|
|
Impacts of methanol fuel on vehicular emissions: A review |
Chung Song Ho1,2, Jianfei Peng1, UnHyok Yun1,3, Qijun Zhang1( ), Hongjun Mao1( ) |
1. Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China 2. High-Technology Development Institution, Kim II Sung University, Pyongyang 999093, Democratic People’s Republic of Korea 3. Laboratory of Ship Research, Department of Ship & Marine Engineering, Kim Chaek University of Technology, Pyongyang 999093, Democratic People’s Republic of Korea |
|
|
Abstract ● Methanol effectively reduces CO, HC, CO2, PM, and PN emissions of gasoline vehicles. ● Elemental composition of methanol directly affects the reduction of emissions. ● Several physicochemical properties of methanol help reduce vehicle emissions. The transport sector is a significant energy consumer and a major contributor to urban air pollution. At present, the substitution of cleaner fuel is one feasible way to deal with the growing energy demand and environmental pollution. Methanol has been recognized as a good alternative to gasoline due to its good combustion performance. In the past decades, many studies have investigated exhaust emissions using methanol-gasoline blends. However, the conclusions derived from different studies vary significantly, and the explanations for the effects of methanol blending on exhaust emissions are also inconsistent. This review summarizes the characteristics of CO, HC, NOx, CO2, and particulate emissions from methanol-gasoline blended fuels and pure methanol fuel. CO, HC, CO2, particle mass (PM), and particle number (PN) emissions decrease when methanol-blended fuel is used in place of gasoline fuel. NOx emission either decreases or increases depending on the test conditions, i.e., methanol content. Furthermore, this review synthesizes the mechanisms by which methanol-blended fuel influences pollutant emissions. This review provides insight into the pollutant emissions from methanol-blended fuel, which will aid policymakers in making energy strategy decisions that take urban air pollution, climate change, and energy security into account.
|
Keywords
Methanol fuel
Vehicular emission
Emission reduction
Cleaner fuel
Gasoline substitute
|
Corresponding Author(s):
Qijun Zhang,Hongjun Mao
|
About author: Tongcan Cui and Yizhe Hou contributed equally to this work. |
Issue Date: 03 March 2022
|
|
1 |
A K Agarwal , H Karare , A Dhar . (2014). Combustion, performance, emissions and particulate characterization of a methanol–gasoline blend (gasohol) fuelled medium duty spark ignition transportation engine. Fuel Processing Technology, 121 : 16– 24
https://doi.org/10.1016/j.fuproc.2013.12.014
|
2 |
T Agarwal , A P Singh , A K Agarwal . (2020). Development of port fuel injected methanol (M85)-fuelled two-wheeler for sustainable transport. Journal of Traffic and Transportation Engineering, 7( 3): 298– 311
https://doi.org/10.1016/j.jtte.2020.04.003
|
3 |
E A Ajav , B Singh , T K Bhattacharya . (1998). Performance of a stationary diesel engine using vapourized ethanol as supplementary fuel. Biomass and Bioenergy, 15( 6): 493– 502
https://doi.org/10.1016/S0961-9534(98)00055-5
|
4 |
AQSIQ (2009a). Fuel methanol for motor vehicles, GB/T 23510-2009. Beijing, China: General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (in Chinese)
|
5 |
AQSIQ (2009b). Methanol Gasoline (M85) for motor vehicles, GB/T 23799-2009. Beijing, China: General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (in Chinese)
|
6 |
O I Awad , R Mamat , O M Ali , N A C Sidik , T Yusaf , K Kadirgama , M Kettner . (2018). Alcohol and ether as alternative fuels in spark ignition engine: A review. Renewable & Sustainable Energy Reviews, 82 : 2586– 2605
https://doi.org/10.1016/j.rser.2017.09.074
|
7 |
M K Balki , S Erdoğan , S Aydın , C Sayin . (2020). The optimization of engine operating parameters via SWARA and ARAS hybrid method in a small SI engine using alternative fuels. Journal of Cleaner Production, 258 : 120685
https://doi.org/10.1016/j.jclepro.2020.120685
|
8 |
M K Balki , C Sayin . (2014). The effect of compression ratio on the performance, emissions and combustion of an SI (spark ignition) engine fueled with pure ethanol, methanol and unleaded gasoline. Energy, 71 : 194– 201
https://doi.org/10.1016/j.energy.2014.04.074
|
9 |
M K Balki , C Sayin , M Canakci . (2014). The effect of different alcohol fuels on the performance, emission and combustion characteristics of a gasoline engine. Fuel, 115 : 901– 906
https://doi.org/10.1016/j.fuel.2012.09.020
|
10 |
M K Balki , C Sayin , M Sarıkaya . (2016). Optimization of the operating parameters based on Taguchi method in an SI engine used pure gasoline, ethanol and methanol. Fuel, 180 : 630– 637
https://doi.org/10.1016/j.fuel.2016.04.098
|
11 |
Bechtold R L, Goodman M B, Timbario T A (2007). Use of Methanol as a Transportation Fuel. Arlington: Methanol Institute
|
12 |
D C S Beddows , R M Harrison . (2008). Comparison of average particle number emission factors for heavy and light duty vehicles derived from rolling chassis dynamometer and field studies. Atmospheric Environment, 42( 34): 7954– 7966
https://doi.org/10.1016/j.atmosenv.2008.06.021
|
13 |
BP (2020). BP Statistical Review of World Energy 2020. London: British Petroleum Company
|
14 |
Bromberg L, Cheng W K (2010). Methanol as an alternative transportation fuel in the US: Options for sustainable and/or energy-secure transportation. Cambridge: Sloan Automotive Laboratory Massachusetts Institute of Technology
|
15 |
M Canakci , A N Ozsezen , E Alptekin , M Eyidogan . (2013). Impact of alcohol–gasoline fuel blends on the exhaust emission of an SI engine. Renewable Energy, 52 : 111– 117
https://doi.org/10.1016/j.renene.2012.09.062
|
16 |
M Canakci , A N Ozsezen , A Turkcan . (2009). Combustion analysis of preheated crude sunflower oil in an IDI diesel engine. Biomass and Bioenergy, 33( 5): 760– 767
https://doi.org/10.1016/j.biombioe.2008.11.003
|
17 |
M B Çelik , B Özdalyan , F Alkan . (2011). The use of pure methanol as fuel at high compression ratio in a single cylinder gasoline engine. Fuel, 90( 4): 1591– 1598
https://doi.org/10.1016/j.fuel.2010.10.035
|
18 |
Cheng W K, Hamrin D, Heywood J B, Hochgreb S, Min K, Norris M (1993). An Overview of Hydrocarbon Emissions Mechanisms in Spark-Ignition Engines. SAE Technical Paper, No. 932708. Pennsylvania, USA: Society of Automotive Engineers
|
19 |
P Dai , Y Ge , Y Lin , S Su , B Liang . (2013). Investigation on characteristics of exhaust and evaporative emissions from passenger cars fueled with gasoline/methanol blends. Fuel, 113 : 10– 16
https://doi.org/10.1016/j.fuel.2013.05.038
|
20 |
T D Durbin , R D Wilson , J M Norbeck , J W Miller , T Huai , S H Rhee . (2002). Estimates of the emission rates of ammonia from light-duty vehicles using standard chassis dynamometer test cycles. Atmospheric Environment, 36( 9): 1475– 1482
https://doi.org/10.1016/S1352-2310(01)00583-0
|
21 |
Elfasakhany A (2015). Investigations on the effects of ethanol–methanol–gasoline blends in a spark-ignition engine: Performance and emissions analysis. Engineering Science and Technology, an International Journal, 18(4): 713−719
|
22 |
A Elfasakhany . (2017). Investigations on performance and pollutant emissions of spark-ignition engines fueled with n-butanol–, isobutanol–, ethanol–, methanol–, and acetone–gasoline blends: A comparative study. Renewable & Sustainable Energy Reviews, 71 : 404– 413
https://doi.org/10.1016/j.rser.2016.12.070
|
23 |
H S Farkade , A P Pathre . (2012). Experimental investigation of methanol, ethanol and butanol blends with gasoline on SI engine. International Journal of Emerging Technology and Advanced Engineering, 2( 4): 205– 215
|
24 |
L Gang , Y Ying , Z Minghui , Z Xin , J Liang . (2019). Key technical contents of the China VI emission standards for diesel fuelled heavy-duty vehicles. Johnson Matthey Technology Review, 63( 1): 21– 31
https://doi.org/10.1595/205651319X15415120642052
|
25 |
P Geng , C Yao . (2015). Experimental investigation on the combustion and particulate matter (PM) emissions from a port-fuel injection (PFI) gasoline engine fueled with methanol–ultralow sulfur gasoline blends. Fuel, 145 : 221– 227
https://doi.org/10.1016/j.fuel.2014.12.067
|
26 |
M A Ghadikolaei . (2016). Effect of alcohol blend and fumigation on regulated and unregulated emissions of IC engines:A review. Renewable & Sustainable Energy Reviews, 57 : 1440– 1495
https://doi.org/10.1016/j.rser.2015.12.128
|
27 |
M Göktaş , Balki M Kemal , C Sayin , M Canakci . (2021). An evaluation of the use of alcohol fuels in SI engines in terms of performance, emission and combustion characteristics: A review. Fuel, 286 : 119425
https://doi.org/10.1016/j.fuel.2020.119425
|
28 |
H Gong , Y Ge , J Wang , H Yin . (2017). Light-duty vehicle emissions control: A brief introduction to the China 6 emissions standard. Johnson Matthey Technology Review, 61( 4): 269– 278
https://doi.org/10.1595/205651317X696199
|
29 |
Y Hao , S Deng , Y Yang , W Song , H Tong , Z Qiu . (2019). Chemical composition of particulate matter from traffic emissions in a road tunnel in Xi’an, China. Aerosol and Air Quality Research, 19( 2): 234– 246
https://doi.org/10.4209/aaqr.2018.04.0131
|
30 |
Hove A, Qian W, Zhao K, Fuerst N K (2020). China Energy Transition Status Report 2020. Beijing: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH
|
31 |
T Huai , T D Durbin , J Wayne Miller , J M Norbeck . (2004). Estimates of the emission rates of nitrous oxide from light-duty vehicles using different chassis dynamometer test cycles. Atmospheric Environment, 38( 38): 6621– 6629
https://doi.org/10.1016/j.atmosenv.2004.07.007
|
32 |
IEA (2021). The Potential of Behavioural Interventions for Optimising Energy Use at Home. Paris: International Energy Agency (IEA)
|
33 |
Kaiser E W, Siegl W O, Anderson R W (1994). Fuel Structure and the Nature of Engine-Out Emissions. SAE Technical Paper, No. 941960. Maryland: Society of Automotive Engineers
|
34 |
E W Kaiser , W O Siegl , Y I Henig , R W Anderson , F H Trinker . (1991). Effect of fuel structure on emissions from a spark-ignited engine. Environmental Science & Technology, 25( 12): 2005– 2012
https://doi.org/10.1021/es00024a004
|
35 |
Kak A, Kumar N, Singh B, Singh S, Gupta D (2015). Comparative Study of Emissions and Performance of Hydrogen Boosted SI Engine Powered by Gasoline Methanol Blend and Gasoline Ethanol Blend. SAE Technical Paper, No. 2015-01-1677. Detroit: SAE International
|
36 |
A Kalwar , A P Singh , A K Agarwal . (2020). Utilization of primary alcohols in dual-fuel injection mode in a gasoline direct injection engine. Fuel, 276 : 118068
https://doi.org/10.1016/j.fuel.2020.118068
|
37 |
M J Kleeman , J J Schauer , G R Cass . (2000). Size and composition distribution of fine particulate matter emitted from motor vehicles. Environmental Science & Technology, 34( 7): 1132– 1142
https://doi.org/10.1021/es981276y
|
38 |
Landälv I (2017). Methanol as a renewable fuel: A knowledge synthesis. 2015:08. Göteborg: The Swedish Knowledge Centre for Renewable Transportation Fuels (f3)
|
39 |
L Li , Y Ge , M Wang , J Li , Z Peng , Y Song , L Zhang . (2015). Effect of gasoline/methanol blends on motorcycle emissions: Exhaust and evaporative emissions. Atmospheric Environment, 102 : 79– 85
https://doi.org/10.1016/j.atmosenv.2014.11.044
|
40 |
W Y Li , Z Li , K C Xie . (2009). The development of methanol industry and methanol fuel in China. Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, 31( 18): 1673– 1679
https://doi.org/10.1080/15567030903021996
|
41 |
Y Li , J Gong , Y Deng , W Yuan , J Fu , B Zhang . (2017). Experimental comparative study on combustion, performance and emissions characteristics of methanol, ethanol and butanol in a spark ignition engine. Applied Thermal Engineering, 115 : 53– 63
https://doi.org/10.1016/j.applthermaleng.2016.12.037
|
42 |
B Liang , Y Ge , J Tan , X Han , L Gao , L Hao , W Ye , P Dai . (2013). Comparison of PM emissions from a gasoline direct injected (GDI) vehicle and a port fuel injected (PFI) vehicle measured by electrical low pressure impactor (ELPI) with two fuels: Gasoline and M15 methanol gasoline. Journal of Aerosol Science, 57 : 22– 31
https://doi.org/10.1016/j.jaerosci.2012.11.008
|
43 |
T Litzinger , M Stoner , H Hess , A Boehman . (2000). Effects of oxygenated blending compounds on emissions from a turbocharged direct injection diesel engine. International Journal of Engine Research, 1( 1): 57– 70
https://doi.org/10.1243/1468087001545263
|
44 |
H Liu , Z Wang , Y Long , S Xiang , J Wang , M Fatouraie . (2015a). Comparative study on alcohol–gasoline and gasoline–alcohol Dual-Fuel Spark Ignition (DFSI) combustion for engine particle number (PN) reduction. Fuel, 159 : 250– 258
https://doi.org/10.1016/j.fuel.2015.06.059
|
45 |
H Liu , Z Wang , Y Long , S Xiang , J Wang , S W Wagnon . (2015b). Methanol-gasoline Dual-fuel Spark Ignition (DFSI) combustion with dual-injection for engine particle number (PN) reduction and fuel economy improvement. Energy, 89 : 1010– 1017
https://doi.org/10.1016/j.energy.2015.06.051
|
46 |
S Liu , E R C Clemente , T Hu , Y Wei . (2007). Study of spark ignition engine fueled with methanol/gasoline fuel blends. Applied Thermal Engineering, 27( 11–12): 1904– 1910
https://doi.org/10.1016/j.applthermaleng.2006.12.024
|
47 |
X Liu , H Wang , Z Zheng , J Liu , R D Reitz , M Yao . (2016). Development of a combined reduced primary reference fuel-alcohols (methanol/ethanol/propanols/butanols/n-pentanol) mechanism for engine applications. Energy, 114 : 542– 558
https://doi.org/10.1016/j.energy.2016.08.001
|
48 |
M V Mallikarjun , V R Mamilla . (2009). Experimental study of exhaust emissions & performance analysis of multi cylinder S.I. engine when methanol used as an additive. International Journal of Electronic Engineering Research, 1( 3): 201– 212
|
49 |
E Mårald . (2010). Methanol as future fuel: Efforts to develop alternative fuels in Sweden after the Oil Crisis. History and Technology, 26( 4): 335– 357
https://doi.org/10.1080/07341512.2010.523175
|
50 |
M M Maricq . (2007). Chemical characterization of particulate emissions from diesel engines: A review. Journal of Aerosol Science, 38( 11): 1079– 1118
https://doi.org/10.1016/j.jaerosci.2007.08.001
|
51 |
B M Masum , M A Kalam , H H Masjuki , S M Palash , I M R Fattah . (2014). Performance and emission analysis of a multi cylinder gasoline engine operating at different alcohol–gasoline blends. RSC Advances, 4( 53): 27898– 27904
https://doi.org/10.1039/C4RA04580G
|
52 |
B M Masum , H H Masjuki , M A Kalam , I M R Fattah , S M Palash , M J Abedin . (2013). Effect of ethanol–gasoline blend on NOx emission in SI engine. Renewable & Sustainable Energy Reviews, 24 : 209– 222
https://doi.org/10.1016/j.rser.2013.03.046
|
53 |
R K Maurya , A K Agarwal . (2014). Experimental investigations of performance, combustion and emission characteristics of ethanol and methanol fueled HCCI engine. Fuel Processing Technology, 126 : 30– 48
https://doi.org/10.1016/j.fuproc.2014.03.031
|
54 |
MEE (2018). Limits and Measurement Methods for Emissions from Diesel Fuelled Heavy-Duty Vehicles (CHINA VI), GB 17691−2018. Beijing: Ministry of Ecology and Environment of the People’s Republic of China
|
55 |
MEE (2020). China Mobile Source Environmental Management Annual Report. Beijing: Ministry of Ecology and Environment of the People’s Republic of China
|
56 |
T C C D Melo , G B Machado , C R P Belchior , M J Colaço , J E M Barros , Oliveira E J De , Oliveira D G De . (2012). Hydrous ethanol–gasoline blends–combustion and emission investigations on a Flex-Fuel engine. Fuel, 97 : 796– 804
https://doi.org/10.1016/j.fuel.2012.03.018
|
57 |
Methanex (2020). 2019 Responsible Care and Sustainability Report. Vancouver: Methanex
|
58 |
P C Mishra , A Gupta , A Kumar , A Bose . (2020). Methanol and petrol blended alternate fuel for future sustainable engine: A performance and emission analysis. Measurement, 155 : 107519
https://doi.org/10.1016/j.measurement.2020.107519
|
59 |
M M Muñoz-Boado , E B Caldona . (2017). Gypsum-reinforced zeolite composite for particulate matter reduction from vehicular emissions. Journal of Environmental Chemical Engineering, 5( 3): 2631– 2638
https://doi.org/10.1016/j.jece.2017.05.003
|
60 |
Nakata K, Utsumi S, Ota A, Kawatake K, Kawai T, Tsunooka T (2006). The Effect of Ethanol Fuel on a Spark Ignition Engine. SAE Technical Paper, No. 2006-01-3380. Toronto: Society of Automotive Engineers
|
61 |
B S Nuthan Prasad , J K Pandey , G N Kumar . (2020). Impact of changing compression ratio on engine characteristics of an SI engine fueled with equi-volume blend of methanol and gasoline. Energy, 191 : 116605
https://doi.org/10.1016/j.energy.2019.116605
|
62 |
A N Ozsezen , M Canakci . (2011). Performance and combustion characteristics of alcohol–gasoline blends at wide-open throttle. Energy, 36( 5): 2747– 2752
https://doi.org/10.1016/j.energy.2011.02.014
|
63 |
A N Ozsezen , A Turkcan , C Sayin , M Canakci . (2011). Comparison of performance and combustion parameters in a heavy-duty diesel engine fueled with iso-butanol/diesel fuel blends. Energy Exploration and Exploitation, 29( 5): 525– 541
https://doi.org/10.1260/0144-5987.29.5.525
|
64 |
D Pan , L Tao , K Sun , L M Golston , D J Miller , T Zhu , Y Qin , Y Zhang , D L Mauzerall , M A Zondlo . (2020). Methane emissions from natural gas vehicles in China. Nature Communications, 11( 1): 1– 10
https://doi.org/10.1038/s41467-020-18141-0
|
65 |
P Pant , R M Harrison . (2013). Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmospheric Environment, 77 : 78– 97
https://doi.org/10.1016/j.atmosenv.2013.04.028
|
66 |
A M Pourkhesalian , A H Shamekhi , F Salimi . (2010). Alternative fuel and gasoline in an SI engine: A comparative study of performance and emissions characteristics. Fuel, 89( 5): 1056– 1063
https://doi.org/10.1016/j.fuel.2009.11.025
|
67 |
D H Qi , S Q Liu , C H Zhang , Y Z Bian . (2005). Properties, performance, and emissions of methanol-gasoline blends in a spark ignition engine. Proceedings of the Institution of Mechanical Engineers. Part D, Journal of Automobile Engineering, 219( 3): 405– 412
https://doi.org/10.1243/095440705X6659
|
68 |
Y Qian , Z Li , L Yu , X Wang , X Lu . (2019). Review of the state-of-the-art of particulate matter emissions from modern gasoline fueled engines. Applied Energy, 238 : 1269– 1298
https://doi.org/10.1016/j.apenergy.2019.01.179
|
69 |
Rifal M, Sinaga N (2016). Impact of methanol-gasoline fuel blend on the fuel consumption and exhaust emission of a SI engine. In: AIP Conference Proceedings 1725, 020070 (2016). Semarang, Indonesia: American Institute of Physics, 1−7
|
70 |
S M Sarathy , A Farooq , G T Kalghatgi . (2018). Recent progress in gasoline surrogate fuels. Progress in Energy and Combustion Science, 65 : 67– 108
https://doi.org/10.1016/j.pecs.2017.09.004
|
71 |
S M Sarathy , P Oßwald , N Hansen , K Kohse-Höinghaus . (2014). Alcohol combustion chemistry. Progress in Energy and Combustion Science, 44 : 40– 102
https://doi.org/10.1016/j.pecs.2014.04.003
|
72 |
Schröder J, Müller-Langer F, Aakko-Saksa P, Winther K, Baumgarten W, Lindgren M (2020). Methanol as Motor Fuel: Summary Report. Paris: International Energy Agency (IEA)
|
73 |
Shen Y (2010). Methanol gasoline development in foreign countries and enlightenment to China. Sino-Global Energy, 15(12): 23−28 (in Chinese)
|
74 |
Stanglmaier R H, Li J, Matthews R D (1999). The Effect of In-Cylinder Wall Wetting Location on the HC Emissions from SI Engines. SAE Technical Paper, No. 1999-01-0502. Michigan: Society of Automotive Engineers
|
75 |
S Su , Y Ge , X Wang , M Zhang , L Hao , J Tan , F Shi , D Guo , Z Yang . (2020). Evaluating the in-service emissions of high-mileage dedicated methanol-fueled passenger cars: Regulated and unregulated emissions. Energies, 13( 11): 2680– 2694
https://doi.org/10.3390/en13112680
|
76 |
I W Sugita , D R B Syaka , A I Wahyudi . (2019). Effect of pertalite – methanol blends on performance and exhaust emission of a four-stroke 125 CC motorcycle engine. KnE Social Sciences, 3( 12): 384– 393
https://doi.org/10.18502/kss.v3i12.4105
|
77 |
J W G Turner , A G J Lewis , S Akehurst , C J Brace , S Verhelst , J Vancoillie , L Sileghem , F Leach , P P Edwards . (2018). Alcohol fuels for spark-ignition engines: Performance, efficiency and emission effects at mid to high blend rates for binary mixtures and pure components. Proceedings of the Institution of Mechanical Engineers. Part D, Journal of Automobile Engineering, 232 : 36– 56
https://doi.org/10.1177/0954407017752832
|
78 |
USEIA . (2021). Monthly Energy Review 2021. DOE/EIA-0035(2021/5): U.S. Energy Information Administration. Washington, DC : USEPA
|
79 |
USEPA . (2010). Green Remediation Best Management Practices: Clean Fuel & Emission Technologies for Site Cleanup. EPA 542-F-10-008: U.S. Environmental Protection Agency. Washington, DC : USEPA
|
80 |
J Vancoillie , J Demuynck , L Sileghem , M Van De Ginste , S Verhelst , L Brabant , L Van Hoorebeke . (2013). The potential of methanol as a fuel for flex-fuel and dedicated spark-ignition engines. Applied Energy, 102 : 140– 149
https://doi.org/10.1016/j.apenergy.2012.05.065
|
81 |
S Verhelst , J W G Turner , L Sileghem , J Vancoillie . (2019). Methanol as a fuel for internal combustion engines. Progress in Energy and Combustion Science, 70 : 43– 88
https://doi.org/10.1016/j.pecs.2018.10.001
|
82 |
E Vouitsis , L Ntziachristos , P Pistikopoulos , Z Samaras , L Chrysikou , C Samara , C Papadimitriou , P Samaras , G Sakellaropoulos . (2009). An investigation on the physical, chemical and ecotoxicological characteristics of particulate matter emitted from light-duty vehicles. Environmental Pollution, 157( 8-9): 2320– 2327
https://doi.org/10.1016/j.envpol.2009.03.028
|
83 |
Wang X, Ge Y, Liu L, Gong H (2015a). Regulated, Carbonyl Emissions and Particulate Matter from a Dual-Fuel Passenger Car Burning Neat Methanol and Gasoline. SAE Technical Paper, No. 2015-01-1082. Detroit: SAE International
|
84 |
X Wang , Y Ge , L Liu , Z Peng , L Hao , H Yin , Y Ding , J Wang . (2015b). Evaluation on toxic reduction and fuel economy of a gasoline direct injection- (GDI-) powered passenger car fueled with methanol–gasoline blends with various substitution ratios. Applied Energy, 157 : 134– 143
https://doi.org/10.1016/j.apenergy.2015.08.023
|
85 |
X Wang , Y Ge , C Zhang , J Tan , L Hao , J Liu , H Gong . (2016). Effects of engine misfire on regulated, unregulated emissions from a methanol-fueled vehicle and its ozone forming potential. Applied Energy, 177 : 187– 195
https://doi.org/10.1016/j.apenergy.2016.05.092
|
86 |
Y Wei , S Liu , H Li , Y Rui , J Liu , Y Wang . (2008). Effects of methanol/gasoline blends on a spark ignition engine performance and emissions. Energy & Fuels, 22( 2): 1254– 1259
https://doi.org/10.1021/ef7003706
|
87 |
C W Wu , R H Chen , J Y Pu , T H Lin . (2004). The influence of air–fuel ratio on engine performance and pollutant emission of an SI engine using ethanol–gasoline-blended fuels. Atmospheric Environment, 38( 40): 7093– 7100
https://doi.org/10.1016/j.atmosenv.2004.01.058
|
88 |
I M Yusri , R Mamat , G Najafi , A Razman , O I Awad , W H Azmi , W F W Ishak , A I M Shaiful . (2017). Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions. Renewable & Sustainable Energy Reviews, 77 : 169– 181
https://doi.org/10.1016/j.rser.2017.03.080
|
89 |
Zhang F, Shuai S, Wang J, Wang Z (2009). Influence of Methanol Gasoline Blend Fuel on Engine and Catalyst Performance. SAE Technical Paper, No. 2009-01-1182. Detroit: SAE International
|
90 |
Zhang J, Nithyanandan K, Li Y, Lee C F, Huang Z (2015). Comparative Study of High-Alcohol-Content Gasoline Blends in an SI Engine. SAE Technical Paper, No. 2015-01-0891. Detroit: SAE International
|
91 |
H Zhao , Y Ge , C Hao , X Han , M Fu , L Yu , A N Shah . (2010). Carbonyl compound emissions from passenger cars fueled with methanol/gasoline blends. Science of the Total Environment, 408( 17): 3607– 3613
https://doi.org/10.1016/j.scitotenv.2010.03.046
|
92 |
H Zhao , Y Ge , J Tan , H Yin , J Guo , W Zhao , P Dai . (2011). Effects of different mixing ratios on emissions from passenger cars fueled with methanol/gasoline blends. Journal of Environmental Sciences, 23( 11): 1831– 1838
https://doi.org/10.1016/S1001-0742(10)60626-2
|
93 |
Zhao K (2019). A Brief Review of China’s Methanol Vehicle Pilot and Policy. Alexandria: Methanol Institute
|
94 |
Zhao K, Dolan G, Chatterton C (2021). A Brief Review on Methanol-Fuelled Vehicles (MFV) in China and Implementation Policy. In: Agarwal A K, Valera H, Pexa M, Čedík J, eds. Methanol. Singapore: Springer, 139−159
|
95 |
X Zhen , Y Wang . (2015). An overview of methanol as an internal combustion engine fuel. Renewable & Sustainable Energy Reviews, 52 : 477– 493
https://doi.org/10.1016/j.rser.2015.07.083
|
96 |
N Zhou , Q Wu , X Hu . (2020). Research on the policy evolution of China’s new energy vehicles industry. Sustainability, 12( 9): 3629
https://doi.org/10.3390/su12093629
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|