Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (9) : 112    https://doi.org/10.1007/s11783-023-1712-2
RESEARCH ARTICLE
Porous silica synthesis out of coal fly ash with no residue generation and complete silicon separation
Tongyao Ju, Siyu Han, Fanzhi Meng, Li Lin, Jinglin Li, Kailun Chen, Jianguo Jiang()
School of Environment, Tsinghua University, Beijing 100084, China
 Download: PDF(4181 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Both amorphous and crystalline silicon are completely separated from coal fly ash.

● Porous silica is synthesized out of coal fly ash.

● No residues is produced during the whole synthesis process.

● The one-step method to synthesize silica don’t need long-time reaction and aging.

Ordered mesoporous silica materials exhibit enormous potential in industrial production. Since coal fly ash (CFA) is abundant in Si, it has become a green and promising way to utilize CFA by synthesizing porous silica materials. However, the stable crystalline structure of CFA limits the extraction of Si, and the residue is generated during the process of extracting Si. In this work, we proposed a no-residue method to synthesize ordered mesoporous silica out of CFA. Sodium carbonate (Na2CO3) was used to reconstruct the crystals of the CFA, and the calcined mixture then directly reacted with the precipitators. This method combined the process of Si extraction and porous material synthesis. In this method, no residue was generated and the silicon in both amorphous and crystalline phases of CFA was fully utilized. By this method, the extraction efficiency of Si was increased from 31.75% to nearly 100%. The as-synthesized mesoporous silica had a highly-ordered pore structure with a space group of la-3d, a surface area of 663.87 m2/g, a pore volume of 0.41 cm3/g, and an average pore diameter of 2.73 nm. The mechanism of crystalline transformation and material structure formation were systematically studied. This method provides a new idea to dispose of CFA and synthesize porous silica materials.

Keywords Coal fly ash      Alkali fusion      Micro-/meso-porous Si      Zeolite MCM-48      Crystalline transformation     
Corresponding Author(s): Jianguo Jiang   
Issue Date: 18 April 2023
 Cite this article:   
Tongyao Ju,Siyu Han,Fanzhi Meng, et al. Porous silica synthesis out of coal fly ash with no residue generation and complete silicon separation[J]. Front. Environ. Sci. Eng., 2023, 17(9): 112.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1712-2
https://academic.hep.com.cn/fese/EN/Y2023/V17/I9/112
Fig.1  Flow chart of synthesizing mesoporous silica using coal fly ash.
Fig.2  Extraction efficiency of Si with different ratio of Na2CO3 to CFA under 700–900 °C.
Fig.3  Crystalline structure of the calcination products of Na2CO3 and CFA at 850 °C: (a) XRD patterns; (b) Quantitative analysis.
Fig.4  XRD patterns of calcination product residues filtered by water.
Fig.5  (a) N2 physisorption isotherms and (b) pore size distributions of SiO2 products with different dosages of CTAB.
SampleSBET (m2/g)VBJH (cm3/g)DBJH (nm)Purity (%)Yield (g/gCFA)
CTAB-0.0063.950.089.5996.590.25
CTAB-0.08517.210.363.0897.370.38
CTAB-0.16602.530.413.1097.640.54
CTAB-0.24663.870.412.7394.080.60
Tab.1  Characterization of silica products
Fig.6  Structural characterization of SiO2 products: (a) SAXRD patterns, (b) XRD patterns, (c) TEM images of CTAB-0.00, and (d) CTAB-0.24.
Fig.7  SEM images of “CTAB-0.00”, “CTAB-0.08”, “CTAB-0.16”, and “CTAB-0.24”.
Silica sourceSilicon extractionMaterial synthesisMaterial characterizationRef.
StrategyEfficiency (%)MaterialTemplateReaction conditionSurface area (m2/g)Pore volume (cm3/g)Pore size (nm)Purity (%)
CFAAlkali-fusion~100Zeolite MCM-48CTAB25 °C, 1 h602.530.413.1097.64This work
CFAAlkali-fusionZSM-5CTAB65 °C, 2 h; 25 °C, 12 h (Aging)24Qian et al. (2020)
CFAAlkali-dissolutionZSM-5N-butylamine190 °C, 50 h4600.067Peron et al. (2019)
CFAAlkali-dissolution< 100MCM-41Cumene8200.753.7Miricioiu and Niculescu (2020)
CFAAlkali-dissolution54.42Na2SiO3 solution110 °C, 70 min (Ultrasound)Ju et al. (2020)
CFAAlkali-dissolutionHZSM-5TPABr/TEOS100 °C, 5 h; 160 °C, 48 h95.28Hossini Asl et al. (2020)
CFAAlkali-fusionSBA-15P12335 °C, 24 h; 90 °C, 24 h6431.0338.24Gupta et al. (2020)
CFAAlkali-dissolutionMicro- and mesoporous silicaCTAB24 h; 24 h; 110 °C, 24 h3960.6250.991.76de Oliveira et al. (2020)
CFAAlkali-fusionMCM-41-NH2CTAB35 °C, 0.5 h (Microwave)258.370.283.25He et al. (2019)
CFAAlkali-dissolutionMesoporous silica nanospheresCTAB45 °C, 72 hWang et al. (2018c)
CFAAlkali-fusion18.9Mesoporous silicaP12325 °C, 24 h; 100 °C, 72 h (Aging)4970.49Yuan et al. (2019)
MSWI ash slagAlkali-dissolution61.4Mesoporous silicaP12335 °C, 24 h; 90 °C, 24 h (Aging)4710.9987.64Han et al. (2021)
Coal gasification slagAlkali-dissolutionMCM-41CTAB25 °C, 3 h (Aging); 100–110 °C, 48–96 h10730.913.3992.8Wu et al. (2020)
SandAlkali-fusionSBA-15TEOS/P12360 °C, 20 h; 60–80 °C, 48 h (Aging)659.93.19Lázaro et al. (2020)
Tab.2  Comparison of mesoporous material synthesis out of coal fly ash and other silicon-rich wastes
Fig.8  Mechanisms of self-control processes of one-step synthesis of silica products.
1 S O Akpotu , B Moodley . (2018). MCM-48 encapsulated with reduced graphene oxide/graphene oxide and as-synthesised MCM-48 application in remediation of pharmaceuticals from aqueous system. Journal of Molecular Liquids, 261: 540–549
https://doi.org/10.1016/j.molliq.2018.04.046
2 A E Ameh , N M Musyoka , O Oyekola , B Louis , L F Petrik . (2021). Acylation of anisole with benzoyl chloride over rapidly synthesized fly ash-based HBEA zeolite. Frontiers in Chemistry, 9: 683125
https://doi.org/10.3389/fchem.2021.683125
3 D Azizi , F Ibsaine , J Dionne , L C Pasquier , L Coudert , J F Blais . (2021). Microporous and macroporous materials state-of-the-art of the technologies in zeolitization of aluminosilicate bearing residues from mining and metallurgical industries: a comprehensive review. Microporous and Mesoporous Materials, 318: 111029
https://doi.org/10.1016/j.micromeso.2021.111029
4 A K Basumatary , R V Kumar , A K Ghoshal , G Pugazhenthi . (2016). Removal of FeCl3 from aqueous solution by ultrafiltration using ordered mesoporous MCM-48 ceramic composite membrane. Separation Science and Technology, 51(12): 2038–2046
https://doi.org/10.1080/01496395.2016.1187168
5 S Boycheva , I Marinov , S Miteva , D Zgureva . (2020). Conversion of coal fly ash into nanozeolite Na-X by applying ultrasound assisted hydrothermal and fusion-hydrothermal alkaline activation. Sustainable Chemistry and Pharmacy, 15: 100217
https://doi.org/10.1016/j.scp.2020.100217
6 S Boycheva , D Zgureva , M Vaclavikova , Y Kalvachev , H Lazarova , M Popova . (2019). Studies on non-modified and copper-modified coal ash zeolites as heterogeneous catalysts for VOCs oxidation. Journal of Hazardous Materials, 361: 374–382
https://doi.org/10.1016/j.jhazmat.2018.07.020
7 G C Carvalho , G D Marena , J C F Karnopp , J Jorge , R M Sabio , M A U Martines , T M Bauab , M Chorilli . (2022). Cetyltrimethylammonium bromide in the synthesis of mesoporous silica nanoparticles: general aspects and in vitro toxicity. Advances in Colloid and Interface Science, 307: 102746
https://doi.org/10.1016/j.cis.2022.102746
8 Y Chen , S Cong , Q Wang , H Han , J Lu , Y Kang , W Kang , H Wang , S Han , H Song , J Zhang . (2018). Optimization of crystal growth of sub-micron ZSM-5 zeolite prepared by using Al(OH)3 extracted from fly ash as an aluminum source. Journal of Hazardous Materials, 349: 18–26
https://doi.org/10.1016/j.jhazmat.2018.01.004
9 J A S Costa , Jesus R A de , D O Santos , J F Mano , L P C Romão , C M Paranhos . (2020). Recent progresses in the adsorption of organic, inorganic, and gas compounds by MCM-41-based mesoporous materials. Microporous and Mesoporous Materials, 291: 109698
https://doi.org/10.1016/j.micromeso.2019.109698
10 J A S Costa , C M Paranhos . (2020). Mitigation of silica-rich wastes: an alternative to the synthesis eco-friendly silica-based mesoporous materials. Microporous and Mesoporous Materials, 309: 110570
https://doi.org/10.1016/j.micromeso.2020.110570
11 F F de Oliveira , K O Moura , L S Costa , C B Vidal , A R Loiola , R F Do Nascimento . (2020). Reactive adsorption of parabens on synthesized micro- and mesoporous silica from coal fly ash: pH effect on the modification process. ACS Omega, 5(7): 3346–3357
https://doi.org/10.1021/acsomega.9b03537
12 H Faghihian , S Nasri Nasrabadi , S Khonsari . (2014). Removal of Sr(II) from aqueous solutions by aminosilane functionalized MCM-48. Separation Science and Technology, 49(13): 2031–2038
https://doi.org/10.1080/01496395.2014.910672
13 Y Guo , Y Li , F Cheng , M Wang , X Wang . (2013). Role of additives in improved thermal activation of coal fly ash for alumina extraction. Fuel Processing Technology, 110: 114–121
https://doi.org/10.1016/j.fuproc.2012.12.003
14 Y Guo , Z Zhao , Q Zhao , F Cheng . (2017). Novel process of alumina extraction from coal fly ash by pre-desilicating–Na2CO3 activation–acid leaching technique. Hydrometallurgy, 169: 418–425
https://doi.org/10.1016/j.hydromet.2017.02.021
15 P K Gupta , A Mahato , P Oraon , G K Gupta , S Maity . (2020). Coal fly ash-derived mesoporous SBA-15 as support material for production of liquid hydrocarbon through Fischer–Tropsch route. Asia-Pacific Journal of Chemical Engineering, 15(4): e2471
https://doi.org/10.1002/apj.2471
16 Y Han , S Han , S Kim , M Jung , H S Jeon , S Q Choi , K Kim , Y Kim . (2021). Mesoporous silica derived from municipal solid waste incinerator (MSWI) ash slag: synthesis, characterization and use as supports for Au(III) recovery. Materials (Basel), 14(22): 6894
https://doi.org/10.3390/ma14226894
17 Y He , L Zhang , X An , C Han , Y Luo . (2019). Microwave assistant rapid synthesis MCM-41–NH2 from fly ash and Cr(VI) removal performance. Environmental Science and Pollution Research International, 26(30): 31463–31477
https://doi.org/10.1007/s11356-019-06255-y
18 Y J Heo , M U T. Le , S J Park . (2016). Investigation of carbon dioxide adsorption by nitrogen-doped carbons synthesized from cubic MCM-48 mesoporous silica. Carbon letters, 18: 62–66
https://doi.org/10.5714/cl.2016.18.062
19 S M Hossini Asl , M Masomi , M Tajbakhsh . (2020). Hybrid adaptive neuro-fuzzy inference systems for forecasting benzene, toluene & m-xylene removal from aqueous solutions by HZSM-5 nano-zeolite synthesized from coal fly ash. Journal of Cleaner Production, 258: 120688
https://doi.org/10.1016/j.jclepro.2020.120688
20 Z Jin , Y Xu , S Lin , J Sheng . (2016). Cubic mesoporous silica material as a highly efficient solid phase extraction sorbent for bisphenol A, tert-nonylphenol from water. Journal of Nanoscience and Nanotechnology, 16(6): 5833–5838
https://doi.org/10.1166/jnn.2016.12054
21 T Ju , S Han , Y Meng , J Jiang . (2021a). High-end reclamation of coal fly ash focusing on elemental extraction and synthesis of porous materials. ACS Sustainable Chemistry & Engineering, 9(20): 6894–6911
https://doi.org/10.1021/acssuschemeng.1c00587
22 T Ju , J Jiang , Y Meng , F Yan , Y Xu , Y Gao , A Aihemaiti . (2020). An investigation of the effect of ultrasonic waves on the efficiency of silicon extraction from coal fly ash. Ultrasonics Sonochemistry, 60: 104765
https://doi.org/10.1016/j.ultsonch.2019.104765
23 T Ju , Y Meng , S Han , L Lin , J Jiang . (2021b). On the state of the art of crystalline structure reconstruction of coal fly ash: a focus on zeolites. Chemosphere, 283: 131010
https://doi.org/10.1016/j.chemosphere.2021.131010
24 A L Lázaro , F J Rodríguez-Valadez , J J M López , F Espejel-Ayala . (2020). SBA-15 synthesis from sodium silicate prepared with sand and sodium hydroxide. Materials Research Express, 7(4): 045503
https://doi.org/10.1088/2053-1591/ab83a5
25 C C Li , X C Qiao . (2016). A new approach to prepare mesoporous silica using coal fly ash. Chemical Engineering Journal, 302: 388–394
https://doi.org/10.1016/j.cej.2016.05.029
26 L Li , Q Shi , L Huang , C Yan , Y Wu . (2021). Green synthesis of faujasite-La0.6Sr0.4Co0.2Fe0.8O3-δ mineral nanocomposite membrane for low temperature advanced fuel cells. International Journal of Hydrogen Energy, 46(15): 9826–9834
https://doi.org/10.1016/j.ijhydene.2020.05.275
27 L Liu , G Zhu , Z Liu , C Gao . (2016). Effect of MCM-48 nanoparticles on the performance of thin film nanocomposite membranes for reverse osmosis application. Desalination, 394: 72–82
https://doi.org/10.1016/j.desal.2016.04.028
28 S W M Machado , J C Santana , A M G Pedrosa , M J B Souza , A C F Coriolano , E K L Morais , A S Araujo . (2018). Catalytic cracking of isopropylbenzene over hybrid HZSM-12/M41S (M41S = MCM-41 or MCM-48) micro-mesoporous materials. Petroleum Science and Technology, 36(13): 923–929
https://doi.org/10.1080/10916466.2018.1454950
29 C Miao , L Liang , F Zhang , S Chen , K Shang , J Jiang , Y Zhang , J Ouyang . (2022). Review of the fabrication and application of porous materials from silicon-rich industrial solid waste. International Journal of Minerals Metallurgy and Materials, 29(3): 424–438
https://doi.org/10.1007/s12613-021-2360-9
30 M G Miricioiu , V C Niculescu . (2020). Fly ash, from recycling to potential raw material for mesoporous silica synthesis. Nanomaterials (Basel, Switzerland), 10(3): 474–487
https://doi.org/10.3390/nano10030474
31 M G Miricioiu , V C Niculescu , C Filote , M S Raboaca , G Nechifor . (2021). Coal fly ash derived silica nanomaterial for MMMs-application in CO2/CH4 separation. Membranes (Basel), 11(2): 78
https://doi.org/10.3390/membranes11020078
32 B Muir , M Sobczyk , T Bajda . (2021). Fundamental features of mesoporous functional materials influencing the efficiency of removal of VOCs from aqueous systems: a review. Science of the Total Environment, 784: 147121
https://doi.org/10.1016/j.scitotenv.2021.147121
33 X Peng . (2019). Dynamic hydrothermal synthesis of xonotlite fibers by alkali silica extraction of fly ash. Journal of Engineered Fibers and Fabrics, 14: 1–5
https://doi.org/10.1177/1558925019890340
34 D V Peron , V L Zholobenko , J H S De Melo , M Capron , N Nuns , M O De Souza , L A Feris , N R Marcilio , V V Ordomsky , A Y Khodakov . (2019). External surface phenomena in dealumination and desilication of large single crystals of ZSM-5 zeolite synthesized from a sustainable source. Microporous and Mesoporous Materials, 286: 57–64
https://doi.org/10.1016/j.micromeso.2019.05.033
35 Y Qian , H Zhang , L Li , Y Duan . (2020). Optimization of crystal growth of hierarchical porosity ZSM-5 zeolite based on coal fly ash “waste utilization”. Materialwissenschaft und Werkstofftechnik, 51(9): 1295–1303
https://doi.org/10.1002/mawe.201900217
36 W U Rehman , H Wang , R Z A Manj , W Luo , J Yang . (2021). When silicon materials meet natural sources: opportunities and challenges for low-cost lithium storage. Small, 17(9): e1904508
https://doi.org/10.1002/smll.201904508
37 M Sayehi , H Tounsi , G Garbarino , P Riani , G Busca . (2020). Reutilization of silicon- and aluminum- containing wastes in the perspective of the preparation of SiO2-Al2O3 based porous materials for adsorbents and catalysts. Waste Management (New York, N.Y.), 103: 146–158
https://doi.org/10.1016/j.wasman.2019.12.013
38 M Shaban , A Hamd , R R Amin , M R Abukhadra , A A Khalek , A A P Khan , A M Asiri . (2020). Preparation and characterization of MCM-48/nickel oxide composite as an efficient and reusable catalyst for the assessment of photocatalytic activity. Environmental Science and Pollution Research International, 27(26): 32670–32682
https://doi.org/10.1007/s11356-020-09431-7
39 P Sikarwar , U K A Kumar , V Gosu , V Subbaramaiah . (2018). Catalytic oxidative desulfurization of DBT using green catalyst (Mo/MCM-41) derived from coal fly ash. Journal of Environmental Chemical Engineering, 6(2): 1736–1744
https://doi.org/10.1016/j.jece.2018.02.021
40 R K Taggart , J C Hower , H Hsu-Kim . (2018). Effects of roasting additives and leaching parameters on the extraction of rare earth elements from coal fly ash. International Journal of Coal Geology, 196: 106–114
https://doi.org/10.1016/j.coal.2018.06.021
41 M Tang , C Zhou , J Pan , N Zhang , C Liu , S Cao , T Hu , W Ji . (2019a). Study on extraction of rare earth elements from coal fly ash through alkali fusion – acid leaching. Minerals Engineering, 136: 36–42
https://doi.org/10.1016/j.mineng.2019.01.027
42 M Tang , C Zhou , N Zhang , J Pan , S Cao , T Hu , W Ji , Z Wen , T Nie . (2019b). Extraction of rare earth elements from coal fly ash by alkali fusion–acid leaching: mechanism analysis. International Journal of Coal Preparation and Utilization, 42(3): 536–555
https://doi.org/10.1080/19392699.2019.1623206
43 B Wang , Y Zhou , L Li , Y Wang . (2018a). Preparation of amidoxime-functionalized mesoporous silica nanospheres (ami-MSN) from coal fly ash for the removal of U(VI). Science of the Total Environment, 626: 219–227
https://doi.org/10.1016/j.scitotenv.2018.01.057
44 B Wang , Y Zhou , L Li , H Xu , Y Sun , Y Du , Y Wang . (2018b). In situ synthesis of TiO2-doped mesoporous silica from coal fly ash for the photocatalytic degradation of dyes. Industrial & Engineering Chemistry Research, 57(46): 15632–15637
https://doi.org/10.1021/acs.iecr.8b03190
45 B Wang , Y Zhou , L Li , H Xu , Y Sun , Y Wang . (2018c). Novel synthesis of cyano-functionalized mesoporous silica nanospheres (MSN) from coal fly ash for removal of toxic metals from wastewater. Journal of Hazardous Materials, 345: 76–86
https://doi.org/10.1016/j.jhazmat.2017.10.063
46 Y H Wu , Y L Ma , Y G Sun , K Xue , Q L Ma , T Ma , W X Ji . (2020). Graded synthesis of highly ordered MCM-41 and carbon/zeolite composite from coal gasification fine residue for crystal violet removal. Journal of Cleaner Production, 277: 123186
https://doi.org/10.1016/j.jclepro.2020.123186
47 V K Yadav , M H Fulekar . (2020). Advances in methods for recovery of ferrous, alumina, and silica nanoparticles from fly ash waste. Ceramics, 3(3): 384–420
https://doi.org/10.3390/ceramics3030034
48 F Yan , J Jiang , S Tian , Z Liu , J Shi , K Li , X Chen , Y Xu . (2016). A green and facile synthesis of ordered mesoporous nanosilica using coal fly ash. ACS Sustainable Chemistry & Engineering, 4(9): 4654–4661
https://doi.org/10.1021/acssuschemeng.6b00793
49 G Yang , Q Ren , J Xu , Q Lyu . (2021). Co-melting properties and mineral transformation behavior of mixtures by MSWI fly ash and coal ash. Journal of the Energy Institute, 96: 148–157
https://doi.org/10.1016/j.joei.2021.03.008
50 T Yang , C Han , H Liu , L Yang , D Liu , J Tang , Y Luo . (2019a). Synthesis of Na-X zeolite from low aluminum coal fly ash: characterization and high efficient As(V) removal. Advanced Powder Technology, 30(1): 199–206
https://doi.org/10.1016/j.apt.2018.10.023
51 X Yang , W Tang , X Liu , H Du , Y Wu , J Zhang . (2019b). Synthesis of mesoporous silica from coal slag and CO2 for phenol removal. Journal of Cleaner Production, 208: 1255–1264
https://doi.org/10.1016/j.jclepro.2018.10.212
52 Z T Yao , M S Xia , P K Sarker , T Chen . (2014). A review of the alumina recovery from coal fly ash, with a focus in China. Fuel, 120: 74–85
https://doi.org/10.1016/j.fuel.2013.12.003
53 Y Yu , X Li , X Zou , X Zhu . (2014). Effect of seawater salinity on the synthesis of zeolite from coal fly ash. Frontiers of Environmental Science & Engineering, 8(1): 54–61
https://doi.org/10.1007/s11783-013-0493-4
54 N Yuan, H Cai, T Liu, Q Huang, X Zhang (2019). Adsorptive removal of methylene blue from aqueous solution using coal fly ash-derived mesoporous silica material. Adsorption Science and Technology, 37(3–4): 333–348
https://doi.org/10.1177/0263617419827438
55 M Zhang , C Chen , X Wang , A Li . (2021a). Extraction of aluminum from coal fly ash sintering-acid leaching process. Chinese Journal of Envrionmental Engineering, 15(7): 2389–2397
https://doi.org/10.12030/j.cjee.202103132
56 X Zhang , T Du , H Jia . (2021b). Efficient activation of coal fly ash for silica and alumina leaches and the dependence of Pb(II) removal capacity on the crystallization conditions of Al-MCM-41. International Journal of Molecular Sciences, 22(12): 6540
https://doi.org/10.3390/ijms22126540
57 B Zhou , J Zhou , T Hu , L Yang , G Lin , L Zhang . (2018). Phase transformation mechanism in activation of high-alumina fly ash with Na2CO3. Materials Research Express, 6(1): 015502
https://doi.org/10.1088/2053-1591/aae3a8
58 T Zhou , Y Liu , X Xiao , X Xu , J Dou . (2022). Synthesis of NaHS zeolite using microwave assisted alkali activation of coal fly ash: preparation, mechanism, application. Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, 44(4): 10506–10517
https://doi.org/10.1080/15567036.2022.2154413
[1] FSE-23009-OF-JTY_suppl_1 Download
[1] Xingyue Chen, Peng Zhang, Yang Wang, Wei Peng, Zhifeng Ren, Yihong Li, Baoshuai Chu, Qiang Zhu. Research progress on synthesis of zeolites from coal fly ash and environmental applications[J]. Front. Environ. Sci. Eng., 2023, 17(12): 149-.
[2] Yanqing YU, Xiaoliang LI, Xiaolan ZOU, Xiaobin ZHU. Effect of seawater salinity on the synthesis of zeolite from coal fly ash[J]. Front Envir Sci Eng, 2014, 8(1): 54-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed