Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (4) : 49    https://doi.org/10.1007/s11783-024-1809-2
Toxicity mechanisms of photodegraded polyvinyl chloride nanoplastics on pea seedlings
Hao Wu, Beibei He, Bocheng Chen, An Liu()
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
 Download: PDF(7353 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Photodegraded polyvinyl chloride nanoplastics (PVC-NPs) inhibited pea seedlings’ growth.

● Photodegraded PVC-NPs resulted in damage of leaf stomata and roots.

● Photodegraded PVC-NPs influenced protein processing in endoplasmic reticulum.

● Photodegraded PVC-NPs influenced phenylpropanoid biosynthesis.

Nanoplasctics (NPs), which are very small in particle size, exert toxic effect to organisms. Additionally, compared to original NPs, photodegraded NPs would pose higher toxicity. This is because their relatively higher specific surface areas and the presence of additives which can more easily leach. How original NPs and aged NPs affect plant growth has not been widely investigated. This work chose polyvinyl chloride NPs (PVC-NPs) that were subjected to up to 1000 h UV light radiation to explore the impact of PVC-NPs on the growth of pea seedlings (Pisum Sativum L.). The results indicated the existence of PVC-NPs with longer UV light radiation time and higher concentrations had more negative influences on pea seedlings’ growth such as germination rate (decreased by 10.6%–22.5%), stem length (decreased by 2.8%–8.1%), dry weight (decreased by 6.3%–7.1%) and fresh weight (decreased by 6.7%–14.8%). It was also noted that photodegraded PVC-NPs resulted in damage to leaf stomata and roots, hindering photosynthesis and absorption of nutrients and hence the decrease in chlorophyll and soluble sugar contents. According to transcriptomic investigation results, the presence of aged PVC-NPs primarily influenced protein processing in endoplasmic reticulum (upregulated metabolic pathway) and phenylpropanoid biosynthesis (downregulated metabolic pathway) of pea seedlings. These results provide an in-depth understanding of how NPs influence the growth of plants.

Keywords Nanoplasctics      Polyvinyl chloride      Toxicity mechanisms      Plant growth     
Corresponding Author(s): An Liu   
Issue Date: 10 January 2024
 Cite this article:   
Hao Wu,Beibei He,Bocheng Chen, et al. Toxicity mechanisms of photodegraded polyvinyl chloride nanoplastics on pea seedlings[J]. Front. Environ. Sci. Eng., 2024, 18(4): 49.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1809-2
https://academic.hep.com.cn/fese/EN/Y2024/V18/I4/49
Fig.1  SEM images of PVC-NPs which received UV light radiation.
Fig.2  Growth parameters of pea seedlings exposed to PVC-NPs (Note: Different letters mean that there are significant differences between different groups at P < 0.05 while the same letter means that there are not significant difference. (a) Germination rate; (b) stem length; (c) root length; (d) dry weight; (e) fresh weight; (f) water content).
Fig.3  SEM images of pea seedling leaves ((a) blank group; (b) 1000 h-50 mg/L group; (c) 0 h-100 mg/L group; (d) 1000 h-100 mg/L group).
Fig.4  SEM images of pea seedling roots ((a) blank group; (b) 500 h-10 mg/L group; (c) 0 h-100 mg/L group; (d) 1000 h-50 mg/L group).
Fig.5  (a) Chlorophyll and (b) soluble sugar content of pea seedlings exposed to PVC-NPs (Note: Different letters mean that there are significant differences between different groups at P < 0.05 while the same letter means that there are not significant difference).
Fig.6  Network diagram of protein processing in the endoplasmic reticulum pathways.
Fig.7  Network diagram of phenylpropanoid biosynthesis pathways.
Fig.8  Toxicity mechanisms of photodegraded PVC-NPs on pea seedlings.
1 H AbdElgawad , E R Farfan-Vignolo , D D Vos , H Asard . (2015). Elevated CO2 mitigates drought and temperature-induced oxidative stress differently in grasses and legumes. Plant Science, 231: 1–10
https://doi.org/10.1016/j.plantsci.2014.11.001
2 B M Anthony , J M Chaparro , J E Prenni , I S Minas . (2023). Carbon sufficiency boosts phenylpropanoid biosynthesis early in peach fruit development priming superior fruit quality. Plant Physiology and Biochemistry, 196: 1019–1031
https://doi.org/10.1016/j.plaphy.2023.02.038
3 H P H Arp , D Kuhnel , C Rummel , M Macleod , A Potthoff , S Reichelt , E Rojo-Nieto , M Schmitt-Jansen , J Sonnenberg , E Toorman . et al.. (2021). Weathering plastics as a planetary boundary threat: exposure, fate, and hazards. Environmental Science & Technology, 55(11): 7246–7255
https://doi.org/10.1021/acs.est.1c01512
4 N Bandow , V Will , V Wachtendorf , F G Simon . (2017). Contaminant release from aged microplastic. Environmental Chemistry, 14(6): 394–405
https://doi.org/10.1071/EN17064
5 E Besseling , P Redondo-Hasselerharm , E M Foekema , A A Koelmans . (2019). Quantifying ecological risks of aquatic micro- and nanoplastic. Critical Reviews in Environmental Science and Technology, 49(1): 32–80
https://doi.org/10.1080/10643389.2018.1531688
6 Erdem İ Çelen , C Ünek , Süt P Akkuş , Acar Ö Karabıyık , M Yurtsever , F Şahin . (2023). Combined approaches for detecting polypropylene microplastics in crop plants. Journal of Environmental Management, 347: 119258
https://doi.org/10.1016/j.jenvman.2023.119258
7 Y Chen , H Qi , L Yang , L Xu , J Wang , J Guo , L Zhang , Y Tan , R Pan , Q Shu , Q Qian , S Song . (2023). The OsbHLH002/OsICE1–OSH1 module orchestrates secondary cell wall formation in rice. Cell Reports, 42(7): 112702
https://doi.org/10.1016/j.celrep.2023.112702
8 C Y L Choo , P C Wu , J I Yago , K R Chung . (2023). The Pex3-mediated peroxisome biogenesis plays a critical role in metabolic biosynthesis, stress response, and pathogenicity in Alternaria alternata. Microbiological Research, 266: 127236
https://doi.org/10.1016/j.micres.2022.127236
9 H Daraei , K Toolabian , G Thompson . (2021). Biotoxicity evaluation of zinc oxide nanoparticles on bacterial performance of activated sludge at COD, nitrogen, and phosphorus reduction. Frontiers of Environmental Science & Engineering, 16(2): 19
https://doi.org/10.1007/s11783-021-1453-z
10 L Ding , Z Z Ouyang , P Liu , T C Wang , H Z Jia , X T Guo . (2022a). Photodegradation of microplastics mediated by different types of soil: the effect of soil components. Science of the Total Environment, 802: 149840
https://doi.org/10.1016/j.scitotenv.2021.149840
11 L Ding , X Q Yu , X T Guo , Y P Zhang , Z Z Ouyang , P Liu , C Zhang , T C Wang , H Z Jia , L Y Zhu . (2022b). The photodegradation processes and mechanisms of polyvinyl chloride and polyethylene terephthalate microplastic in aquatic environments: important role of clay minerals. Water Research, 208: 117879
https://doi.org/10.1016/j.watres.2021.117879
12 L P Domínguez-Jaimes , E I Cedillo-González , E Luévano-Hipólito , J D Acuña-Bedoya , J M Hernández-López . (2021). Degradation of primary nanoplastics by photocatalysis using different anodized TiO2 structures. Journal of Hazardous Materials, 413: 125452
https://doi.org/10.1016/j.jhazmat.2021.125452
13 Y Dong , M Gao , W Qiu , Z Song . (2021). Uptake of microplastics by carrots in presence of As (III): combined toxic effects. Journal of Hazardous Materials, 411: 125055
https://doi.org/10.1016/j.jhazmat.2021.125055
14 T T Du , X Yu , S Shao , T Li , S M Xu , L J Wu . (2023). Aging of nanoplastics significantly affects protein corona composition thus enhancing macrophage uptake. Environmental Science & Technology, 57(8): 3206–3217
https://doi.org/10.1021/acs.est.2c05772
15 Z Gao , L Yao , L Pan . (2022). Gene expression and functional analysis of different heat shock protein (HSPs) in Ruditapes philippinarum under BaP stress. Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP, 251: 109194
https://doi.org/10.1016/j.cbpc.2021.109194
16 W Gong , Y Xing , L Han , A Lu , H Qu , L Xu . (2022). Occurrence and distribution of micro- and mesoplastics in the high-latitude nature reserve, northern China. Frontiers of Environmental Science & Engineering, 16(9): 2095–2201
https://doi.org/10.1007/s11783-022-1534-7
17 X Guan , Q Li , T Maimaiti , S Lan , P Ouyang , B Ouyang , X Wu , S T Yang . (2021). Toxicity and photosynthetic inhibition of metal-organic framework MOF-199 to pea seedlings. Journal of Hazardous Materials, 409: 124521
https://doi.org/10.1016/j.jhazmat.2020.124521
18 Q C Guo , E R Bandala , A Goonetilleke , N Hong , Y Q Li , A Liu . (2021). Application of Chlorella pyrenoidosa embedded biochar beads for water treatment. Journal of Water Process Engineering, 40: 101892
https://doi.org/10.1016/j.jwpe.2020.101892
19 J N Hahladakis , C A Velis , R Weber , E Iacovidou , P Purnell . (2018). An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials, 344: 179–199
https://doi.org/10.1016/j.jhazmat.2017.10.014
20 B B He , A Liu , H B Duan , B Wijesiri , A Goonetilleke . (2022). Risk associated with microplastics in urban aquatic environments: a critical review. Journal of Hazardous Materials, 439: 129587
https://doi.org/10.1016/j.jhazmat.2022.129587
21 B B He , A Liu , G O Duodu , B Wijesiri , G A Ayoko , A Goonetilleke . (2023). Distribution and variation of metals in urban river sediments in response to microplastics presence, catchment characteristics and sediment properties. Science of the Total Environment, 856: 159139
https://doi.org/10.1016/j.scitotenv.2022.159139
22 Z D Hua , S R Ma , Z Z Ouyang , P Liu , H Qiang , X T Guo . (2023). The review of nanoplastics in plants: detection, analysis, uptake, migration and risk. Trends in Analytical Chemistry, 158: 116889
https://doi.org/10.1016/j.trac.2022.116889
23 Y X Huo , F A Dijkstra , M Possell , B Singh . (2022). Ecotoxicological effects of plastics on plants, soil fauna and microorganisms: a meta-analysis. Environmental Pollution, 310: 119892
https://doi.org/10.1016/j.envpol.2022.119892
24 S Juneja , R Saini , A Adhikary , R Yadav , S A Khan , H Nayyar , S Kumar . (2023). Drought priming evokes essential regulation of Hsp gene families, Hsfs and their related miRNAs and induces heat stress tolerance in chickpea. Plant Stress, 10: 100189
https://doi.org/10.1016/j.stress.2023.100189
25 C J Li , Y Gao , S He , H Y Chi , Z C Li , X X Zhou , B Yan . (2021). Quantification of nanoplastic uptake in cucumber plants by pyrolysis gas chromatography/mass spectrometry. Environmental Science & Technology Letters, 8(8): 633–638
https://doi.org/10.1021/acs.estlett.1c00369
26 L Z Li , Y M Luo , R J Li , Q Zhou , W J G M Peijnenburg , N Yin , J Yang , C Tu , Y C Zhang . (2020a). Effective uptake of submicrometre plactics by crop plants via a crack-entry mode. Nature Sustainability, 3(11): 929–937
https://doi.org/10.1038/s41893-020-0567-9
27 M Y Li , J Kong , Y R Chen , Y T Li , H Z Xuan , M Liu , Q Zhang , J Liu . (2023). Comparative interaction study of soy protein isolate and three flavonoids (Chrysin, Apigenin and Luteolin) and their potential as natural preservatives. Food Chemistry, 414: 135738
https://doi.org/10.1016/j.foodchem.2023.135738
28 Q Li , R Hu , Z Chen , L Chen , J Zhang , X Wu , J B Li , Y Gao , S T Yang , H Wang . (2022). Phytotoxicity of VO2 nanoparticles with different sizes to pea seedlings. Ecotoxicology and Environmental Safety, 242: 113885
https://doi.org/10.1016/j.ecoenv.2022.113885
29 Z X Li , R J Li , Q F Li , J G Zhou , G Y Wang . (2020b). Physiological response of cucumber (Cucumis sativus L.) leaves to polystyrene nanoplastics pollution. Chemosphere, 255: 127041
https://doi.org/10.1016/j.chemosphere.2020.127041
30 J Z Lima , R Cassaro , A P Ogura , M M G R Vianna . (2023). A systematic review of the effects of microplastics and nanoplastics on the soil-plant system. Sustainable Production and Consumption, 38: 266–282
https://doi.org/10.1016/j.spc.2023.04.010
31 Y Liu , C Zhou , F Li , H Liu , J Yang . (2020). Stocks and flows of polyvinyl chloride (PVC) in China: 1980–2050. Resources, Conservation and Recycling, 154: 104584
https://doi.org/10.1016/j.resconrec.2019.104584
32 Y Y Liu , R Guo , S W Zhang , Y H Sun , F Y Wang . (2022). Uptake and translocation of nano/microplastics by rice seedlings: evidence from a hydroponic experiment. Journal of Hazardous Materials, 421: 126700
https://doi.org/10.1016/j.jhazmat.2021.126700
33 S H Lu , K R Zhu , W C Song , G Song , D Y Chen , T Hayat , N S Alharbi , C L Chen , Y B Sun . (2018). Impact of water chemistry on surface charge and aggregation of polystyrene microspheres suspensions. Science of the Total Environment, 630: 951–959
https://doi.org/10.1016/j.scitotenv.2018.02.296
34 H W Luo , Y Li , Y Y Zhao , Y H Xiang , D Q He , X L Pan . (2020). Effects of accelerated aging on characteristics, leaching, and toxicity of commercial lead chromate pigmented microplastics. Environmental Pollution, 257: 113475
https://doi.org/10.1016/j.envpol.2019.113475
35 S Maity , K Pramanick . (2020). Perspectives and challenges of micro/nanoplastics-induced toxicity with special reference to phytotoxicity. Global Change Biology, 26(6): 3241–3250
https://doi.org/10.1111/gcb.15074
36 Y Mao , H Ai , Y Chen , Z Zhang , P Zeng , L Kang , W Li , W Gu , Q He , H Li . (2018). Phytoplankton response to polystyrene microplastics: perspective from an entire growth period. Chemosphere, 208: 59–68
https://doi.org/10.1016/j.chemosphere.2018.05.170
37 K Mattsson , E V Johnson , A Malmendal , S Linse , L A Hansson , T Cedervall . (2017). Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Scientific Reports, 7(1): 11452
https://doi.org/10.1038/s41598-017-10813-0
38 P McCue , Z Zheng , J L Pinkham , K Shetty . (2000). A model for enhanced pea seedling vigour following low pH and salicylic acid treatments. Process Biochemistry, 35(6): 603–613
https://doi.org/10.1016/S0032-9592(99)00111-9
39 J Meng , B Xu , F Liu , W Li , N Sy , X Zhou , B Yan . (2021). Effects of chemical and natural ageing on the release of potentially toxic metal additives in commercial PVC microplastics. Chemosphere, 283: 131274
https://doi.org/10.1016/j.chemosphere.2021.131274
40 S Mondal , S Karmakar , D Panda , K Pramanik , B Bose , R K Singhal . (2023). Crucial plant processes under heat stress and tolerance through heat shock proteins. Plant Stress, 10: 100227
https://doi.org/10.1016/j.stress.2023.100227
41 L Nayak , M K Lal , R K Tiwari , R Kumar , P Lal , R Das , B Behera , P Thakur , M A Altaf , A Kumar . (2023). A balancing act: exploring the interplay between HSPs and osmoprotectants in temperature stress responses. South African Journal of Botany, 162: 64–71
https://doi.org/10.1016/j.sajb.2023.08.069
42 S O’Brien , C Rauert , F Ribeiro , E D Okoffo , S D Burrows , J W O’Brien , X Y Wang , S L Wright , K V Thomas . (2023). There’s something in the air: a review of sources, prevalence and behaviour of microplastics in the atmosphere. Science of the Total Environment, 874: 162193
https://doi.org/10.1016/j.scitotenv.2023.162193
43 P Pfohl , D Bahl , M Ruckel , M Wagner , L Meyer , P Bolduan , G Battagliarin , T Huffer , M Zumstein , T Hofmann . et al.. (2022). Effect of polymer properties on the biodegradation of polyurethane microplastics. Environmental Science & Technology, 56(23): 16873–16884
https://doi.org/10.1021/acs.est.2c05602
44 J A Pitt , J S Kozal , N Jayasundara , A Massarsky , R Trevisan , N Geitner , M Wiesner , E D Levin , R T Di Giulio . (2018). Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio). Aquatic Toxicology, 194: 185–194
https://doi.org/10.1016/j.aquatox.2017.11.017
45 M M Qiao , G Y Xia , T Cui , Y Xu , X J Gao , Y Su , Y B Li , H F Fan . (2022). Effect of moisture, protein, starch, soluble sugar contents and microstructure on mechanical properties of maize kernels. Food Chemistry, 379: 132147
https://doi.org/10.1016/j.foodchem.2022.132147
46 X Ren , Y Han , H R Zhao , Z Q Zhang , T H Tsui , Q Wang . (2023). Elucidating the characteristic of leachates released from microplastics under different aging conditions: perspectives of dissolved organic carbon fingerprints and nano-plastics. Water Research, 233: 119786
https://doi.org/10.1016/j.watres.2023.119786
47 J Rencoret , Río J C del , K G J Nierop , A Gutiérrez , J Ralph . (2016). Rapid Py-GC/MS assessment of the structural alterations of lignins in genetically modified plants. Journal of Analytical and Applied Pyrolysis, 121: 155–164
https://doi.org/10.1016/j.jaap.2016.07.016
48 S Rist , A Baun , N B Hartmann . (2017). Ingestion of micro- and nanoplastics in Daphnia magna: quantification of body burdens and assessment of feeding rates and reproduction. Environmental Pollution, 228: 398–407
https://doi.org/10.1016/j.envpol.2017.05.048
49 A E Schwarz , S M C Lensen , E Langeveld , L A Parker , J H Urbanus . (2023). Plastics in the global environment assessed through material flow analysis, degradation and environmental transportation. Science of the Total Environment, 875: 162644
https://doi.org/10.1016/j.scitotenv.2023.162644
50 K Shekhawat , M Almeida-Trapp , G X García-Ramírez , H Hirt . (2022). Beat the heat: plant- and microbe-mediated strategies for crop thermotolerance. Trends in Plant Science, 27(8): 802–813
https://doi.org/10.1016/j.tplants.2022.02.008
51 C Shi , Z Liu , B Yu , Y Zhang , H Yang , Y Han , B Wang , Z Liu , H Zhang . (2024). Emergence of nanoplastics in the aquatic environment and possible impacts on aquatic organisms. Science of the Total Environment, 906: 167404
https://doi.org/10.1016/j.scitotenv.2023.167404
52 H F Sun , C L Lei , J H Xu , R L Li . (2021). Foliar uptake and leaf-to-root translocation of nanoplastics with different coating charge in maize plants. Journal of Hazardous Materials, 416: 125854
https://doi.org/10.1016/j.jhazmat.2021.125854
53 X D Sun , X Z Yuan , Y Jia , L J Feng , F P Zhu , S S Dong , J Liu , X Kong , H Tian , J L Duan . et al.. (2020). Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nature Nanotechnology, 15(9): 755–760
https://doi.org/10.1038/s41565-020-0707-4
54 U Surendran , M Jayakumar , P Raja , G Gopinath , P V Chellam . (2023). Microplastics in terrestrial ecosystem: sources and migration in soil environment. Chemosphere, 318: 137946
https://doi.org/10.1016/j.chemosphere.2023.137946
55 K Tallec , A Huvet , Poi C D Di , C González-Fernández , C Lambert , B Petton , Goïc N L Le , M Berchel , P Soudant , I Paul-Pont . (2018). Nanoplastics impaired oyster free living stages, gametes and embryos. Environmental Pollution, 242: 1226–1235
https://doi.org/10.1016/j.envpol.2018.08.020
56 Y Tang , J Ren , C X Liu , J B Jiang , H H Yang , J F Li . (2021). Genetic characteristics and QTL analysis of the soluble sugar content in ripe tomato fruits. Scientia Horticulturae, 276: 109785
https://doi.org/10.1016/j.scienta.2020.109785
57 H Y Tong , X C Zhong , Z H Duan , X L Yi , F Q Cheng , W Q Xu , X J Yang . (2022a). Micro- and nanoplastics released from biodegradable and conventional plastics during degradation: formation, aging factors, and toxicity. Science of the Total Environment, 833: 155275
https://doi.org/10.1016/j.scitotenv.2022.155275
58 Y Tong , S C Yi , S Y Liu , L Xu , Z X Qiu , D Q Zeng , W W Tang . (2022b). Bruceine D may affect the phenylpropanoid biosynthesis by acting on ADTs thus inhibiting Bidens pilosa L. seed germination. Ecotoxicology and Environmental Safety, 242: 113943
https://doi.org/10.1016/j.ecoenv.2022.113943
59 A Vidal , D Cantabella , A Bernal-Vicente , P Díaz-Vivancos , J A Hernández . (2018). Nitrate- and nitric oxide-induced plant growth in pea seedlings is linked to antioxidative metabolism and the ABA/GA balance. Journal of Plant Physiology, 230: 13–20
https://doi.org/10.1016/j.jplph.2018.08.003
60 F Y Wang , X Y Feng , Y Y Liu , C A Adams , Y H Sun , S W Zhang . (2022). Micro(nano)plastics and terrestrial plants: up-to-date knowledge on uptake, translocation, and phytotoxicity. Resources, Conservation and Recycling, 185: 106503
https://doi.org/10.1016/j.resconrec.2022.106503
61 H Q Wang , J H Zhu , Y He , J W Wang , N D Zeng , X H Zhan . (2023). Photoaging process and mechanism of four commonly commercial microplastics. Journal of Hazardous Materials, 451: 131151
https://doi.org/10.1016/j.jhazmat.2023.131151
62 Q Wang , X Wangjin , Y Zhang , N Wang , Y Wang , G Meng , Y Chen . (2020). The toxicity of virgin and UV-aged PVC microplastics on the growth of freshwater algae Chlamydomonas reinhardtii. Science of the Total Environment, 749: 141603
https://doi.org/10.1016/j.scitotenv.2020.141603
63 H Wu , B B He , B C Chen , A Liu . (2023). Toxicity of polyvinyl chloride microplastics on Brassica rapa. Environmental Pollution, 336: 122435
https://doi.org/10.1016/j.envpol.2023.122435
64 X Wu , Y Liu , S S Yin , K K Xiao , Q Xiong , S J Bian , S Liang , H J Hou , J P Hu , J K Yang . (2020). Metabolomics revealing the response of rice (Oryza sativa L.) exposed to polystyrene microplastics. Environmental Pollution, 266: 115159
https://doi.org/10.1016/j.envpol.2020.115159
65 X H Xia , W W Guo , X Y Ma , N Liang , X Y Duan , P H Zhang , Y Zhang , Z J Chang , X W Zhang . (2023). Reproductive toxicity and cross-generational effect of polyethylene microplastics in Paramisgurnus dabryanus. Chemosphere, 313: 137440
https://doi.org/10.1016/j.chemosphere.2022.137440
66 X Y Yan , X Y Yang , Z Tang , J J Fu , F M Chen , Y Zhao , L L Ruan , Y S Yang . (2020). Downward transport of naturally-aged light microplastics in natural loamy sand and the implication to the dissemination of antibiotic resistance genes. Environmental Pollution, 262: 114270
https://doi.org/10.1016/j.envpol.2020.114270
67 H R Yang , K Tang , H T Liu , W D Huang . (2011). Effect of salicylic acid on jasmonic acid-related defense response of pea seedlings to wounding. Scientia Horticulturae, 128(3): 166–173
https://doi.org/10.1016/j.scienta.2011.01.015
68 J Yang , M Monnot , Y Sun , L Asia , P W W Wong-Wah-Chung , P Doumenq , P Moulin . (2023). Microplastics in different water samples (seawater, freshwater, and wastewater): removal efficiency of membrane treatment processes. Water Research, 232: 119673
https://doi.org/10.1016/j.watres.2023.119673
69 X Yang , Q He , F Guo , X Liu , Y Chen . (2021). Translocation and biotoxicity of metal (oxide) nanoparticles in the wetland-plant system. Frontiers of Environmental Science & Engineering, 15(6): 138
https://doi.org/10.1007/s11783-021-1432-4
70 L S Yin , X F Wen , D L Huang , C Y Du , R Deng , Z Y Zhou , J X Tao , R J Li , W Zhou , Z Y Wang . et al.. (2021). Interactions between microplastics/nanoplastics and vascular plants. Environmental Pollution, 290: 117999
https://doi.org/10.1016/j.envpol.2021.117999
71 Y Yu , J Li . (2024). Biochar-derived dissolved and particulate matter effects on the phytotoxicity of polyvinyl chloride nanoplastics. Science of the Total Environment, 906: 167258
https://doi.org/10.1016/j.scitotenv.2023.167258
72 Z Yue , Y Chen , C Chen , K Ma , E Tian , Y Wang , H Liu , Z Sun . (2021). Endophytic Bacillus altitudinis WR10 alleviates Cu toxicity in wheat by augmenting reactive oxygen species scavenging and phenylpropanoid biosynthesis. Journal of Hazardous Materials, 405: 124272
https://doi.org/10.1016/j.jhazmat.2020.124272
73 D Zhang , J Li , X Niu , C Deng , X Song , W Li , Z Cheng , Q Xu , B Zhang , W Guo . (2021). GhANN1 modulates the salinity tolerance by regulating ABA biosynthesis, ion homeostasis and phenylpropanoid pathway in cotton. Environmental and Experimental Botany, 185: 104427
https://doi.org/10.1016/j.envexpbot.2021.104427
74 X S Zhang , H Su , P Gao , B H Li , L Feng , Y Z Liu , Z W Du , L Q Zhang . (2022). Effects and mechanisms of aged polystyrene microplastics on the photodegradation of sulfamethoxazole in water under simulated sunlight. Journal of Hazardous Materials, 433: 128813
https://doi.org/10.1016/j.jhazmat.2022.128813
75 X Zhao , B Tang , J Xu , N Wang , Z Zhou , J Zhang . (2020). A SET domain-containing protein involved in cell wall integrity signaling and peroxisome biogenesis is essential for appressorium formation and pathogenicity of Colletotrichum gloeosporioides. Fungal Genetics and Biology, 145: 103474
https://doi.org/10.1016/j.fgb.2020.103474
76 X Zheng , X Liu , L Zhang , Z Wang , Y Yuan , J Li , Y Li , H Huang , X Cao , Z Fan . (2022). Toxicity mechanism of nylon microplastics on Microcystis aeruginosa through three pathways: photosynthesis, oxidative stress and energy metabolism. Journal of Hazardous Materials, 426: 128094
https://doi.org/10.1016/j.jhazmat.2021.128094
77 C Q Zhou , C H Lu , L Mai , L J Bao , L Y Liu , E Y Zeng . (2021a). Response of rice (Oryza sativa L.) roots to nanoplastic treatment at seedling stage. Journal of Hazardous Materials, 401: 123412
https://doi.org/10.1016/j.jhazmat.2020.123412
78 X X Zhou , S He , Y Gao , H Y Chi , D J Wang , Z C Li , B Yan . (2021b). Quantitative analysis of polystyrene and poly(methyl methacrylate) nanoplastics in tissues of aquatic animals. Environmental Science & Technology, 55(5): 3032–3040
https://doi.org/10.1021/acs.est.0c08374
79 K C Zhu , H Z Jia , S Zhao , T J Xia , X T Guo , T C Wang , L Y Zhu . (2019). Formation of environmentally persistent free radicals on microplastics under light irradiation. Environmental Science & Technology, 53(14): 8177–8186
https://doi.org/10.1021/acs.est.9b01474
[1] FSE-23108-of-WH_suppl_1 Download
[1] Yuehui WU, Guoliang WANG, Zhen WANG, Yi LIU, Ping GU, Dezhi SUN. Comparative study on the efficiency and environmental impact of two methods of utilizing polyvinyl chloride waste based on life cycle assessments[J]. Front. Environ. Sci. Eng., 2014, 8(3): 451-462.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed