2021). Structure sensitivity of Pd facets for enhanced electrochemical nitrate reduction to ammonia. ACS Catalysis, 11(12): 7568–7577
https://doi.org/10.1021/acscatal.1c01413
47 J Liu, X Chen, Y Wang, T J Strathmann, C J Werth. (2015a). Mechanism and mitigation of the decomposition of an oxorhenium complex-based heterogeneous catalyst for perchlorate reduction in water. Environmental Science & Technology, 49(21): 12932–12940
https://doi.org/10.1021/acs.est.5b03393 pmid: 26422179
48 J Liu, J K Choe, Z Sasnow, C J Werth, T J Strathmann. (2013). Application of a Re-Pd bimetallic catalyst for treatment of perchlorate in waste ion-exchange regenerant brine. Water Research, 47(1): 91–101
https://doi.org/10.1016/j.watres.2012.09.031 pmid: 23084116
49 J Liu, J K Choe, Y Wang, J R Shapley, C J Werth, T J Strathmann. (2015b). Bioinspired complex-nanoparticle hybrid catalyst system for aqueous perchlorate reduction: Rhenium speciation and its influence on catalyst activity. ACS Catalysis, 5(2): 511–522
https://doi.org/10.1021/cs501286w
50 J Liu, M Han, D Wu, X Chen, J K Choe, C J Werth, T J Strathmann. (2016a). A new bioinspired perchlorate reduction catalyst with significantly enhanced stability via rational tuning of rhenium coordination chemistry and heterogeneous reaction pathway. Environmental Science & Technology, 50(11): 5874–5881
https://doi.org/10.1021/acs.est.6b00886 pmid: 27182602
51 J Liu, X Su, M Han, D Wu, D L Gray, J R Shapley, C J Werth, T J Strathmann. (2017). Ligand design for isomer-selective oxorhenium(V) complex synthesis. Inorganic Chemistry, 56(3): 1757–1769
https://doi.org/10.1021/acs.inorgchem.6b03076 pmid: 28079368
52 J Liu, D Wu, X Su, M Han, S Y Kimura, D L Gray, J R Shapley, M M Abu-Omar, C J Werth, T J Strathmann. (2016b). Configuration control in the synthesis of homo-and heteroleptic bis (oxazolinylphenolato/thiazolinylphenolato) chelate ligand complexes of oxorhenium(V): isomer effect on ancillary ligand exchange dynamics and implications for perchlorate reduction catalysis. Inorganic Chemistry, 55(5): 2597–2611
https://doi.org/10.1021/acs.inorgchem.5b02940 pmid: 26894635
53 G V Lowry, M Reinhard. (2000). Pd-catalyzed TCE dechlorination in groundwater: solute effects, biological control, and oxidative catalyst regeneration. Environmental Science & Technology, 34(15): 3217–3223
https://doi.org/10.1021/es991416j
54 G V Lowry, M Reinhard. (2001). Pd-catalyzed TCE dechlorination in water: effect of [H2](aq) and H2-utilizing competitive solutes on the TCE dechlorination rate and product distribution. Environmental Science & Technology, 35(4): 696–702
https://doi.org/10.1021/es001623f pmid: 11349280
55 I Mazin. (2022). Inverse Occam’s razor. Nature Physics, 18(4): 367–368
https://doi.org/10.1038/s41567-022-01575-2
56 Nanotechnology Editorial Board Nature. (2022). Bringing out the Occam’s razor in peer-review. Nature Nanotechnology, 17(6): 561
https://doi.org/10.1038/s41565-022-01166-5 pmid: 35710949
57 C A Nogueira, A P Paiva, M C Costa, A M Rosa da Costa. (2020). Leaching efficiency and kinetics of the recovery of palladium and rhodium from a spent auto-catalyst in HCl/CuCl2 media. Environmental Technology, 41(18): 2293–2304
https://doi.org/10.1080/09593330.2018.1563635 pmid: 30605363
58 J Park, S An, E H Jho, S Bae, Y Choi, J K Choe. (2020). Exploring reductive degradation of fluorinated pharmaceuticals using Al2O3-supported Pt-group metallic catalysts: catalytic reactivity, reaction pathways, and toxicity assessment. Water Research, 185: 116242
https://doi.org/10.1016/j.watres.2020.116242 pmid: 32758791
59 J Park, Y Hwang, S Bae. (2019). Nitrate reduction on surface of Pd/Sn catalysts supported by coal fly ash-derived zeolites. Journal of Hazardous Materials, 374: 309–318
https://doi.org/10.1016/j.jhazmat.2019.04.051 pmid: 31022631
60 U Prüsse, M Hähnlein, J Daum, K D Vorlop. (2000). Improving the catalytic nitrate reduction. Catalysis Today, 55(1–2): 79–90
https://doi.org/10.1016/S0920-5861(99)00228-X
61 U Prüsse, S Hörold, K D Vorlop. (1997). Einfluß der präparationsbedingungen auf die eigenschaften von bimetallkatalysatoren zur nitratentfernung aus wasser. Chemieingenieurtechnik (Weinheim), 69(1–2): 93–97
https://doi.org/10.1002/cite.330690114
62 U PrüsseK D Vorlop (2001). Supported bimetallic palladium catalysts for water-phase nitrate reduction. Journal of Molecular Catalysis A Chemical, 173(1−2): 313−328
63 C Ren, E Y Bi, J Gao, J Liu. (2022). Molybdenum-catalyzed perchlorate reduction: robustness, challenges, and solutions. ACS ES&T Engineering, 2(2): 181–188
64 C Ren, J Liu. (2021). Bioinspired catalytic reduction of aqueous perchlorate by one single-metal site with high stability against oxidative deactivation. ACS Catalysis, 11(11): 6715–6725
https://doi.org/10.1021/acscatal.0c05276
65 C Ren, P Yang, J Gao, X Huo, X Min, E Y Bi, Y Liu, Y Wang, M Zhu, J Liu. (2020). Catalytic reduction of aqueous chlorate with MoOx immobilized on Pd/C. ACS Catalysis, 10(15): 8201–8211
https://doi.org/10.1021/acscatal.0c02242
66 C Ren, P Yang, J Sun, E Y Bi, J Gao, J Palmer, M Zhu, Y Wu, J Liu. (2021a). A bioinspired molybdenum catalyst for aqueous perchlorate reduction. Journal of the American Chemical Society, 143(21): 7891–7896
https://doi.org/10.1021/jacs.1c00595 pmid: 34003633
67 Z Ren, U Bergmann, T Leiviskä. (2021b). Reductive degradation of perfluorooctanoic acid in complex water matrices by using the UV/sulfite process. Water Research, 205: 117676
https://doi.org/10.1016/j.watres.2021.117676 pmid: 34600233
68 C E Schaefer, C Andaya, A Urtiaga, E R McKenzie, C P Higgins. (2015). Electrochemical treatment of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater impacted by aqueous film forming foams (AFFFs). Journal of Hazardous Materials, 295: 170–175
https://doi.org/10.1016/j.jhazmat.2015.04.024 pmid: 25909497
69 S L Scott. (2018). A matter of life (time) and death. ACS Catalysis, 8(9): 8597–8599
https://doi.org/10.1021/acscatal.8b03199
70 S Shekhar, P Ryberg, J F Hartwig, J S Mathew, D G Blackmond, E R Strieter, S L Buchwald. (2006). Reevaluation of the mechanism of the amination of aryl halides catalyzed by BINAP-ligated palladium complexes. Journal of the American Chemical Society, 128(11): 3584–3591
https://doi.org/10.1021/ja045533c pmid: 16536531
71 U K Singh, E R Strieter, D G Blackmond, S L Buchwald. (2002). Mechanistic insights into the Pd(BINAP)-catalyzed amination of aryl bromides: kinetic studies under synthetically relevant conditions. Journal of the American Chemical Society, 124(47): 14104–14114
https://doi.org/10.1021/ja026885r pmid: 12440909
72 Standardization Administration of China (2022). National Standard of the People’s Republic of China: GB 5749−2022 Standards for Drinking Water Quality
73 E R Strieter, S L Buchwald. (2006). Evidence for the formation and structure of palladacycles during Pd-catalyzed C-N bond formation with catalysts derived from bulky monophosphinobiaryl ligands. Angewandte Chemie International Edition, 45(6): 925–928
https://doi.org/10.1002/anie.200502927 pmid: 16381052
74 J F Su, W F Kuan, C L Chen, C P Huang. (2020). Enhancing electrochemical nitrate reduction toward dinitrogen selectivity on Sn-Pd bimetallic electrodes by surface structure design. Applied Catalysis A, General, 606: 117809
https://doi.org/10.1016/j.apcata.2020.117809
75 T Tacke, K D Vorlop. (1993). Kinetische charakterisierung von katalysatoren zur selektiven entfernung von nitrat und nitrit aus wasser. Chemieingenieurtechnik (Weinheim), 65(12): 1500–1502
https://doi.org/10.1002/cite.330651216
76 R Van SantenA KlesingG NeuenfeldtA Ottmann (2001). Method for removing chlorate ions from solutions. U.S. Patent US6270682B1
77 K D Vorlop, S Hörold, K Pohlandt. (1992). Optimierung von trägerkatalysatoren zur selektiven nitritentfernung aus wasser. Chemieingenieurtechnik (Weinheim), 64(1): 82–83
https://doi.org/10.1002/cite.330640119
78 K D Vorlop, T Tacke. (1989). Erste schritte auf dem weg zur edelmetallkatalysierten nitrat-und nitrit-entfernung aus trinkwasser. Chemieingenieurtechnik (Weinheim), 61(10): 836–837
https://doi.org/10.1002/cite.330611023
79 Y Wang, J Liu, P Wang, C J Werth, T J Strathmann. (2014). Palladium nanoparticles encapsulated in core–shell silica: a structured hydrogenation catalyst with enhanced activity for reduction of oxyanion water pollutants. ACS Catalysis, 4(10): 3551–3559
https://doi.org/10.1021/cs500971r
80 Y Wang, A Xu, Z Wang, L Huang, J Li, F Li, J Wicks, M Luo, D H Nam, C S Tan, Y Ding, J Wu, Y Lum, C T Dinh, D Sinton, G Zheng, E H Sargent. (2020). Enhanced nitrate-to-ammonia activity on copper–nickel alloys via tuning of intermediate adsorption. Journal of the American Chemical Society, 142(12): 5702–5708
https://doi.org/10.1021/jacs.9b13347 pmid: 32118414
81 J D Webb, S Macquarrie, K Mceleney, C M Crudden. (2007). Mesoporous silica-supported Pd catalysts: An investigation into structure, activity, leaching and heterogeneity. Journal of Catalysis, 252(1): 97–109
https://doi.org/10.1016/j.jcat.2007.09.007
82 C J Werth, C Yan, J P Troutman. (2020). Factors impeding replacement of ion exchange with (electro) catalytic treatment for nitrate removal from drinking water. ACS ES&T Engineering, 1(1): 6–20
83 Y Wu, S Cai, D Wang, W He, Y Li. (2012). Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions. Journal of the American Chemical Society, 134(21): 8975–8981
https://doi.org/10.1021/ja302606d pmid: 22519877
84 Z Y Wu, M Karamad, X Yong, Q Huang, D A Cullen, P Zhu, C Xia, Q Xiao, M Shakouri, F Y Chen, J Y T Kim, Y Xia, K Heck, Y Hu, M S Wong, Q Li, I Gates, S Siahrostami, H Wang. (2021). Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nature Communications, 12(1): 2870
https://doi.org/10.1038/s41467-021-23115-x pmid: 34001869
85 T Ye, N A Banek, D P Durkin, M Hu, X Wang, M J Wagner, D Shuai. (2018). Pd nanoparticle catalysts supported on nitrogen-functionalized activated carbon for oxyanion hydrogenation and water purification. ACS Applied Nano Materials, 1(12): 6580–6586
https://doi.org/10.1021/acsanm.8b01949
86 X Ye, J Nan, Z Ge, Q Xiao, B Liu, Y Men, J Liu. (2022). Simultaneous removal of iron, manganese, and ammonia enhanced by preloaded MnO2 on low-pressure ultrafiltration membrane. Journal of Membrane Science, 656: 120641
https://doi.org/10.1016/j.memsci.2022.120641
87 Y B Yin, S Guo, K N Heck, C A Clark, C L Conrad, M S Wong. (2018). Treating water by degrading oxyanions using metallic nanostructures. ACS Sustainable Chemistry & Engineering, 6(9): 11160–11175
https://doi.org/10.1021/acssuschemeng.8b02070
88 Y H Yu, P C Chiu. (2014). Kinetics and pathway of vinyl fluoride reduction over rhodium. Environmental Science & Technology Letters, 1(11): 448–452
https://doi.org/10.1021/ez500291g
89 A Yuan, H Zhao, W Shan, J-F Sun, J Deng, H Liu, R Liu, J-F Liu. (2021). The binding strength of reactive H*: a neglected key factor in Rh-catalyzed environmental hydrodefluorination reaction. ACS ES&T Engineering, 1(6): 1036–1045
90 Y Zhang, K D Hurley, J R Shapley. (2011). Heterogeneous catalytic reduction of perchlorate in water with Re-Pd/C catalysts derived from an oxorhenium(V) molecular precursor. Inorganic Chemistry, 50(4): 1534–1543
https://doi.org/10.1021/ic102158a pmid: 21226477
91 Z Zhang, Y Xu, W Shi, W Wang, R Zhang, X Bao, B Zhang, L Li, F Cui. (2016). Electrochemical-catalytic reduction of nitrate over Pd–Cu/γAl2O3 catalyst in cathode chamber: enhanced removal efficiency and N2 selectivity. Chemical Engineering Journal, 290: 201–208
https://doi.org/10.1016/j.cej.2016.01.063
92 H P Zhao, S Van Ginkel, Y Tang, D W Kang, B Rittmann, R Krajmalnik-Brown. (2011). Interactions between perchlorate and nitrate reductions in the biofilm of a hydrogen-based membrane biofilm reactor. Environmental Science & Technology, 45(23): 10155–10162
https://doi.org/10.1021/es202569b pmid: 22017212
93 Y Zhuang, S Ahn, A L Seyfferth, Y Masue-Slowey, S Fendorf, R G Luthy. (2011). Dehalogenation of polybrominated diphenyl ethers and polychlorinated biphenyl by bimetallic, impregnated, and nanoscale zerovalent iron. Environmental Science & Technology, 45(11): 4896–4903
https://doi.org/10.1021/es104312h pmid: 21557574
[1] Bei Ye, Zhuo Chen, Xinzheng Li, Jianan Liu, Qianyuan Wu, Cheng Yang, Hongying Hu, Ronghe Wang. Inhibition of bromate formation by reduced graphene oxide supported cerium dioxide during ozonation of bromide-containing water[J]. Front. Environ. Sci. Eng., 2019, 13(6): 86-.
[2] Jialu SHI,Shengnan YI,Chao LONG,Aimin LI. Effect of Fe loading quantity on reduction reactivity of nano zero-valent iron supported on chelating resin[J]. Front. Environ. Sci. Eng., 2015, 9(5): 840-849.
[3] Diana AMORELLO, Santino ORECCHIO. Vanadium and molybdenum concentrations in particulate from Palermo (Italy): analytical methods using voltammetry[J]. Front. Environ. Sci. Eng., 2015, 9(4): 605-614.
[4] Jianbing WANG,Guoqing WANG,Chunli YANG,Shaoxia YANG,Qing HUANG. Catalytic ozonation of organic compounds in water over the catalyst of RuO2/ZrO2-CeO2[J]. Front. Environ. Sci. Eng., 2015, 9(4): 615-624.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed