Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (5) : 62    https://doi.org/10.1007/s11783-024-1822-5
Highly active copper-intercalated weakly crystallized δ-MnO2 for low-temperature oxidation of CO in dry and humid air
Hao Zhang1, Huinan Li1, Pengyi Zhang1,2(), Tingxia Hu1, Xianjie Wang1,3
1. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
2. Beijing Key Laboratory for Indoor Air Quality Evaluation and Control, Beijing 100084, China
3. Midea Corporate Research Center, Foshan 528311, China
 Download: PDF(4335 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Copper intercalated weakly crystallized δ-MnO2 was synthesized via one-pot process.

● Intercalated copper ions greatly enhanced the adsorption of CO.

● MnO2-150Cu achieved a 100% conversion of CO even at −10 °C under dry air.

● MnO2-150Cu exhibited a high CO oxidation capacity in an inert atmosphere at 30 °C.

● MnO2-150Cu maintained a 100% conversion of CO for 35 h at 70 °C in 1.3% moisture air.

Copper intercalated birnessite MnO2 (δ-MnO2) with weak crystallinity and high specific surface area (421 m2/g) was synthesized by a one-pot redox method and investigated for low-temperature CO oxidation. The molar ratio of Cu/Mn was as high as 0.37, which greatly weakened the Mn-O bond and created a lot of low-temperature active oxygen species. In situ DRIFTS revealed strong bonding of copper ions with CO. As-synthesized MnO2-150Cu achieved 100% conversion of 250 ppm CO in normal air (3.1 ppm H2O) even at −10 °C under the weight-hourly space velocity (WHSV) of 150 L/(g·h). In addition, it showed high oxygen storage capacity to oxidize CO in inert atmosphere. Though the concurrent moisture in air significantly inhibited CO adsorption and its conversion at ambient temperature, MnO2-150Cu could stably convert CO in 1.3% moisture air at 70 °C owing to its great low-temperature activity and reduced competitive adsorption of water with increased temperature. This study discovers the excellent low-temperature activity of weakly crystallized δ-MnO2 induced by high content intercalated copper ions.

Keywords CO oxidation      Birnessite      Interlayer copper      Low-temperature      Oxygen storage capacity     
Corresponding Author(s): Pengyi Zhang   
Issue Date: 11 March 2024
 Cite this article:   
Hao Zhang,Huinan Li,Pengyi Zhang, et al. Highly active copper-intercalated weakly crystallized δ-MnO2 for low-temperature oxidation of CO in dry and humid air[J]. Front. Environ. Sci. Eng., 2024, 18(5): 62.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1822-5
https://academic.hep.com.cn/fese/EN/Y2024/V18/I5/62
  Scheme1 The schematic diagram of the experimental setup.
Fig.1  XRD patterns of MnO2 and Cu-doped MnO2 catalysts.
Fig.2  SEM images of (a) MnO2, (b) MnO2-10Cu, (c) MnO2-40Cu, (d) MnO2-150Cu. TEM and HRTEM images of (e, f) MnO2 and (g, h) MnO2-150Cu.
SampleBET (m2/g)Element content by ICP (wt%)Molar ratio by ICPAOS of MnOII/(Ototal) by XPS
MnCuKCu/MnK/Mn
MnO219155.79.190.3033.380.25
MnO2-10Cu22053.76.265.240.100.1783.390.30
MnO2-40Cu39247.319.90.270.360.0103.000.39
MnO2-150Cu42141.217.80.060.370.0022.600.51
Tab.1  Physicochemical parameters of as-prepared samples
Fig.3  XPS spectra of (a) Mn 3s and (b) O 1s.
Fig.4  (a) H2-TPR and (b) O2-TPD profiles of different samples.
Fig.5  (a) Temperature dependent of CO conversion over different catalysts under dry air condition; (b) Stability of MnO2-150Cu at ?10 °C under dry air condition. Test condition: CO inlet concentration 250 ppm, WHSV 150 L/(g·h).
Fig.6  (a) The performance of MnO2-150Cu for 1000 ppm CO conversion under dry N2 condition at 30 °C (WHSV 30 L/(g·h)) and its regeneration ability under dry O2 at 150 °C for 2 h (WHSV 120 L/(g·h)); (b) The performance of MnO2-150Cu for 1000 ppm CO conversion under dry N2 condition at 20 and 60 °C (WHSV 30 L/(g·h)).
Fig.7  (a) The effect of moisture on CO oxidation over MnO2-150Cu at 30 °C; (b) The effect of reaction temperature on CO oxidation over MnO2-150Cu under 1.3% moisture. Test condition: CO inlet concentration 250 ppm, WHSV 150 L/(g·h).
Fig.8  In situ DRIFTS of (a) MnO2 and (b,c,d) MnO2-150Cu under dry and wet 2% CO/O2 conditions. (a, b) 35 °C, dry; (c) 35 °C, 4.0% H2O; (d) 90 °C, 4.0% H2O.
1 E Akbari , S M Alavi , M Rezaei , Z Montazeri . (2023). AOx−MnOx (A = Ni, Cu, Fe, or Co) nanocatalysts fabricated by the mechanochemical preparation method for lean methane catalytic combustion assisted by a DBD plasma reactor. ACS Applied Nano Materials, 6: 16189–16200
https://doi.org/10.1021/acsanm.3c02129
2 J Bae , D Shin , H Jeong , B S Kim , J W Han , H Lee . (2019). Highly water-resistant La-doped Co3O4 catalyst for CO oxidation. ACS Catalysis, 9(11): 10093–10100
https://doi.org/10.1021/acscatal.9b02920
3 E G Bakhoum , M H M Cheng . (2013). Miniature carbon monoxide detector based on nanotechnology. IEEE Transactions on Instrumentation and Measurement, 62(1): 240–245
https://doi.org/10.1109/TIM.2012.2212507
4 A Beniya , S Higashi . (2019). Towards dense single-atom catalysts for future automotive applications. Nature Catalysis, 2: 590–602
https://doi.org/10.1038/s41929-019-0282-y
5 T Biemelt , K Wegner , J Teichert , M R Lohe , J Martin , J Grothe , S Kaskel . (2016). Hopcalite nanoparticle catalysts with high water vapour stability for catalytic oxidation of carbon monoxide. Applied Catalysis B: Environmental, 184: 208–215
https://doi.org/10.1016/j.apcatb.2015.11.008
6 F C Buciuman , F Patcas , T Hahn . (1999). A spillover approach to oxidation catalysis over copper and manganese mixed oxides. Chemical Engineering and Processing, 38: 563–569
https://doi.org/10.1016/S0255-2701(99)00053-7
7 L Cao , W Liu , Q Luo , R Yin , B Wang , J Weissenrieder , M Soldemo , H Yan , Y Lin , Z Sun . et al.. (2019a). Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature, 565: 631–635
https://doi.org/10.1038/s41586-018-0869-5
8 R Cao , P Zhang , Y Liu , X Zheng . (2019b). Ammonium-treated birnessite-type MnO2 to increase oxygen vacancies and surface acidity for stably decomposing ozone in humid condition. Applied Surface Science, 495: 143607
https://doi.org/10.1016/j.apsusc.2019.143607
9 S Dey , G C Dhal . (2019a). The catalytic activity of cobalt nanoparticles for low-temperature oxidation of carbon monoxide. Materials Today. Chemistry, 14: 100198
https://doi.org/10.1016/j.mtchem.2019.100198
10 S Dey , G C Dhal , D Mohan , R Prasad . (2019b). Ambient temperature complete oxidation of carbon monoxide using hopcalite catalysts for fire escape mask applications. Advanced Composites and Hybrid Materials, 2(3): 501–519
https://doi.org/10.1007/s42114-019-00108-5
11 B Feng , M Shi , J Liu , X Han , Z Lan , H Gu , X Wang , H Sun , Q Zhang , H Li . et al.. (2020). An efficient defect engineering strategy to enhance catalytic performances of Co3O4 nanorods for CO oxidation. Journal of Hazardous Materials, 394: 122540
https://doi.org/10.1016/j.jhazmat.2020.122540
12 J Gao , C Jia , L Zhang , H Wang , Y Yang , S F Hung , Y Y Hsu , B Liu . (2016). Tuning chemical bonding of MnO2 through transition-metal doping for enhanced CO oxidation. Journal of Catalysis, 341: 82–90
https://doi.org/10.1016/j.jcat.2016.06.009
13 M V Grabchenko , G V Mamontov , V I Zaikovskii , V La Parola , L F Liotta , O V Vodyankina . (2020). The role of metal–support interaction in Ag/CeO2 catalysts for CO and soot oxidation. Applied Catalysis B: Environmental, 260: 118148
https://doi.org/10.1016/j.apcatb.2019.118148
14 Y Guo , C Zhao , J Lin , C Li , S Lu . (2017). Facile synthesis of supported copper manganese oxides catalysts for low temperature CO oxidation in confined spaces. Catalysis Communications, 99: 1–5
https://doi.org/10.1016/j.catcom.2017.05.016
15 X Hu , J Chen , S Li , Y Chen , W Qu , Z Ma , X Tang . (2019). The promotional effect of copper in catalytic oxidation by Cu-doped α-MnO2 nanorods. Journal of Physical Chemistry C, 124(1): 701–708
16 G J Hutchings , A A Mirzaei , R W Joyner , M R H Siddiqui , S H Taylor . (1998). Effect of preparation conditions on the catalytic performance of copper manganese oxide catalysts for CO oxidation. Applied Catalysis A, General, 166: 143–152
https://doi.org/10.1016/S0926-860X(97)00248-2
17 M J Kale , D Gidcumb , F J Gulian , S P Miller , C H Clark , P Christopher . (2017). Evaluation of platinum catalysts for naval submarine pollution control. Applied Catalysis B: Environmental, 203: 533–540
https://doi.org/10.1016/j.apcatb.2016.10.060
18 S B Kanungo . (1979). Physicochemical properties of MnO2 and MnO2-CuO and their relationship with the catalytic activity for H2O2 decomposition and CO oxidation. Journal of Catalysis, 58: 419–435
https://doi.org/10.1016/0021-9517(79)90280-X
19 M Krämer , T Schmidt , K Stöwe , W F Maier . (2006). Structural and catalytic aspects of sol–gel derived copper manganese oxides as low-temperature CO oxidation catalyst. Applied Catalysis A, General, 302(2): 257–263
https://doi.org/10.1016/j.apcata.2006.01.018
20 C H Kuo , W Li , W Song , Z Luo , A S Poyraz , Y Guo , A W Ma , S L Suib , J He . (2014). Facile synthesis of Co3O4@CNT with high catalytic activity for CO oxidation under moisture-rich conditions. ACS Applied Materials & Interfaces, 6(14): 11311–11317
21 X Li , X I Pereira-Hernandez , Y Chen , J Xu , J Zhao , C W Pao , C Y Fang , J Zeng , Y Wang , B C Gates . et al.. (2022). Functional CeOx nanoglues for robust atomically dispersed catalysts. Nature, 611(7935): 284–288
https://doi.org/10.1038/s41586-022-05251-6
22 B Liu , H Wu , S Li , M Xu , Y Cao , Y Li . (2022). Solid-state construction of CuOx/Cu1.5Mn1.5O4 nanocomposite with abundant surface CuOx species and oxygen vacancies to promote CO oxidation activity. International Journal of Molecular Sciences, 23(12): 6856
https://doi.org/10.3390/ijms23126856
23 T Liu , Y Yao , L Wei , Z Shi , L Han , H Yuan , B Li , L Dong , F Wang , C Sun . (2017). Preparation and evaluation of copper–manganese oxide as a high-efficiency catalyst for CO oxidation and NO reduction by CO. Journal of Physical Chemistry C, 121(23): 12757–12770
https://doi.org/10.1021/acs.jpcc.7b02052
24 Y Liu , Y Guo , H Peng , X Xu , Y Wu , C Peng , N Zhang , X Wang . (2016). Modifying hopcalite catalyst by SnO2 addition: an effective way to improve its moisture tolerance and activity for low temperature CO oxidation. Applied Catalysis A, General, 525: 204–214
https://doi.org/10.1016/j.apcata.2016.07.023
25 Y Lou , J Ma , X Cao , L Wang , Q Dai , Z Zhao , Y Cai , W Zhan , Y Guo , P Hu . et al.. (2014). Promoting effects of In2O3 on Co3O4 for CO oxidation: Tuning O2 activation and CO adsorption strength simultaneously. ACS Catalysis, 4(11): 4143–4152
https://doi.org/10.1021/cs501049r
26 Y Lu , J Wang , L Yu , L Kovarik , X Zhang , A S Hoffman , A Gallo , S R Bare , D Sokaras , T Kroll . et al.. (2018). Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nature Catalysis, 2(2): 149–156
https://doi.org/10.1038/s41929-018-0192-4
27 C Ma , C Yang , B Wang , C Chen , F Wang , X Yao , M Song . (2019). Effects of H2O on HCHO and CO oxidation at room-temperature catalyzed by MCo2O4 (M=Mn, Ce and Cu) materials. Applied Catalysis B: Environmental, 254: 76–85
https://doi.org/10.1016/j.apcatb.2019.04.085
28 M Maga , M K Janik , A Wachsmann , O Chrzastek-Janik , M Koziej , M Bajkowski , P Maga , K Tyrak , K Wojcik , I Gregorczyk-Maga . et al.. (2017). Influence of air pollution on exhaled carbon monoxide levels in smokers and non-smokers: a prospective cross-sectional study. Environmental Research, 152: 496–502
https://doi.org/10.1016/j.envres.2016.09.004
29 Y A May , S Wei , W Z Yu , W W Wang , C J Jia . (2020). Highly efficient CuO/α-MnO2 catalyst for low-temperature CO oxidation. Langmuir, 36(38): 11196–11206
https://doi.org/10.1021/acs.langmuir.0c00692
30 S Mobini , F Meshkani , M Rezaei . (2017). Surfactant-assisted hydrothermal synthesis of CuCr2O4 spinel catalyst and its application in CO oxidation process. Journal of Environmental Chemical Engineering, 5: 4906–4916
https://doi.org/10.1016/j.jece.2017.09.027
31 L Nie , D Mei , H Xiong , B Peng , Z Ren , X Hernandez , A DeLaRiva , M Wang , M Engelhard , L Kovarik . et al.. (2017). Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science, 358: 1419–1423
https://doi.org/10.1126/science.aao2109
32 E C Njagi , C H Chen , H Genuino , H Galindo , H Huang , S L Suib . (2010). Total oxidation of CO at ambient temperature using copper manganese oxide catalysts prepared by a redox method. Applied Catalysis B: Environmental, 99(1–2): 103–110
33 K Qian , Z Qian , Q Hua , Z Jiang , W Huang . (2013). Structure–activity relationship of CuO/MnO2 catalysts in CO oxidation. Applied Surface Science, 273: 357–363
https://doi.org/10.1016/j.apsusc.2013.02.043
34 B Qiao , J Liu , Y G Wang , Q Lin , X Liu , A Wang , J Li , T Zhang , J Liu . (2015). Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catalysis, 5(11): 6249–6254
https://doi.org/10.1021/acscatal.5b01114
35 B Qiao , A Wang , X Yang , L F Allard , Z Jiang , Y Cui , J Liu , J Li , T Zhang . (2011). Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 3(8): 634–641
https://doi.org/10.1038/nchem.1095
36 S Rong , K Li , P Zhang , F Liu , J Zhang . (2018). Potassium associated manganese vacancy in birnessite-type manganese dioxide for airborne formaldehyde oxidation. Catalysis Science & Technology, 8(7): 1799–1812
37 J Saavedra , H A Doan , C J Pursell , L C Grabow , B D Chandler . (2014). The critical role of water at the gold-Titania interface in catalytic CO oxidation. Science, 345: 1599–1602
https://doi.org/10.1126/science.1256018
38 H Sheng , H Zhang , W Song , H Ji , W Ma , C Chen , J Zhao . (2015). Activation of water in titanium dioxide photocatalysis by formation of surface hydrogen bonds: an in situ IR spectroscopy study. Angewandte Chemie International Edition, 54(20): 5905–5909
https://doi.org/10.1002/anie.201412035
39 W Song , A S Poyraz , Y Meng , Z Ren , S Y Chen , S L Suib . (2014). Mesoporous Co3O4 with controlled porosity: Inverse micelle synthesis and high-performance catalytic CO oxidation at −60 °C. Chemistry of Materials, 26(15): 4629–4639
https://doi.org/10.1021/cm502106v
40 F X Tian , H Li , M Zhu , W Tu , D Lin , Y F Han . (2022). Effect of MnO2 polymorphs’ structure on low-temperature catalytic oxidation: crystalline controlled oxygen vacancy formation. ACS Applied Materials & Interfaces, 14(16): 18525–18538
41 J Wang , J Li , P Zhang , G Zhang . (2018a). Understanding the “seesaw effect” of interlayered K+ with different structure in manganese oxides for the enhanced formaldehyde oxidation. Applied Catalysis B: Environmental, 224: 863–870
https://doi.org/10.1016/j.apcatb.2017.11.019
42 W W Wang , W Z Yu , P P Du , H Xu , Z Jin , R Si , C Ma , S Shi , C J Jia , C H Yan . (2017). Crystal plane effect of ceria on supported copper oxide cluster catalyst for CO oxidation: importance of metal–support interaction. ACS Catalysis, 7(2): 1313–1329
https://doi.org/10.1021/acscatal.6b03234
43 X Wang , W Huo , Y Xu , Y Guo , Y Jia . (2018b). Modified hierarchical birnessite-type manganese oxide nanomaterials for CO catalytic oxidation. New Journal of Chemistry, 42(16): 13803–13812
https://doi.org/10.1039/C8NJ02457J
44 C H Wu , C Liu , D Su , H L Xin , H T Fang , B Eren , S Zhang , C B Murray , M B Salmeron . (2018). Bimetallic synergy in cobalt–palladium nanocatalysts for CO oxidation. Nature Catalysis, 2(1): 78–85
https://doi.org/10.1038/s41929-018-0190-6
45 L Xu , Y Pan , H Li , R Xu , Z Sun . (2023). Highly active and water-resistant Lanthanum-doped platinum-cobalt oxide catalysts for CO oxidation. Applied Catalysis B: Environmental, 331: 122678
https://doi.org/10.1016/j.apcatb.2023.122678
46 W Yang , Y Wang , W Yang , H Liu , Z Li , Y Peng , J Li . (2021). Surface in situ doping modification over Mn2O3 for toluene and propene catalytic oxidation: the effect of isolated Cuδ+ insertion into the mezzanine of surface MnO2 cladding. ACS Applied Materials & Interfaces, 13(2): 2753–2764
47 H Zhang , S Sui , X Zheng , R Cao , P Zhang . (2019). One-pot synthesis of atomically dispersed Pt on MnO2 for efficient catalytic decomposition of toluene at low temperatures. Applied Catalysis B: Environmental, 257: 117878
https://doi.org/10.1016/j.apcatb.2019.117878
48 J Zhang , X Qin , X Chu , M Chen , X Chen , J Chen , H He , C Zhang . (2021). Tuning metal-support interaction of Pt-CeO2 catalysts for enhanced oxidation reactivity. Environmental Science & Technology, 55(24): 16687–16698
49 Z R Zhang , C H Zhang , H Liu , F Bin , X L Wei , R N Kang , S H Wu , W M Yang , H P Xu . (2023). Self-sustained catalytic combustion of CO enhanced by micro fluidized bed: stability operation, fluidization state and CFD simulation. Frontiers of Environmental Science & Engineering, 17(9): 109
[1] FSE-24002-OF-ZH_suppl_1 Download
[1] Wei Tan, Shaohua Xie, Wenpo Shan, Zhihua Lian, Lijuan Xie, Annai Liu, Fei Gao, Lin Dong, Hong He, Fudong Liu. CeO2 doping boosted low-temperature NH3-SCR activity of FeTiOx catalyst: A microstructure analysis and reaction mechanistic study[J]. Front. Environ. Sci. Eng., 2022, 16(5): 60-.
[2] Chen Wang, Jun Wang, Jianqiang Wang, Meiqing Shen. Promotional effect of ion-exchanged K on the low-temperature hydrothermal stability of Cu/SAPO-34 and its synergic application with Fe/Beta catalysts[J]. Front. Environ. Sci. Eng., 2021, 15(2): 30-.
[3] Yong Song,Lisha Liu,Zhidan Fu,Qing Ye,Shuiyuan Cheng,Tianfang Kang,Hongxing Dai. Excellent performance of Cu-Mn/Ti-sepiolite catalysts for low-temperature CO oxidation[J]. Front. Environ. Sci. Eng., 2017, 11(2): 5-.
[4] Lina GAN,Shan LEI,Jian YU,Hongtao MA,Yo YAMAMOTO,Yoshizo SUZUKI,Guangwen XU,Zhanguo ZHANG. Development of highly active coated monolith SCR catalyst with strong abrasion resistance for low-temperature application[J]. Front. Environ. Sci. Eng., 2015, 9(6): 979-987.
[5] Xiuhua LI, Haibo ZHANG, Yongming LUO, Ying TENG. Remediation of soil heavily polluted with polychlorinated biphenyls using a low-temperature plasma technique[J]. Front Envir Sci Eng, 2014, 8(2): 277-283.
[6] Boxiong SHEN, Lidan DENG, Jianhong CHEN. Effect of K and Ca on catalytic activity of Mn-CeOx/Ti-PILC[J]. Front Envir Sci Eng, 2013, 7(4): 512-517.
[7] Qing YE, Donghui LI, Jun ZHAO, Jiansheng ZHAO, Tianfang KANG, Shuiyuan CHENG. Low-temperature CO oxidation over Au-doped 13X-type zeolite catalysts: preparation and catalytic activity[J]. Front Envir Sci Eng Chin, 2011, 5(4): 497-504.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed