Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (4) : 50    https://doi.org/10.1007/s11783-024-1810-9
Application of a simplified ADM1 for full-scale anaerobic co-digestion of cattle slurry and grass silage: assessment of input variability
Sofia Tisocco1,2, Sören Weinrich3,4, Gary Lyons5, Michael Wills5, Xinmin Zhan1,6,7(), Paul Crosson2
1. Civil Engineering, College of Science and Engineering, University of Galway, Galway, H91 TK33, Ireland
2. Teagasc Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Dunsany, C15 PW93, Ireland
3. Biochemical Conversion Department, Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Leipzig 04347, Germany
4. Faculty of Energy · Building Services · Environmental Engineering, Münster University of Applied Sciences, Steinfurt 48565, Germany
5. Agri-Food and Biosciences Institute, Hillsborough, BT26 6DR, UK
6. Ryan Institute, University of Galway, Galway, H91 TK33, Ireland
7. MaREI Research Centre for Energy, Climate and Marine, Ryan Institute, University of Galway, Galway, H91 TK33, Ireland
 Download: PDF(7082 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Simplified ADM1 can predict biogas production from a full-scale biogas plant.

● Default parameters allowed for an accurate process simulation.

● Measurement variability did not affect simulated biogas and methane flow.

● Degradability of carbohydrates had a remarkable effect on gas yields.

Mathematical modeling of anaerobic digestion is a powerful tool to predict gas yields and optimize the process. The Anaerobic Digestion Model No. 1 (ADM1) is a widely implemented model for this purpose. However, modeling full-scale biogas plants is challenging due to the extensive substrate and parameter characterization required. This study describes the modification of the ADM1 through a simplification of individual process phases, characteristic components and required parameters. Consequently, the ability of the simplified model to simulate the co-digestion of grass silage and cattle slurry was evaluated using data from a full-scale biogas plant. The impacts of substrate composition (crude carbohydrate, protein and lipid concentration) and variability of carbohydrate degradability on simulation results were assessed to identify the most influential parameters. Results indicated that the simplified version was able to depict biogas and biomethane production with average model efficiencies, according to the Nash-Sutcliffe efficiency (NSE) coefficient, of 0.70 and 0.67, respectively, and was comparable to the original ADM1 (average model efficiencies of 0.71 and 0.63, respectively). The variability of crude carbohydrate, protein and lipid concentration did not significantly impact biogas and biomethane output for the data sets explored. In contrast, carbohydrate degradability seemed to explain much more of the variability in the biogas and methane production. Thus, the application of simplified models provides a reliable basis for the process simulation and optimization of full-scale agricultural biogas plants.

Keywords ADM1      Agricultural feedstocks      Biogas technology      Input variability      Parameter estimation     
Corresponding Author(s): Xinmin Zhan   
Issue Date: 02 January 2024
 Cite this article:   
Sofia Tisocco,Sören Weinrich,Gary Lyons, et al. Application of a simplified ADM1 for full-scale anaerobic co-digestion of cattle slurry and grass silage: assessment of input variability[J]. Front. Environ. Sci. Eng., 2024, 18(4): 50.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1810-9
https://academic.hep.com.cn/fese/EN/Y2024/V18/I4/50
Parameter Unit Data set A Data set B
Grass silage Cattle slurry Grass silage Cattle slurry
TS b) [% FM] 20.1 6.8 25.2 7.5
XA b) [g/kg TS] 185 241 185 241
XC b, c, d) [g/kg TS] 624 (41) 609 (29) 653 (27) 595 (24)
XP b, d) [g/kg TS] 160 (36) 101 (29) 135 (21) 115 (24)
XL b, d) [g/kg TS] 31 (7) 48.5 (4.8) 27 (7) 48.5 (4.8)
NH4-N b) [g/kg TS] 25.6 65.3 21.8 57.8
Acetic acid [g/kg TS] 20 e) 4.9 b) 31 e) 4.6 b)
Butyric acid [g/kg TS] 1.8 e) 0.6 b) 1 e) 0.6 b)
Propionic acid [g/kg TS] 0.6 e) 1.3 b) 1 e) 1.3 b)
Lactic acid [g/kg TS] 97 e) 116 e)
Valeric acid [g/kg TS] 0.2 b) 0.2 b)
DQXC f) [% XC] 85 69 80 69
Tab.1  Characteristics of the substrates used in this study a)
Fig.1  Schematic procedure of data collection from plant measurements to implementation in the ADM1_R3. Grass silage was taken as an example. Green boxes indicate plant measurements, orange boxes mark parameters taken from literature and purple boxes refer to indirect calculation by other parameters. Red outlines indicate unknown variability analyzed during this study.
Parameter Unit Grass silage Cattle slurry
ADL (Low DQXC) [g/kg TS] 147 b) 175 c)
XF [g/kg TS] 290 b) 213 c)
nXC (High DQXC) [g/kg TS] 212 d) 283 d)
Tab.2  Average values from literature implemented for degradability scenarios a)
Fig.2  Simulation results of biogas production, methane flow, ammonium nitrogen and pH from ADM1 and ADM1-R3 of each data set. Green dots in biogas and methane production indicate weekends (incl. Mondays) when no silage was fed.
Model output Data set A Mean difference to ADM1-R3 (Data set A) Data set B Mean difference to ADM1-R3 (Data set B)
ADM1
Biogas production 0.86 0.0 0.55 0.02
Methane flow 0.78 −0.04 0.48 −0.05
Ammonium nitrogen 0.18 0.0 0.08 −0.06
pH value 0.22 −0.02 −3.91 −0.05
ADM1-R3
Biogas production 0.86 0.53
Methane flow 0.82 0.53
Ammonium nitrogen 0.18 0.14
pH value 0.24 −3.86
Substrate composition scenario a)
Biogas production 0.86–0.9 (0.89) 0.03 0.47 – 0.57 (0.54) 0.01
Methane flow 0.7–0.87 (0.82) 0.0 0.33 −0.55 (0.50) −0.03
Ammonium nitrogen −1.03 – 0.21 (0.04) −0.14 −2.79 – 0.52 (−0.06) −0.2
pH value −0.47 – 0.31 (0.26) 0.02 −6.5 – −1.6 (−3.63) 0.23
Degradability quotients scenario
Biogas production High, 0.88 0.02 High, 0.55 0.02
Low, 0.38 −0.48 Low, −0.76 −1.29
Methane flow High, 0.72 −0.1 High, 0.55 0.02
Low, 0.86 0.03 Low, 0.23 −0.3
Ammonium nitrogen High, 0.18 0.0 High, 0.14 0.0
Low, 0.18 0.0 Low, 0.42 0.28
pH value High, 0.25 0.01 High, −3.93 −0.07
Low, 0.08 −0.16 Low, −2.19 1.67
Tab.3  Weekly Nash-Sutcliffe efficiency (NSE) of each model output for all the scenarios analyzed
Parameters Data set A Data set B
Baseline scenario
 kch 0.3 0.22
 kpr 0.24 0.16
Substrate composition scenario a)
 kch 2.54 (3.4) 0.6 (0.6)
 kpr 2.76 (4.0) 1.5 (3.1)
Degradability scenario
High DQ
 kch 0.25 0.17
 kpr 0.2 0.13
Low DQ
 kch 0.53 0.29
 kpr 0.46 0.23
Tab.4  Parameter estimation of hydrolysis rates of carbohydrates (kch) and proteins (kpr) obtained from numerical assessment
Fig.3  Measurements and simulation results of biogas production, methane flow, ammonium nitrogen and pH from varying 100 times the crude carbohydrates, proteins and lipids content of each data set.
Parameter Unit Grass silage Cattle slurry
Mean a) Min Max Mean a) Min Max
Crude carbohydrates [g/kg TS] 638 549 701 582 497 656
Crude proteins [g/kg TS] 146 88 227 130 54 214
Crude lipids b) [g/kg TS] 30 18 43 48 43 53
Tab.5  Concentrations of crude carbohydrates, proteins and lipids of grass silage and cattle slurry obtained from Latin Hypercube Sampling (LHS) and implemented in the substrate composition scenario
Fig.4  Measurements and simulation results of biogas production, methane flow, ammonium nitrogen and pH by implementing a high and low degradability quotient (DQ) of carbohydrates for each data set. ADM1-R3 indicates the baseline scenario. Green dots in biogas and methane production indicate weekends (incl. Mondays) when no silage was fed.
Fig.5  Measurements and simulation results of biogas production and methane flow after modifying the degradability quotient of carbohydrates (DQXC) on days 68–90 and 68–99 of Data sets A and B, respectively, assuming (a) high hydrolysis rate of carbohydrates (kch = 0.8) and (b) low hydrolysis rate of carbohydrates (kch = 0.1). Squares in biogas production indicate days when DQXC was lowered to 0.5 while triangles mark days in which DQXC was increased to 1. Green dots in biogas and methane production indicate weekends (incl. Mondays) when no silage was fed.
1 T Amon, B Amon, V Kryvoruchko, A Machmüller, K Hopfner-Sixt, V Bodiroza, R Hrbek, J Friedel, E Pötsch, H Wagentristl, M Schreiner, W Zollitsch. (2007a). Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresource Technology, 98(17): 3204–3212
https://doi.org/10.1016/j.biortech.2006.07.007
2 T Amon, B Amon, V Kryvoruchko, W Zollitsch, K Mayer, L Gruber. (2007b). Biogas production from maize and dairy cattle manure-Influence of biomass composition on the methane yield. Agriculture, Ecosystems & Environment, 118(1–4): 173–182
https://doi.org/10.1016/j.agee.2006.05.007
3 D J Batstone, J Keller, I Angelidaki, S V Kalyuzhnyi, S G Pavlostathis, A Rozzi, W T M Sanders, H Siegrist, V A Vavilin. (2002). The IWA anaerobic digestion model No 1 (ADM1). Water Science and Technology, 45(10): 65–73
https://doi.org/10.2166/wst.2002.0292
4 D J Batstone, D Puyol, X Flores-Alsina, J Rodríguez. (2015). Mathematical modelling of anaerobic digestion processes: applications and future needs. Reviews in Environmental Science and Biotechnology, 14(4): 595–613
https://doi.org/10.1007/s11157-015-9376-4
5 T Beltramo, B Hitzmann. (2019). Evaluation of the linear and non-linear prediction models optimized with metaheuristics: Application to anaerobic digestion processes. Engineering in Agriculture, Environment and Food, 12(4): 397–403
https://doi.org/10.1016/j.eaef.2019.06.001
6 V Dandikas, H Heuwinkel, F Lichti, J E Drewes, K Koch. (2014). Correlation between biogas yield and chemical composition of energy crops. Bioresource Technology, 174: 316–320
https://doi.org/10.1016/j.biortech.2014.10.019
7 A Galí, T Benabdallah, S Astals, J Mata-Alvarez. (2009). Modified version of ADM1 model for agro-waste application. Bioresource Technology, 100(11): 2783–2790
https://doi.org/10.1016/j.biortech.2008.12.052
8 T Gehring, M Lübken, K Koch, M Wichern (2013). ADM1 simulation of the thermophilic mono-fermentation of maize silage–Use of an uncertainty analysis for substrate characterization. In: 13th World Congress on Anaerobic Digestion: Recovering (bio) Resources for the World (28). Santiago de Compostela: RedBiogas
9 A György, L Kocsis. (2011). Efficient multi-start strategies for local search algorithms. Journal of Artificial Intelligence Research, 41: 407–444
https://doi.org/10.1613/jair.3313
10 Iman (2022). lhsgeneral(pd,correlation,n). MATLAB Central File Exchange. UK: MathWorks
11 F L Kaiser (2007). Einfluss der stofflichen Zusammensetzung auf die Verdaulichkeit nachwachsender Rohstoffe beim anaeroben Abbau in Biogasreaktoren. Dissertation for the Doctoral Degree. München: Technische Universität München
12 S D Kalamaras, S Vasileiadis, P Karas, I Angelidaki, T A Kotsopoulos. (2020). Microbial adaptation to high ammonia concentrations during anaerobic digestion of manure-based feedstock: biomethanation and 16S rRNA gene sequencing. Journal of Chemical Technology and Biotechnology, 95(7): 1970–1979
https://doi.org/10.1002/jctb.6385
13 T Keating, P O’Kiely. (2000). Comparison of old permanent grassland, Lolium perenne and Lolium multiflorum swards grown for silage: 2. Effects on conservation characteristics in laboratory silos. Irish Journal of Agricultural and Food Research, 39: 25–33
14 K Koch, M Lübken, T Gehring, M Wichern, H Horn. (2010). Biogas from grass silage: measurements and modeling with ADM1. Bioresource Technology, 101(21): 8158–8165
https://doi.org/10.1016/j.biortech.2010.06.009
15 Y Li, Y Jin, A Borrion, H Li, J Li. (2017). Effects of organic composition on mesophilic anaerobic digestion of food waste. Bioresource Technology, 244: 213–224
https://doi.org/10.1016/j.biortech.2017.07.006
16 J Liebetrau, D Pfeiffer (2020). Methods for the determination of fundamental parameters. In: Liebetrau J, Pfeiffer D, eds. Collection of Methods for Biogas - Methods to determine parameters for analysis purposes and parameters that describe processes in the biogas sector. 2nd ed. Leipzig: Biomass Energy Use
17 M Lübken, T Gehring, M Wichern. (2010). Microbiological fermentation of lignocellulosic biomass: current state and prospects of mathematical modeling. Applied Microbiology and Biotechnology, 85(6): 1643–1652
https://doi.org/10.1007/s00253-009-2365-1
18 M Lübken, M Wichern, M Schlattmann, A Gronauer, H Horn. (2007). Modelling the energy balance of an anaerobic digester fed with cattle manure and renewable energy crops. Water Research, 41(18): 4085–4096
https://doi.org/10.1016/j.watres.2007.05.061
19 K Mason, J Duggan, E Howley. (2018). Forecasting energy demand, wind generation and carbon dioxide emissions in Ireland using evolutionary neural networks. Energy, 155: 705–720
https://doi.org/10.1016/j.energy.2018.04.192
20 J McEniry, P Crosson, E Finneran, M McGee, T W J Keady, P O’Kiely (2013). How much grassland biomass is available in Ireland in excess of livestock requirements? Irish Journal of Agricultural and Food Research, 52(1): 67–80
21 M D McKay, R J Beckman, W J Conover. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21: 239–245
22 J E Nash, J V Sutcliffe. (1970). River flow forecasting through conceptual models. Part I: A discussion of principles. Journal of Hydrology, 10(3): 282–290
https://doi.org/10.1016/0022-1694(70)90255-6
23 D I Page, K L Hickey, R Narula, A L Main, S J Grimberg. (2008). Modeling anaerobic digestion of dairy manure using the IWA Anaerobic Digestion Model No. 1 (ADM1). Water Science and Technology, 58(3): 689–695
https://doi.org/10.2166/wst.2008.678
24 K Solon, X Flores-Alsina, C K Mbamba, E I Volcke, S Tait, D Batstone, K V Gernaey, U Jeppsson. (2015). Effects of ionic strength and ion pairing on (plant-wide) modelling of anaerobic digestion. Water Research, 70: 235–245
https://doi.org/10.1016/j.watres.2014.11.035
25 T Thamsiriroj, A S Nizami, J D Murphy (2012). Why does mono-digestion of grass silage fail in long term operation? Applied Energy, 95: 64–76 10.1016/j.apenergy.2012.02.008
26 D M Wall, P O’Kiely, J D Murphy. (2013). The potential for biomethane from grass and slurry to satisfy renewable energy targets. Bioresource Technology, 149: 425–431
https://doi.org/10.1016/j.biortech.2013.09.094
27 Z Wang, S Wang, Y Hu, B Du, J Meng, G Wu, H Liu, X Zhan. (2022). Distinguishing responses of acetoclastic and hydrogenotrophic methanogens to ammonia stress in mesophilic mixed cultures. Water Research, 224: 119029
https://doi.org/10.1016/j.watres.2022.119029
28 S Weinrich, E Mauky, T Schmidt, C Krebs, J Liebetrau, M Nelles. (2021). Systematic simplification of the Anaerobic Digestion Model No. 1 (ADM1) – Laboratory experiments and model application. Bioresource Technology, 333: 125104
https://doi.org/10.1016/j.biortech.2021.125104
29 S Weinrich, M Nelles. (2021a). Basics of anaerobic digestion: biochemical conversion and process modelling. DBFZ-Report, 40: 9–76
30 S Weinrich, M Nelles. (2021b). Systematic simplification of the Anaerobic Digestion Model No. 1 (ADM1) – Model development and stoichiometric analysis. Bioresource Technology, 333: 125124
https://doi.org/10.1016/j.biortech.2021.125124
31 F Weissbach. (2008). On assessing the gas formation potential of renewable primary products. Landtechnik, 63(6): 356–358
32 M Wichern, T Gehring, K Fischer, D Andrade, M Lübken, K Koch, A Gronauer, H Horn. (2009). Monofermentation of grass silage under mesophilic conditions: Measurements and mathematical modeling with ADM 1. Bioresource Technology, 100(4): 1675–1681
https://doi.org/10.1016/j.biortech.2008.09.030
33 M Wichern, M Lübken, M Schlattmann, A Gronauer, H Horn. (2008). Investigations and mathematical simulation on decentralized anaerobic treatment of agricultural substrate from livestock farming. Water Science and Technology, 58(1): 67–72
https://doi.org/10.2166/wst.2008.332
34 S Xie, F I Hai, X Zhan, W Guo, H H Ngo, W E Price, L D Nghiem. (2016). Anaerobic co-digestion: a critical review of mathematical modelling for performance optimization. Bioresource Technology, 222: 498–512
https://doi.org/10.1016/j.biortech.2016.10.015
35 G Yang, P Zhang, G Zhang, Y Wang, A Yang. (2015). Degradation properties of protein and carbohydrate during sludge anaerobic digestion. Bioresource Technology, 192: 126–130
https://doi.org/10.1016/j.biortech.2015.05.076
36 Y Zhang, Y Jiang, S Wang, Z Wang, Y Liu, Z Hu, X Zhan. (2021). Environmental sustainability assessment of pig manure mono- and co-digestion and dynamic land application of the digestate. Renewable & Sustainable Energy Reviews, 137: 110476
https://doi.org/10.1016/j.rser.2020.110476
[1] FSE-23109-OF-TS_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed