Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (4) : 47    https://doi.org/10.1007/s11783-023-1647-7
RESEARCH ARTICLE
Preliminary techno-economic analysis of three typical decentralized composting technologies treating rural kitchen waste: a case study in China
Haoshu Wang1,2, Yong Qin1,2(), Liqing Xin1,2, Changxun Zhao1,2, Zhuang Ma3, Jian Hu3, Weixiang Wu1,2
1. Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
2. Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Hangzhou 310058, China
3. Zhejiang Transper Environmental Protection Technology Co., Ltd., Hangzhou 310058, China
 Download: PDF(2043 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Decentralized composting (DC) is a profitable KW treating technology.

● SAC and BEC were economically attractive in rural area, while HDC was unprofitable.

● KW handling subsidy plays a vital role in making DC profitable.

● SAC and BEC have great potential in promoting rural KW treatment.

This study was designed to evaluate whether the decentralized rural kitchen waste (KW) composting technologies used in China can be widely applied. To this end, we completed a techno-economic analysis of three typical types of KW compositing, namely solar-assisted (SAC), bio-enhanced (BEC), and heat-dewatering composting (HDC). These evaluations revealed that all three technologies produce composting products that meet China’s organic fertilizer standard and that both SAC and BEC are economically self-sustaining and generate net profits (18824.94 and 17791.52 US$/a) and positive net present values (32133.11 and 25035.93 US$). Subsequent sensitivity analysis demonstrated that the KW-handling subsidy plays a critical role in making decentralized composting economically attractive. Based on these analyses, we believe that reducing the coverage area of SAC, reducing the operating cost of BEC and HDC, upgrading composting products, and strengthening secondary pollution control would aid in supporting the technological improvement of these processes. Moreover, providing appropriate subsidies and promulgating specific standards and policies for KW fertilizer are key strategies for decentralized rural KW composting management.

Keywords Techno-economic analysis      Sensitivity analysis      Rural kitchen waste      Decentralized composting      Organic fertilizer     
Corresponding Author(s): Yong Qin   
Issue Date: 27 October 2022
 Cite this article:   
Haoshu Wang,Yong Qin,Liqing Xin, et al. Preliminary techno-economic analysis of three typical decentralized composting technologies treating rural kitchen waste: a case study in China[J]. Front. Environ. Sci. Eng., 2023, 17(4): 47.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1647-7
https://academic.hep.com.cn/fese/EN/Y2023/V17/I4/47
ParameterUnitSACHDCBEC
Retention timed4517a15
Ventilation frequencymin/h1.25?1.25
Turning frequencytimes/d2?2
Aeration ratem3/h13.2513.2513.25
Temperature
 Heat-dewatering process°C?90.00?
 Low-temperature stage°C41.9344.9140.47
 High-temperature stage°C62.9065.1061.68
 Cooling stage°C40.9041.8030.40
Tab.1  Operating parameters for decentralized composting-based treatment of rural kitchen waste
Fig.1  Process diagram describing (a) solar-assisted composting (SAC), (b) heat-dewatering (HDC), and (c) bio-enhanced composting (BEC).
ParameterUnitSACBECHDC
Capacityt/d111
Equipment costUS$464106188061880
Residual valueUS$1237.65569.23094
Coverage aream21205093
Infrastructure priceUS$/m2309.4417.69417.69
Annual output of organic fertilizert/a109.5109.590
Annual output of standard organic fertilizerat/a105.81140.0896.53
Selling price of standard organic fertilizerUS$/t77.3577.3577.35
Working timed/a330330330
Lifespana101010
Discount rate%101010
Income tax rate%252525
Tab.2  Parameters governing the economic evaluation of decentralized composting-based treatment of rural KW
SACBECHDCStandardj
OMC (%)a,e48.97 ± 2.5351.94 ± 5.0154.81 ± 2.41≥ 30.00
Total nutrient (%)a,c5.66 ± 0.115.08 ± 0.495.19 ± 0.17≥ 4.00
MC (%)b,f32.36 ± 2.7010.45 ± 0.2424.92 ± 2.07≤ 30.00
pH7.79 ± 0.477.43 ± 0.206.73 ± 0.185.50?8.50
GI (%)g73.64 ± 0.7578.59 ± 3.9170.23 ± 2.76h/17.99 ± 1.66i≥ 70.00
Fecal coliform number (cfu/g)b≤ 3≤ 3≤ 3≤ 100
Mortality of ascarid egg (%)b100100100≥ 95.00
Salt content (%)a,d1.00 ± 0.051.06 ± 0.071.76 ± 0.02?
Tab.3  Primary characteristics of the composting products produced by each of the three technologies
Fig.2  Fixed capital investment (a) and operating costs (b) for each of these three decentralized composting technologies.
ParameterUnitSACBECHDC
AFixed capitalUS$83538.0082764.50100725.17
BResidual valueUS$1237.605569.203094.00
COperating cost aUS$/a11927.3715605.3628895.64
DTotal revenuesUS$/a26053.9028704.6925336.10
ESystem capacityt/a330330330
FUnit production cost (C/E)US$/t36.1447.2987.56
GUnit production revenue (D/E)US$/t78.9586.9876.78
HGross profit (D?C)US$/a14126.5313099.33?3559.54
ITaxes (25%)US$/a3531.633274.830
JNet profit (H?I+ Depreciation)US$/a18824.9417544.026203.57
KGross margin (H/D)%54.2245.63?14.05
LReturn on investment (J/A)%22.5321.206.16
MPayback time (A/J)a4.444.7216.24
NIRR (after taxes)%18.3616.65?7.97
ONPVUS$32133.1125035.93?62606.90
PNPV0bUS$?50217.15?57314.32?172407.24
Tab.4  Summary of the profitability analysis for SAC, BEC, and HDC
Fig.3  Net present values (NPVs) for (a) SAC, (b) BEC, and (c) HDC accounting for economic factor changes in the ± 20 % range.
Fig.4  NPVs when including KW handling subsidy variations.
1 M Bekchanov , A Mirzabaev . (2018). Circular economy of composting in Sri Lanka: opportunities and challenges for reducing waste related pollution and improving soil health. Journal of Cleaner Production, 202: 1107–1119
https://doi.org/10.1016/j.jclepro.2018.08.186
2 B Bian , X Hu , S Zhang , C Lv , Z Yang , W Yang , L Zhang . (2019). Pilot-scale composting of typical multiple agricultural wastes: parameter optimization and mechanisms. Bioresource Technology, 287: 121482
https://doi.org/10.1016/j.biortech.2019.121482 pmid: 31121441
3 C Bruni , C Akyol , G Cipolletta , A L Eusebi , D Caniani , S Masi , J Colón , F Fatone . (2020). Decentralized community composting: past, present and future aspects of Italy. Sustainability (Basel), 12(8): 3319
https://doi.org/10.3390/su12083319
4 T Chen , Y Zhao , X Qiu , X Zhu , X Liu , J Yin , D Shen , H Feng . (2021). Economics analysis of food waste treatment in China and its influencing factors. Frontiers of Environmental Science & Engineering, 15(2): 33
https://doi.org/10.1007/s17783-020-1325-y
5 E Ermolaev , C Sundberg , M Pell , S Smårs , H Jonsson . (2019). Effects of moisture on emissions of methane, nitrous oxide and carbon dioxide from food and garden waste composting. Journal of Cleaner Production, 240: 118165
https://doi.org/10.1016/j.jclepro.2019.118165
6 M Gao , Z Yang , Y Guo , M Chen , T Qiu , X Sun , X Wang . (2021). The size distribution of airborne bacteria and human pathogenic bacteria in a commercial composting plant. Frontiers of Environmental Science & Engineering, 15(3): 39
https://doi.org/10.1007/s17783-020-1356-4
7 A D Gronewold , R L Wolpert . (2008). Modeling the relationship between most probable number (MPN) and colony-forming unit (CFU) estimates of fecal coliform concentration. Water Research, 42(13): 3327–3334
https://doi.org/10.1016/j.watres.2008.04.011 pmid: 18490046
8 J C Hartman . (2000). On the equivalence of net present value and market value added as measures of a project’s economic worth. Engineering Economist, 45(2): 158–165
https://doi.org/10.1080/00137910008967543
9 Y Kuang , B Lin . (2021). Public participation and city sustainability: evidence from urban garbage classification in China. Sustainable Cities and Society, 67: 102741
https://doi.org/10.1016/j.scs.2021.102741
10 T H Kwan , K L Ong , M A Haque , S Kulkarni , C S K Lin . (2019). Biorefinery of food and beverage waste valorisation for sugar syrups production: techno-economic assessment. Process Safety and Environmental Protection, 121: 194–208
https://doi.org/10.1016/j.psep.2018.10.018
11 H Li , Y Qiu , T Yao , D Han , Y Gao , J Zhang , Y Ma , H Zhang , X Yang . (2021). Nutrients available in the soil regulate the changes of soil microbial community alongside degradation of alpine meadows in the northeast of the Qinghai-Tibet Plateau. Science of the Total Environment, 792: 148363
https://doi.org/10.1016/j.scitotenv.2021.148363 pmid: 34465051
12 X Li , F Bi , Z Han , Y Qin , H Wang , W Wu . (2019). Garbage source classification performance, impact factor, and management strategy in rural areas of China: a case study in Hangzhou. Waste Management (New York, N.Y.), 89: 313–321
https://doi.org/10.1016/j.wasman.2019.04.020 pmid: 31079745
13 L Lin , A Shah , H Keener , Y Li . (2019). Techno-economic analyses of solid-state anaerobic digestion and composting of yard trimmings. Waste Management (New York, N.Y.), 85: 405–416
https://doi.org/10.1016/j.wasman.2018.12.037 pmid: 30803595
14 X Lin , Z Wang , J Li . (2021). Identifying the factors dominating the spatial distribution of water and salt in soil and cotton yield under arid environments of drip irrigation with different lateral lengths. Agricultural Water Management, 250: 106834
https://doi.org/10.1016/j.agwat.2021.106834
15 F Liu , H Liu , N Yang , L Wang . (2021). Comparative study of municipal solid waste incinerator fly ash reutilization in China: environmental and economic performances. Resources, Conservation and Recycling, 169: 105541
https://doi.org/10.1016/j.resconrec.2021.105541
16 K Liu , T Han , J Huang , S Asad , D Li , X Yu , Q Huang , H Ye , H Hu , Z Hu , H Zhang . (2020a). Links between potassium of soil aggregates and pH levels in acidic soils under long-term fertilization regimes. Soil & Tillage Research, 197: 104480
https://doi.org/10.1016/j.still.2019.104480
17 S Liu , S Oshita , Y Makino , Q Wang , Y Kawagoe , T Uchida . (2016). Oxidative capacity of nanobubbles and its effect on seed germination. ACS Sustainable Chemistry & Engineering, 4(3): 1347–1353
https://doi.org/10.1021/acssuschemeng.5b01368
18 Z Liu , X Wang , F Wang , Z Bai , D Chadwick , T Misselbrook , L Ma . (2020b). The progress of composting technologies from static heap to intelligent reactor: benefits and limitations. Journal of Cleaner Production, 270: 122328
https://doi.org/10.1016/j.jclepro.2020.122328
19 S F Lu , S J Feng . (2020). Comprehensive overview of numerical modeling of coupled landfill processes. Waste Management (New York, N.Y.), 118: 161–179
https://doi.org/10.1016/j.wasman.2020.08.029 pmid: 32892093
20 J Ma , K W Hipel , M L Hanson . (2018a). An evaluation of the social dimensions in public participation in rural domestic waste source-separated collection in Guilin, China. Environmental Monitoring and Assessment, 190(1): 35
https://doi.org/10.1007/s10661-017-6405-5 pmid: 29264731
21 J Ma , L Zhang , L Mu , K Zhu , A Li . (2018b). Thermally assisted bio-drying of food waste: synergistic enhancement and energetic evaluation. Waste Management (New York, N.Y.), 80: 327–338
https://doi.org/10.1016/j.wasman.2018.09.023 pmid: 30455014
22 W Ma , T Wenga , F J Frandsen , B Yan , G Chen . (2020). The fate of chlorine during MSW incineration: vaporization, transformation, deposition, corrosion and remedies. Progress in Energy and Combustion Science, 76: 100789
https://doi.org/10.1016/j.pecs.2019.100789
23 M K Manu , R Kumar , A Garg . (2019). Decentralized composting of household wet biodegradable waste in plastic drums: effect of waste turning, microbial inoculum and bulking agent on product quality. Journal of Cleaner Production, 226: 233–241
https://doi.org/10.1016/j.jclepro.2019.03.350
24 P M Matei , M Sánchez-Báscones , C T Bravo-Sánchez , P Martín-Ramos , M T Martín-Villullas , M C García-González , S Hernández-Navarro , L M Navas-Gracia , J Martín-Gil . (2016). Hygienization and control of Diplodia seriata fungus in vine pruning waste composting and its seasonal variability in open and closed systems. Waste Management (New York, N.Y.), 58: 126–134
https://doi.org/10.1016/j.wasman.2016.08.002 pmid: 27522281
25 J Moreno-Caselles , R Moral , M Perez-Murcia , A Perez-Espinosa , B Rufete . (2002). Nutrient value of animal manures in front of environmental hazards. Communications in Soil Science and Plant Analysis, 33(15–18): 3023–3032
https://doi.org/10.1081/CSS-120014499
26 S Pai , N Ai , J Zheng . (2019). Decentralized community composting feasibility analysis for residential food waste: a Chicago case study. Sustainable Cities and Society, 50: 101683
https://doi.org/10.1016/j.scs.2019.101683
27 A ShahN R BaralA Manandhar (2016). Technoeconomic Analysis and Life Cycle Assessment of Bioenergy Systems. Advances in Bioenergy. Amsterdam: Elsevier
28 S Sharma , P Panneerselvam , R Castillo , S Manohar , R Raj , V Ravi , R J Buresh . (2019). Web-based tool for calculating field-specific nutrient management for rice in India. Nutrient Cycling in Agroecosystems, 113(1): 21–33
https://doi.org/10.1007/s10705-018-9959-x pmid: 32684798
29 S Thapa , H Mejer , S M Thamsborg , J D Lekfeldt , R Wang , B Jensen , J Magid , N V Meyling . (2017). Survival of chicken ascarid eggs exposed to different soil types and fungi. Applied Soil Ecology, 121: 143–151
https://doi.org/10.1016/j.apsoil.2017.10.001
30 A Wang , L Zhang , Y Shi , S Rozelle , A Osborn , M Yang . (2017). Rural solid waste management in China: status, problems and challenges. Sustainability (Basel), 9(4): 506
https://doi.org/10.3390/su9040506
31 H Wang , J Xu , L Sheng . (2019). Study on the comprehensive utilization of city kitchen waste as a resource in China. Energy, 173: 263–277
https://doi.org/10.1016/j.energy.2019.02.081
32 Y Wei , N Wang , Y Lin , Y Zhan , X Ding , Y Liu , A Zhang , G Ding , T Xu , J Li . (2021). Recycling of nutrients from organic waste by advanced compost technology: a case study. Bioresource Technology, 337: 125411
https://doi.org/10.1016/j.biortech.2021.125411 pmid: 34153865
33 L Xin , X Li , F Bi , X Yan , H Wang , W Wu . (2021). Accelerating food waste composting course with biodrying and maturity process: a pilot study. ACS Sustainable Chemistry & Engineering, 9(1): 224–235
https://doi.org/10.1021/acssuschemeng.0c06899
34 Y Xu , H Gong , X Dai . (2021). High-solid anaerobic digestion of sewage sludge: achievements and perspectives. Frontiers of Environmental Science & Engineering, 15(4): 71
https://doi.org/10.1007/s17783-020-1364-4
35 F Yang , Y Li , Y Han , W Qian , G Li , W Luo . (2019). Performance of mature compost to control gaseous emissions in kitchen waste composting. Science of the Total Environment, 657: 262–269
https://doi.org/10.1016/j.scitotenv.2018.12.030 pmid: 30543975
36 T Yoshizaki , Y Shirai , M A Hassan , A S Baharuddin , N M R Abdullah , A Sulaiman , Z Busu . (2012). Economic analysis of biogas and compost projects in a palm oil mill with clean development mechanism in Malaysia. Environment, Development and Sustainability, 14(6): 1065–1079
https://doi.org/10.1007/s10668-012-9371-7
37 S ZhangJ WangX ChenJ GuiY SunD Wu (2021). Industrial-scale food waste composting: effects of aeration frequencies on oxygen consumption, enzymatic activities and bacterial community succession. Bioresource Technology, 320(Pt A): 124357
38 L Zhu , X Jia , M Li , Y Wang , J Zhang , J Hou , X Wang . (2021). Associative effectiveness of bio-organic fertilizer and soil conditioners derived from the fermentation of food waste applied to greenhouse saline soil in Shandong Province, China. Applied Soil Ecology, 167: 104006
https://doi.org/10.1016/j.apsoil.2021.104006
[1] FSE-22094-OF-WHS_suppl_1 Download
[1] Kaixuan Zheng, Xingshen Luo, Yiqi Tan, Zhonglei Li, Hongtao Wang, Tan Chen, Li Zhao, Liangtong Zhan. Passive convergence-permeable reactive barrier (PC-PRB): An effective configuration to enhance hydraulic performance[J]. Front. Environ. Sci. Eng., 2022, 16(12): 156-.
[2] Jiping Jiang, Feng Han, Yi Zheng, Nannan Wang, Yixing Yuan. Inverse uncertainty characteristics of pollution source identification for river chemical spill incidents by stochastic analysis[J]. Front. Environ. Sci. Eng., 2018, 12(5): 6-.
[3] XIA Tianxiang,JIANG Lin,JIA Xiaoyang,ZHONG Maosheng,LIANG Jing. Application of probabilistic risk assessment at a coking plant site contaminated by Polycyclic Aromatic Hydrocarbons[J]. Front.Environ.Sci.Eng., 2014, 8(3): 441-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed