Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (2) : 19    https://doi.org/10.1007/s11783-023-1619-y
RESEARCH ARTICLE
Visible light induces bacteria to produce superoxide for manganese oxidation
Fan Yang1,2, Junpeng Li1,2, Huan Wang1, Xiaofeng Xiao1,2, Rui Bai1,2, Feng Zhao1()
1. CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(4736 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Term of manganese-oxidizing microorganisms should be reconsidered.

● Visible light induces heterotrophic bacteria to produce superoxide.

● Heterotrophic bacteria oxidize Mn(II) ions with a fast oxidation rate.

● Superoxide oxidizing Mn(II) ions is an unintended side reaction of bacteria.

● Superoxide is an important oxidation force of Mn(II) in the environment.

Manganese oxides are widely distributed in soils and sediments, affecting the migration and transformation of heavy metals and organic pollutants. The microbial conversion of soluble Mn(II) into insoluble Mn(III/IV) oxides is considered to be the initial source of manganese oxides in the environment; however, whether this process is related to a physiological role remains unclear. Here, we explored the microbial manganese oxidation process under visible light by using coastal surface seawater microorganisms. Visible light greatly promotes the oxidation rate of Mn(II), and the average rate reaches 64 μmol/(L·d). The generated manganese oxides were then conducive to Mn(II) oxidation, thus the rapid manganese oxidation was the result of the combined action of biotic and abiotic, and biological function accounts for 88 % ± 4 %. Extracellular superoxide produced by microorganisms induced by visible light is the decisive factor for the rapid manganese oxidation in our study. But the production of these superoxides does not require the presence of Mn(II) ions, the Mn(II) oxidation process was more like an unintentional side reaction, which did not affect the growth of microorganisms. More than 70 % of heterotrophic microorganisms in nature are capable of producing superoxide, based on the oxidizing properties of free radicals, all these bacteria can participate in the geochemical cycle of manganese. What’s more, the superoxide oxidation pathway might be a significant natural source of manganese oxide.

Keywords Mn(II) oxidation      Manganese-oxidizing bacteria      Reactive oxygen species      Mn(III/IV) oxides     
Corresponding Author(s): Feng Zhao   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Issue Date: 08 September 2022
 Cite this article:   
Fan Yang,Junpeng Li,Huan Wang, et al. Visible light induces bacteria to produce superoxide for manganese oxidation[J]. Front. Environ. Sci. Eng., 2023, 17(2): 19.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1619-y
https://academic.hep.com.cn/fese/EN/Y2023/V17/I2/19
Fig.1  Visible light promotes bacterial manganese oxidation. (a) The concentration change of Mn(III/IV) oxides with time: red and blue represent the light and dark culture conditions, respectively; solid and hollow symbols represent the bacteria and sterile control groups, respectively. Lines of dark, abiotic light, and abiotic dark groups are overlapped, due to Mn(II) oxidation has not occurred in the three groups; (b) SEM image of biogenic Mn(III/IV) oxides under light; (c) The manganese-oxidizing inhibition rate when the bacterial activity was inhibited by NaN3 or heat treatment; (d) Change of Mn(III/IV) oxides content with time after light removal. Error bars represent the standard deviation of three replicates.
Fig.2  Community composition before and after light/dark culture with manganese (genus level). Cultures with Mn(II) ions in the dark/light are marked as dark + Mn2+ and light + Mn2+, respectively. The initial inoculum is marked as initial.
Fig.3  Changes in pH during light/dark cultures with/without manganese. Red and blue represent the light and dark culture conditions, respectively; solid and hollow symbols represent the presence and absence of Mn(II) ions, respectively. Error bars represent the standard deviation of three replicates.
Fig.4  Reactive oxygen species detection. (a) The increased fluorescence intensity ratio of light with/without Mn(II) ions and the addition of reactive oxygen species initiator (Rosup); (b) Superoxide concentrations were detected in light/dark conditions for 2 h in the presence/absence of manganese. (c) Inhibition rate of Mn(II) oxidation with different inhibitors. Error bars represent the standard deviation of three replicates.
Fig.5  Oxidation capacity of the generated Mn(III/IV) oxides. (a) Change of Mn(III/IV) oxides content with NaN3 addition; (b) Content of Mn(III/IV) oxides before and after 6 d of light/dark culture; (c) Inhibition rate of manganese oxidation under light culture by adding the hole scavengers oxalate (1 mmol/L), sulfite (1 mmol/L). Error bars represent the standard deviation of three replicates.
Fig.6  Mechanism of manganese oxidation under light incubation.
1 P F Andeer, D R Learman, M McIlvin, J A Dunn, C M Hansel. (2015). Extracellular haem peroxidases mediate Mn(II) oxidation in a marine Roseobacter bacterium via superoxide production. Environmental Microbiology, 17( 10): 3925– 3936
https://doi.org/10.1111/1462-2920.12893 pmid: 25923595
2 C R Anderson, H A Johnson, N Caputo, R E Davis, J W Torpey, B M Tebo. (2009). Mn(II) oxidation is catalyzed by heme peroxidases in “Aurantimonas manganoxydans” strain SI85-9A1 and Erythrobacter sp. strain SD-21. Applied and Environmental Microbiology, 75( 12): 4130– 4138
https://doi.org/10.1128/AEM.02890-08 pmid: 19411418
3 M L Bender, G P Klinkhammer, D W Spencer. (1977). Manganese in seawater and the marine manganese balance. Deep-Sea Research, 24( 9): 799– 812
https://doi.org/10.1016/0146-6291(77)90473-8
4 E Cabiscol, J Tamarit, J Ros. (2000). Oxidative stress in bacteria and protein damage by reactive oxygen species. International Microbiology, 3( 1): 3– 8
pmid: 10963327
5 L Cabrol, M Quéméneur, B Misson. (2017). Inhibitory effects of sodium azide on microbial growth in experimental resuspension of marine sediment. Journal of Microbiological Methods, 133 : 62– 65
https://doi.org/10.1016/j.mimet.2016.12.021 pmid: 28039035
6 S K Carmichael S L Bräuer ( 2015) . Microbial diversity and manganese cycling: a review of manganese oxidizing microbial cave communities. In: Summers Engel A, ed. Microbial Life of Cave Systems. Berlin: De Gruyter
7 G Cebrián, S Condón, P Mañas. (2017). Physiology of the inactivation of vegetative bacteria by thermal treatments: mode of action, influence of environmental factors and inactivation kinetics. Foods, 6( 12): 107
https://doi.org/10.3390/foods6120107 pmid: 29189748
8 H Cui, B Li, Z Li, X Li, S Xu. (2018). Z-scheme based CdS/CdWO4 heterojunction visible light photocatalyst for dye degradation and hydrogen evolution. Applied Surface Science, 455 : 831– 840
https://doi.org/10.1016/j.apsusc.2018.06.054
9 J M Diaz, C M Hansel, B M Voelker, C M Mendes, P F Andeer, T Zhang. (2013). Widespread production of extracellular superoxide by heterotrophic bacteria. Science, 340( 6137): 1223– 1226
https://doi.org/10.1126/science.1237331 pmid: 23641059
10 R Ding, W Yan, Y Wu, Y Xiao, H Gang, S Wang, L Chen, F Zhao. (2018). Light-excited photoelectrons coupled with bio-photocatalysis enhanced the degradation efficiency of oxytetracycline. Water Research, 143 : 589– 598
https://doi.org/10.1016/j.watres.2018.06.068 pmid: 30015099
11 O W Duckworth, G Sposito. (2005). Siderophore-manganese(III) interactions. I. Air-oxidation of manganese(ll) promoted by desferrioxamine B. Environmental Science & Technology, 39( 16): 6037– 6044
https://doi.org/10.1021/es050275k pmid: 16173561
12 I Forrez, M Carballa, K Verbeken, L Vanhaecke, M Schlüsener, T Ternes, N Boon, W Verstraete. (2010). Diclofenac oxidation by biogenic manganese oxides. Environmental Science & Technology, 44( 9): 3449– 3454
https://doi.org/10.1021/es9027327 pmid: 20369877
13 K Geszvain, L Smesrud, B M Tebo. (2016). Identification of a third Mn (II) oxidase enzyme in Pseudomonas putida GB-1. Applied and Environmental Microbiology, 82( 13): 3774– 3782
https://doi.org/10.1128/AEM.00046-16 pmid: 27084014
14 F D Halstead, J E Thwaite, R Burt, T R Laws, M Raguse, R Moeller, M A Webber, B A Oppenheim. (2016). Antibacterial activity of blue light against nosocomial wound pathogens growing planktonically and as mature biofilms. Applied and Environmental Microbiology, 82( 13): 4006– 4016
https://doi.org/10.1128/AEM.00756-16 pmid: 27129967
15 S P Hansard, H D Easter, B M Voelker. (2011). Rapid reaction of nanomolar Mn(II) with superoxide radical in seawater and simulated freshwater. Environmental Science & Technology, 45( 7): 2811– 2817
https://doi.org/10.1021/es104014s pmid: 21375329
16 C M Hansel, J M Diaz. (2021). Production of extracellular reactive oxygen species by marine biota. Annual Review of Marine Science, 13( 1): 177– 200
https://doi.org/10.1146/annurev-marine-041320-102550 pmid: 32956016
17 C M Hansel, C A Zeiner, C M Santelli, S M Webb. (2012). Mn(II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction. Proceedings of the National Academy of Sciences of the United States of America, 109( 31): 12621– 12625
https://doi.org/10.1073/pnas.1203885109 pmid: 22802654
18 M Hayyan, M A Hashim, I M AlNashef. (2016). Superoxide ion: generation and chemical implications. Chemical Reviews, 116( 5): 3029– 3085
https://doi.org/10.1021/acs.chemrev.5b00407 pmid: 26875845
19 H Hou, H Liu, F Gao, M Shang, L Wang, L Xu, W Wong, W Yang. (2018). Packaging BiVO4 nanoparticles in ZnO microbelts for efficient photoelectrochemical hydrogen production. Electrochimica Acta, 283 : 497– 508
https://doi.org/10.1016/j.electacta.2018.06.148
20 J Huang, H Zhang. (2020). Redox reactions of iron and manganese oxides in complex systems. Frontiers of Environmental Science & Engineering, 14( 5): 76
https://doi.org/10.1007/s11783-020-1255-8
21 H Jung, M Taillefert, J Sun, Q Wang, O J Borkiewicz, P Liu, L Yang, S Chen, H Chen, Y Tang. (2020). Redox cycling driven transformation of layered manganese oxides to tunnel structures. Journal of the American Chemical Society, 142( 5): 2506– 2513
https://doi.org/10.1021/jacs.9b12266 pmid: 31913621
22 M Koblížek, O Béjà, R R Bidigare, S Christensen, B Benitez-Nelson, C Vetriani, M K Kolber, P G Falkowski, Z S Kolber. (2003). Isolation and characterization of Erythrobacter sp. strains from the upper ocean. Archives of Microbiology, 180( 5): 327– 338
https://doi.org/10.1007/s00203-003-0596-6 pmid: 14504692
23 A Kumar, V Ghate, M J Kim, W Zhou, G H Khoo, H G Yuk. (2016). Antibacterial efficacy of 405, 460 and 520 nm light emitting diodes on Lactobacillus plantarum, Staphylococcus aureus and Vibrio parahaemolyticus. Journal of Applied Microbiology, 120( 1): 49– 56
https://doi.org/10.1111/jam.12975 pmid: 26481103
24 D R Learman, B M Voelker, A S Madden, C M Hansel. (2013). Constraints on superoxide mediated formation of manganese oxides. Frontiers in Microbiology, 4 : 262
https://doi.org/10.3389/fmicb.2013.00262 pmid: 24027565
25 D R Learman, B M Voelker, A I Vazquez-Rodriguez, C M Hansel. (2011). Formation of manganese oxides by bacterially generated superoxide. Nature Geoscience, 4( 2): 95– 98
https://doi.org/10.1038/ngeo1055
26 Y Li, L Chen, X Tian, L Lin, R Ding, W Yan, F Zhao. (2021). Functional role of mixed-culture microbe in photocatalysis coupled with biodegradation: Total organic carbon removal of ciprofloxacin. Science of the Total Environment, 784 : 147049
https://doi.org/10.1016/j.scitotenv.2021.147049 pmid: 34088071
27 J J Morris, A L Rose, Z Lu. (2022). Reactive oxygen species in the world ocean and their impacts on marine ecosystems. Redox Biology, 52 : 102285
https://doi.org/10.1016/j.redox.2022.102285 pmid: 35364435
28 K J Murray, S M Webb, J R Bargar, B M Tebo. (2007). Indirect oxidation of Co(II) in the presence of the marine Mn(II)-oxidizing bacterium Bacillus sp. strain SG-1. Applied and Environmental Microbiology, 73( 21): 6905– 6909
https://doi.org/10.1128/AEM.00971-07 pmid: 17827312
29 K Nakama, M Medina, A Lien, J Ruggieri, K Collins, H A Johnson. (2014). Heterologous expression and characterization of the manganese-oxidizing protein from Erythrobacter sp. strain SD21. Applied and Environmental Microbiology, 80( 21): 6837– 6842
https://doi.org/10.1128/AEM.01873-14 pmid: 25172859
30 K H (2006) Nealson. Volume 5: Proteobacteria: Alpha and Beta Subclasses. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K H, Stackebrandt E, editors. The Prokaryotes. New York: Springer, 222– 231
31 Nesbitt H W, Banerjee D (1998). Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. American Mineralogist, 83(3–4): 305–315
32 P S Nico, C Anastasio, R J Zasoski. (2002). Rapid photo-oxidation of Mn(II) mediated by humic substances. Geochimica et Cosmochimica Acta, 66( 23): 4047– 4056
https://doi.org/10.1016/S0016-7037(02)01001-3
33 C Palermo, M Dittrich. (2016). Evidence for the biogenic origin of manganese-enriched layers in Lake Superior sediments. Environmental Microbiology Reports, 8( 2): 179– 186
https://doi.org/10.1111/1758-2229.12364 pmid: 26636960
34 P S Queiroz, F A D Ruas, N R Barboza, Castro Borges W de, R Guerra-Sá. (2018). Alterations in the proteomic composition of Serratia marcescens in response to manganese (II). BMC Biotechnology, 18( 1): 83
https://doi.org/10.1186/s12896-018-0493-3 pmid: 30594179
35 G Ramadoss, S P Suriyaraj, R Sivaramakrishnan, A Pugazhendhi, S Rajendran. (2021). Mesoporous ferromagnetic manganese ferrite nanoparticles for enhanced visible light mineralization of azoic dye into nontoxic by-products. Science of the Total Environment, 765 : 142707
https://doi.org/10.1016/j.scitotenv.2020.142707 pmid: 33069475
36 L L Richardson, C Aguilar, K H Nealson. (1988). Manganese oxidation in pH and O2 microenvironments produced by phytoplankton. Limnology and Oceanography, 33( 3): 352– 363
https://doi.org/10.4319/lo.1988.33.3.0352 pmid: 11538363
37 Y Song, J Jiang, J Ma, Y Zhou, U von Gunten. (2019). Enhanced transformation of sulfonamide antibiotics by manganese(IV) oxide in the presence of model humic constituents. Water Research, 153 : 200– 207
https://doi.org/10.1016/j.watres.2019.01.011 pmid: 30716563
38 Y Shi, Y Dai, Z Liu, X Nie, S Zhao, C Zhang, H Jia. (2020). Light-induced variation in environmentally persistent free radicals and the generation of reactive radical species in humic substances. Frontiers of Environmental Science & Engineering, 14( 6): 106
39 K M Sutherland, A Coe, R J Gast, S Plummer, C P Suffridge, J M Diaz, J S Bowman, S D Wankel, C M Hansel. (2019). Extracellular superoxide production by key microbes in the global ocean. Limnology and Oceanography, 64( 6): 2679– 2693
https://doi.org/10.1002/lno.11247
40 K M Sutherland, S D Wankel, C M Hansel. (2020). Dark biological superoxide production as a significant flux and sink of marine dissolved oxygen. Proceedings of the National Academy of Sciences of the United States of America, 117( 7): 3433– 3439
https://doi.org/10.1073/pnas.1912313117 pmid: 32015131
41 M Tardu, S Bulut, I H Kavakli. (2017). MerR and ChrR mediate blue light induced photo-oxidative stress response at the transcriptional level in Vibrio cholerae. Scientific Reports, 7( 1): 40817
https://doi.org/10.1038/srep40817 pmid: 28098242
42 B M Tebo, J R Bargar, B G Clement, G J Dick, K J Murray, D Parker, R Verity, S M Webb. (2004). Biogenic manganese oxides: properties and mechanisms of formation. Annual Review of Earth and Planetary Sciences, 32( 1): 287– 328
https://doi.org/10.1146/annurev.earth.32.101802.120213
43 B M Tebo, H A Johnson, J K McCarthy, A S Templeton. (2005). Geomicrobiology of manganese(II) oxidation. Trends in Microbiology, 13( 9): 421– 428
https://doi.org/10.1016/j.tim.2005.07.009 pmid: 16054815
44 C Tournassat, L Charlet, D Bosbach, A Manceau. (2002). Arsenic(III) oxidation by birnessite and precipitation of manganese(II) arsenate. Environmental Science & Technology, 36( 3): 493– 500
https://doi.org/10.1021/es0109500 pmid: 11871566
45 L Wu, G Zhu, X Zhang, Y Si. (2020). Silver nanoparticles inhibit denitrification by altering the viability and metabolic activity of Pseudomonas stutzeri. Science of the Total Environment, 706 : 135711
https://doi.org/10.1016/j.scitotenv.2019.135711 pmid: 31791784
46 W Xia, R Chen, Y Li, P Gao, C Li, T Jin, J Ma, T Ma. (2021). Photo-driven heterogeneous microbial consortium reducing CO2 to hydrocarbons fuel. Journal of Cleaner Production, 326 : 129397
https://doi.org/10.1016/j.jclepro.2021.129397
47 J Xu, M Zhao, L Pei, X Liu, L Wei, A Li, Y Mei, Q Xu. (2020). Effects of heavy metal mixture exposure on hematological and biomedical parameters mediated by oxidative stress. Science of the Total Environment, 705 : 134865
https://doi.org/10.1016/j.scitotenv.2019.134865
48 X Xu, Y Li, Y Li, A Lu, R Qiao, K Liu, H Ding, C Wang. (2019). Characteristics of desert varnish from nanometer to micrometer scale: a photo-oxidation model on its formation. Chemical Geology, 522 : 55– 70
https://doi.org/10.1016/j.chemgeo.2019.05.016
49 F Yang, Y Zheng, X Tian, Y Liu, J Li, Z Shao, F Zhao. (2021). Redox cycling of manganese by Bacillus horikoshii biET1 via oxygen switch. Electrochimica Acta, 375 : 137963
https://doi.org/10.1016/j.electacta.2021.137963
50 G Yang, W Ni, K Wu, H Wang, B E Yang, X Jia, R Jin. (2013). The effect of Cu(II) stress on the activity, performance and recovery on the Anaerobic Ammonium-Oxidizing (Anammox) process. Chemical Engineering Journal, 226 : 39– 45
https://doi.org/10.1016/j.cej.2013.04.019
51 X Yang, Q Peng, L Liu, W Tan, G Qiu, C Liu, Z Dang. (2020). Synergistic adsorption of Cd(II) and As(V) on birnessite under electrochemical control. Chemosphere, 247 : 125822
https://doi.org/10.1016/j.chemosphere.2020.125822 pmid: 31927232
52 T Zhang, L Liu, W Tan, S L Suib, G Qiu, F Liu. (2018). Photochemical formation and transformation of birnessite: effects of cations on micromorphology and crystal structure. Environmental Science & Technology, 52( 12): 6864– 6871
https://doi.org/10.1021/acs.est.7b06592 pmid: 29792324
53 H Zhao, Y Wang, Y Liu, K Yin, D Wang, B Li, H Yu, M Xing. (2021). ROS-induced hepatotoxicity under cypermethrin: involvement of the crosstalk between Nrf2/Keap1 and NF-kappaB/ikappaB-alpha pathways regulated by proteasome. Environmental Science & Technology, 55( 9): 6171– 6183
https://doi.org/10.1021/acs.est.1c00515 pmid: 33843202
54 Y Zheng, A Kappler, Y Xiao, F Yang, G D Mahadeva, F Zhao. (2019). Redox-active humics support interspecies syntrophy and shift microbial community. Science China Technological Sciences, 62( 10): 1695– 1702
https://doi.org/10.1007/s11431-018-9360-5
55 H Zhou, C Fu. (2020). Manganese-oxidizing microbes and biogenic manganese oxides: characterization, Mn(II) oxidation mechanism and environmental relevance. Reviews in Environmental Science and Biotechnology, 19( 3): 489– 507
https://doi.org/10.1007/s11157-020-09541-1
[1] FSE-22056-OF-YF_suppl_1 Download
[1] Hasti Daraei, Kimia Toolabian, Ian Thompson, Guanglei Qiu. Biotoxicity evaluation of zinc oxide nanoparticles on bacterial performance of activated sludge at COD, nitrogen, and phosphorus reduction[J]. Front. Environ. Sci. Eng., 2022, 16(2): 19-.
[2] Barsha Roy, Khushboo Kadam, Suresh Palamadai Krishnan, Chandrasekaran Natarajan, Amitava Mukherjee. Assessing combined toxic effects of tetracycline and P25 titanium dioxide nanoparticles using Allium cepa bioassay[J]. Front. Environ. Sci. Eng., 2021, 15(1): 6-.
[3] Hanzhong Jia, Yafang Shi, Xiaofeng Nie, Song Zhao, Tiecheng Wang, Virender K. Sharma. Persistent free radicals in humin under redox conditions and their impact in transforming polycyclic aromatic hydrocarbons[J]. Front. Environ. Sci. Eng., 2020, 14(4): 73-.
[4] Wenchao Jiang, Ping Tang, Zhen Liu, Huan He, Qian Sui, Shuguang Lyu. Enhanced carbon tetrachloride degradation by hydroxylamine in ferrous ion activated calcium peroxide in the presence of formic acid[J]. Front. Environ. Sci. Eng., 2020, 14(2): 18-.
[5] Xiaoya Liu, Yu Hong, Peirui Liu, Jingjing Zhan, Ran Yan. Effects of cultivation strategies on the cultivation of Chlorella sp. HQ in photoreactors[J]. Front. Environ. Sci. Eng., 2019, 13(5): 78-.
[6] Virender K. Sharma, Xin Yu, Thomas J. McDonald, Chetan Jinadatha, Dionysios D. Dionysiou, Mingbao Feng. Elimination of antibiotic resistance genes and control of horizontal transfer risk by UV-based treatment of drinking water: A mini review[J]. Front. Environ. Sci. Eng., 2019, 13(3): 37-.
[7] Xin Li, Jun Xie, Chuanjia Jiang, Jiaguo Yu, Pengyi Zhang. Review on design and evaluation of environmental photocatalysts[J]. Front. Environ. Sci. Eng., 2018, 12(5): 14-.
[8] ZHAN Manjun, YANG Xi, KONG Lingren, YANG Hongshen. Effect of natural aquatic humic substances on the photodegradation of bisphenol A[J]. Front.Environ.Sci.Eng., 2007, 1(3): 311-315.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed