Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (2) : 250-258    https://doi.org/10.1007/s11783-014-0643-3
RESEARCH ARTICLE
Subcellular distribution and chemical form of Pb in hyperaccumulator Arenaria orbiculata and response of root exudates to Pb addition
Yanqun ZU,Yuan LI(),Huan MIN,Fangdong ZHAN,Li QIN,Jixiu WANG
College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
 Download: PDF(674 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Solution culture was conducted in order to understand accumulation characteristics and chemical forms of Pb in Arenaria orbiculata (A. orbiculata) and the response of root exudates to Pb addition. The results showed that: 1) Pb contents in the shoot and root of A. orbiculata increased with increasing in Pb concentrations in solution. 2) The contents of Pb chemical forms under Pb addition followed as: HAc extractable fraction (FHAC)>HCl extractable fraction (FHCl)>NaCl extractable fraction (FNaCl)>ethanol-extractable fraction (FE)>water extractable fraction (FW). 3) Increased Pb level in the medium caused increases in Pb contents in the four subcellular fractions of shoots and roots, with most accumulation in FIV (Fraction IV, soluble fraction) in shoots and FI (Fraction I, cell wall fraction) in roots. 4) Contents of soluble sugar and free amino acid of root exudates increased with increasing Pb concentration in solution. Significantly positive correlations between Pb and contents of soluble sugar and free amino acid were observed. 5) With Pb concentrations in solution, low molecular weight organic acids (LMWOAs) contents followed the tendency: tartaric acid>acetic acid>malic acid>citric acid. Significantly positive correlation was observed between Pb and citric acid contents. The results indicate that soluble sugars, free amino acid and citric acid in root exudates of A.orbiculata facilitate the absorption and accumulation of Pb, which exist in NaCl-, HCl- and HAc- extractable Pb forms, FI and FIV fractions, resulting in tolerance of A.orbiculata to Pb.

Keywords Pb      Arenaria orbiculata      chemical forms      subcellular distribution      root exudates      hydroponic culture     
Corresponding Author(s): Yuan LI   
Online First Date: 27 January 2014    Issue Date: 13 February 2015
 Cite this article:   
Yanqun ZU,Yuan LI,Huan MIN, et al. Subcellular distribution and chemical form of Pb in hyperaccumulator Arenaria orbiculata and response of root exudates to Pb addition[J]. Front. Environ. Sci. Eng., 2015, 9(2): 250-258.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0643-3
https://academic.hep.com.cn/fese/EN/Y2015/V9/I2/250
Pb in solution concentration /(mg·L-1) part total Pb FE-Pb FW-Pb FNaCl-Pb FHAc-Pb FHCl-Pb FR-Pb
50 shoots 797c±24.12 64c±11.13 45c±1.34 100c±8.29 206c±21.99 146c±34.43 236c±24.24
100 1340b±25.87 79b±3.26 51b±1.40 200b±9.80 394b±5.94 285b±34.11 331b±23.72
200 2399a±37.47 101a±7.84 78a±6.22 321a±23.40 680a±36.85 460a±44.07 759a±61.59
50 roots 619c±51.34 51c±1.95 22c±1.59 81c±17.40 190c±45.08 136c±14.35 139c±10.33
100 1063b±48.85 84b±4.71 29b±2.13 150b±35.53 323b±16.75 239b±49.42 238b±22.59
200 2552a±48.27 110a±11.36 71a±3.63 401a±4.06 713a±19.50 570a±65.67 687a±40.16
Tab.1  Pb contents of total and different chemical forms in A.orbiculata (mg·kg-1)
Fig.1  Distribution ratio of Pb chemical forms to total Pb in shoots (A) and roots (B)

Notes: FE: ethanol-extractable form; FW: water extractable form; FNaCI: NaCI extractable form; FHAc: HAc extractable form; FHCI: HCI extractable form; FR: residual form

Fig.2  Pb contents in four subcellular fractions of shoots and roots under three Pb concentrations in solution

Notes: FI: cell wall fraction; FII: Chloroplasts/trophoplast fraction; FIII: organelles fraction; FIV: supernatant soluble fraction

Pb concentrations in solution /(mg·L-1) soluble sugar /(mg·L-1) amino acid /(mg·L-1) acetic acid /(μmol·L-1) tartaric acid /(μmol·L-1) malic acid /(μmol·L-1) citric acid /(μmol·L-1)
0 7.78 b±0.41 0.12d±0.01 1.29 b±0.09 4.70 a±0.59 0.34 c±0.04 0.13d±0.01
50 10.09b±1.15 0.22c±0.02 1.43b±0.05 4.59 a±0.37 0.46 ab±0.04 0.16 c±0.02
100 16.44 a±1.63 0.34 b±0.07 1.71a±0.10 5.09 a±0.29 0.50a±0.04 0.18b±0.02
200 18.89a±1.77 0.51a±0.03 1.41b±0.09 4.94a±0.38 0.37bc±0.05 0.24 a±0.02
Tab.2  Effects of Pb on root exudates contents in A.orbiculata
X Y equation F R P
Pb concentrations in solution soluble sugar content Y= 8.21+ 0.058X 18.53 0.950* <0.05
amino acid content Y= 0.13+ 0.002X 381.98 0.997** <0.01
citric acid content Y= 0.13+ 0.0005X 451.25 0.998** <0.01
soluble sugar content Pb in shoots Y= -1235.5+ 179.43X 20.42 0.954* <0.05
FNaCl-Pb in shoots Y= -177.01+ 25.14X 41.44 0.977* <0.05
FHAc-Pb in shoots Y= -375.63+ 52.54X 28.54 0.967* <0.05
FHCl -Pb in shoots Y= -250.29+ 35.79X 37.99 0.975* <0.05
FE-Pb in roots Y= -22.40+ 6.82X 107.08 0.991** <0.01
amino acid content Pb in shoots Y= -585.82+ 5837.70X 372.20 0.997** <0.01
FE-Pb in shoots Y= 8.74+ 1+ 193.33X 17.98 0.950* <0.05
FW-Pb in shoots Y= 5.15+ 143.63X 35.98 0.972* <0.05
FNaCl-Pb in shoots Y= -80.61+ 800.05X 552.20 0.998** <0.01
FHAc-Pb in shoots Y= -179.96+ 1691.08X 1673.78 0.999** <0.01
FHCl-Pb in shoots Y= -113.81+ 1141.33X 587.70 0.998** <0.01
Pb in roots Y= -788.13+ 6258.69X 60.53 0.984* <0.05
FE-Pb in roots Y= 5.09+ 212.45X 116.36 0.991** <0.01
FNaCl-Pb in roots Y= -135.64+ 994.17X 39.76 0.976* <0.05
FHAc-Pb in roots Y= -218.11+ 1768.74X 106.09 0.990** <0.01
FHCl-Pb in roots Y= -175.75+ 1397.36X 61.36 0.984* <0.05
citric acid content Pb in shoots Y= -2582.10+ 21030.8X 188.30 0.994* <0.05
FW-Pb in shoots Y= -44.78+ 522.01X 46.91 0.979* <0.05
FNaCl-Pb in shoots Y= -348.15+ 2848.21X 60.39 0.984* <0.05
FHAc-Pb in shoots Y= -755.23+ 6058.50X 113.21 0.991** <0.01
FHCl-Pb in shoots Y= -496.31+ 4067.89X 65.58 0.985* <0.05
Pb in roots Y= -2995.2+ 22924.4X 437.89 0.997** <0.01
FE-Pb in roots Y= -64.40+ 747.56X 27.81 0.966* <0.05
FW-Pb in roots Y= -57.68+ 519.79X 31.62 0.970* <0.05
FNaCl-Pb in roots Y= -488.65+ 3655.01X 145.46 0.993** <0.01
FHAc-Pb in roots Y= -836.42+ 6447.92X 9635.99 0.999** <0.01
FHCl-Pb in roots Y= -688.08+ 5115.77X 391.89 0.997** <0.01
Tab.3  Regression analysis between Pb concentrations in solution, contents of Pb and root exudates in A.orbiculata (n = 4)
1 Yan X L, Zhang M, Liao X Y, Tu S X. Influence of amendments on soil arsenic fractionation and phytoavailability by Pteris vittata L. Chemosphere, 2012, 88(2): 240–244
https://doi.org/10.1016/j.chemosphere.2012.03.015 pmid: 22463947
2 Ma L Q, Komar K M, Tu C, Zhang W H, Cai Y, Kennelley E D. A fern that hyperaccumulates arsenic. Nature, 2001, 409(6820): 579
https://doi.org/10.1038/35054664 pmid: 11214308
3 Lux A, Martinka M, Vaculík M, White P J. Root responses to cadmium in the rhizosphere: a review. Journal of Experimental Botany, 2011, 62(1): 21–37
https://doi.org/10.1093/jxb/erq281 pmid: 20855455
4 Barceló J, Poschenrieder C. Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environmental and Experimental Botany, 2002, 48(1): 75–92
5 Bais H P, Weir T L, Perry L G, Gilroy S, Vivanco J M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 2006, 57(1): 233–266
https://doi.org/10.1146/annurev.arplant.57.032905.105159 pmid: 16669762
6 Kidd P S, Llugany M, Poschenrieder C, Gunsé B, Barceló J. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). Journal of Experimental Botany, 2001, 52(359): 1339–1352
https://doi.org/10.1093/jexbot/52.359.1339 pmid: 11432953
7 Bertin C, Yang X H, Weston L A. The role of root exudates and allelochemicals in the rhizosphere. Plant and Soil, 2003, 256(1): 67–83
https://doi.org/10.1023/A:1026290508166
8 Kuang Y W, Wen D Z, Zhong C W, Zhou G Y. Root exudates and their roles in phytoremediation. Acta Phytoecologica Sinica, 2003, 27(5): 709–717
9 Bais H P, Vepachedu R, Gilroy S, Callaway R M, Vivanco J M. Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science, 2003, 301(5638): 1377–1380
https://doi.org/10.1126/science.1083245 pmid: 12958360
10 Bais H P, Walker T S, Schweizer H P, Vivanco J M. Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of sweet basil (Ocimum basilicum L.). Plant Physiology and Biochemistry, 2002, 40(11): 983–987
https://doi.org/10.1016/S0981-9428(02)01460-2
11 Dundek P, Holik L, Hromadko L, Rohlik T, Vranova V, Rejsek K, Formanek P. Action of plant root exudates in bioremediations: a review. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 2011, 59(1): 303–308
12 Lu H L, Yan C L, Liu J C. Low-molecular-weight organic acids exuded by Mangrove (Kandelia candel (L.) Druce) roots and their effect on cadmium species change in the rhizosphere. Environmental and Experimental Botany, 2007, 61(2): 159–166
https://doi.org/10.1016/j.envexpbot.2007.05.007
13 Xu W H, Huang H, Wang A H, Xiong Z T, Wang Z Y. Advance in studies on activation of heavy metal by root exudates and mechanism. Ecology & Environment, 2006, 15(1): 184–189
14 Shen H, Yan X L, Zhao M, Zheng S L, Wang X R. Exudation of organic acids in common bean as related to mobilization of aluminum- and iron-bound phosphates. Environmental and Experimental Botany, 2002, 48(1): 1–9
15 Bernal M P, Mcgrath S P, Miller A J, Baker A J M. Comparison of the chemical changes in the rhizosphere of the nickel hyperaccumulater Alyssum murale with the non-accumulator Raphanus sativus. Plant and Soil, 1994, 164(4): 251–259
16 Mench M, Morel J L, Guche A, Guillet B. Metal binding with root exudates of low molecular weight. Journal of Soil Science, 1988, 39(4): 521–527
17 Fu X P, Dou C M, Chen Y X, Chen X C, Shi J Y, Yu M G, Xu J. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L. Journal of Hazardous Materials, 2011, 186(1): 103–107
18 He J Y, Zhu C, Ren Y F, Yan Y P, Cheng C, Jiang D A, Sun Z X. Uptake, sobcellular distribution, and chemical forms of cadmium in wild-type and mutant rice. Pedosphere, 2008, 18(3): 371–377
https://doi.org/10.1016/S1002-0160(08)60027-2
19 Xu Q S, Shi G X, Zhou Y M, Wu G R, Wang X. Distribution and toxicity of cadmiumin Hydrilla verticillata (L.F.) royle. Acta Biologiae Experimentalis Siniea, 2004, 37(6): 461–468
20 Wu F B, Dong J, Qian Q Q, Zhang G P. Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes. Chemosphere, 2005, 60(10): 1437–1446
https://doi.org/10.1016/j.chemosphere.2005.01.071 pmid: 16054913
21 V?geli-Lange R, Wagner G J. Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves: implication of a transport function for cadmium-binding peptides. Plant Physiology, 1990, 92(4): 1086–1093
https://doi.org/10.1104/pp.92.4.1086 pmid: 16667375
22 Perriguey J, Sterckeman T, Morel J L. Effect of rhizosphere and plant-related factors on the cadmium uptake by maize (Zea mays L.). Environmental and Experimental Botany, 2008, 63(1–3): 333–341
23 Weigel H J, Jager H J. Subcellular distribution and chemical form of cadmium in bean plants. Plant Physiology, 1980, 65(3): 480–482
24 Yanqun Z, Yuan L, Jianjun C, Haiyan C, Li Q, Schvartz C. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environment International, 2005, 31(5): 755–762
https://doi.org/10.1016/j.envint.2005.02.004 pmid: 15910971
25 Corrales I, Poschenieder Ch, Barcelo J. Influence of silicon pretreatment on aluminium toxicity in maize roots. Plant and Soil, 1997, 190(2): 203–209
26 Xu W H, Liu H, Ma Q F, Xiong Z T. Root exudates, rhizosphere Zn fractions, and Zn accumulation of Ryegrass at different soil Zn levels. Pedosphere, 2007, 17(3): 389–396
https://doi.org/10.1016/S1002-0160(07)60047-2
27 Tolrà R P, Poschenrieder C, Barceló J. Zinc hyperaccumulation in Thlaspi caerulescens:II. Influence on organic acids. Journal of Plant Nutrition, 1996, 19(12): 1541–1550
https://doi.org/10.1080/01904169609365220
28 David W L. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. Journal of Experimental Botany, 2002, 53(370): 773–787
29 Zhan Z L, Zhai W Q, Li X F. Plant Physiology Experimental Guide. Beijing: High Education Press, 2010 (in Chinese)
30 Xu Q S, Min H L, Cai S J, Fu Y Y, Sha S, Xie K B, Du K H. Subcellular distribution and toxicity of cadmium in Potamogeton crispus L. Chemosphere, 2012, 89(1): 114–120
31 Allen D L, Jarrell W M. Proton and copper adsorption to maize and soybean root cell walls. Plants Physiology, 1989, 89(3): 823–832
32 Marschner H. Mineral Nutrition of Higher Plants. 2nd Edition. London: Academic Press, 1995
33 Li Y, Fang Q X, Zu Y Q. Accumulation characteristics of two ecotypes Sonchus asper (L.) Hil1.to Cd. Acta Agriculturae Boreali-Occidentalis Sinica, 2008, 28(6): 1150–1154(in Chinese)
34 Zu Y Q, Li Y, Bock L, Schvartz C, Colinet G, Hu W Y. Interactions between heavy metals and nitrogen and their ecological effects. Journal of Agro-Environment Science, 2008, 27(1): 7–14 (in Chinese)
35 Kim S, Lim H, Lee I. Enhanced heavy metal phytoextraction by Echinochloa crus-galli using root exudates. Journal of Bioscience and Bioengineering, 2010, 109(1): 47–50
https://doi.org/10.1016/j.jbiosc.2009.06.018 pmid: 20129081
[1] Xiangyu Wang, Yu Xie, Guizhen Yang, Jiming Hao, Jun Ma, Ping Ning. Enhancement of the electrocatalytic oxidation of antibiotic wastewater over the conductive black carbon-PbO2 electrode prepared using novel green approach[J]. Front. Environ. Sci. Eng., 2020, 14(2): 22-.
[2] Caiyun Hou, Sen Qiao, Yue Yang, Jiti Zhou. A novel sequence batch membrane carbonation photobioreactor developed for microalgae cultivation[J]. Front. Environ. Sci. Eng., 2019, 13(6): 92-.
[3] Xiaoxue Mei, Heming Wang, Dianxun Hou, Fernanda Leite Lobo, Defeng Xing, Zhiyong Jason Ren. Shipboard bilge water treatment by electrocoagulation powered by microbial fuel cells[J]. Front. Environ. Sci. Eng., 2019, 13(4): 53-.
[4] Abdul Ghaffar Memon, Xiaohong Zhou, Yunpeng Xing, Ruoyu Wang, Lanhua Liu, Mohsin Khan, Miao He. Label-free colorimetric nanosensor with improved sensitivity for Pb2+ in water by using a truncated 8–17 DNAzyme[J]. Front. Environ. Sci. Eng., 2019, 13(1): 12-.
[5] Lianjie Guo, Nan Jiang, Jie Li, Kefeng Shang, Na Lu, Yan Wu. Abatement of mixed volatile organic compounds in a catalytic hybrid surface/packed-bed discharge plasma reactor[J]. Front. Environ. Sci. Eng., 2018, 12(2): 15-.
[6] Yan SHAO,Haobo HOU,Guangxing WANG,Sha WAN,Min ZHOU. Characteristics of the stabilized/solidified municipal solid wastes incineration fly ash and the leaching behavior of Cr and Pb[J]. Front. Environ. Sci. Eng., 2016, 10(1): 192-200.
[7] Jianguo LIU,Hui CAI,Congcong MEI,Mingxin WANG. Effects of nano-silicon and common silicon on lead uptake and translocation in two rice cultivars[J]. Front. Environ. Sci. Eng., 2015, 9(5): 905-911.
[8] Meng XUE, Yihui ZHOU, Zhongyi YANG, Biyun LIN, Jiangang YUAN, Shanshan WU. Comparisons in subcellular and biochemical behaviors of cadmium between low-Cd and high-Cd accumulation cultivars of pakchoi (Brassica chinensis L.)[J]. Front Envir Sci Eng, 2014, 8(2): 226-238.
[9] Yihui ZHOU, Meng XUE, Zhongyi YANG, Yulian GONG, Jiangang YUAN, Chunyan ZHOU, Baifei HUANG. High cadmium pollution risk on vegetable amaranth and a selection for pollution-safe cultivars to lower the risk[J]. Front Envir Sci Eng, 2013, 7(2): 219-230.
[10] Kun ZHANG, Jianbing WANG, Zhongyi YANG, Guorong XIN, Jiangang YUAN, Junliang XIN, Charlie HUANG. Genotype variations in accumulation of cadmium and lead in celery (Apium graveolens L.) and screening for low Cd and Pb accumulative cultivars[J]. Front Envir Sci Eng, 2013, 7(1): 85-96.
[11] Baohua TANG, Lingyan ZHU, Qixing ZHOU. Joint effects of Penta-BDE and heavy metals on Daphnia magna survival, its antioxidant enzyme activities and lipid peroxidation[J]. Front Envir Sci Eng Chin, 2011, 5(1): 99-110.
[12] Yuan LI , Yanqun ZU , Qixian FANG , Zhaohua GAO , Christian SCHVARTZ , . Relationship between heavy metal concentrations of herbaceous plants and soils at four Pb-Zn mining sites in Yunnan, China[J]. Front.Environ.Sci.Eng., 2009, 3(3): 325-333.
[13] WANG Yayi, WANG Shuying, PENG Yongzhen, Zhu Guibing, LING Yunfang. Influence of carbon source and temperature on the denitrifying phosphorus removal process[J]. Front.Environ.Sci.Eng., 2007, 1(2): 226-232.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed