Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (10) : 128    https://doi.org/10.1007/s11783-024-1888-0
Thermal degradation and hydrolysis depolymerization of printing ink components for plastic packaging in recycling processes: a review
Jinyang Guo(), Cong Luo, Zhi Kai Chong, Ayah Alassali, Kerstin Kuchta()
Circular Resource Engineering and Management (CREM), Hamburg University of Technology (TUHH), 21079 Hamburg, Germany
 Download: PDF(1221 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Identifies and elucidates the concurrent thermal degradation and hydrolysis of common binders in flexible plastic packaging during mechanical recycling.

● Reveals that thermal degradation for a variety of binder resins begins between 200–300 °C, with hydrolysis potentially intensified by humidity from cleaning processes.

● Demonstrates how the compatibility between binder resins and polyolefin affects the quality of recycled plastics, emphasizing this issue regarding immiscibility.

● Underscores the influence of binder resins and their degradation products on the efficacy of advanced recycling methods like selective dissolution-precipitation and pyrolysis.

This review covers the decomposition mechanisms of various printing ink binder resins, with a particular focus on their behavior under extrusion conditions in the mechanical recycling process of polyolefin (PO) based plastic packaging. Thermal degradation and hydrolysis of the nitrocellulose (NC) ─ the most used binder for flexographic surface printing on single-layer flexible plastic packaging, occur concurrently during the mechanical recycling process under 160–210 °C. For other printing ink binders, polyurethane (PU) noticeable degradation takes place between 200 and 300 °C, mostly above 250 °C. However, with the involvement of humidity, degradation by hydrolysis can start from 150 °C. A similar effect is also discovered with the cellulose acetate (CA) derivatives, which are thermally stable until 300 °C and can be hydrolyzed at 100 °C. The thermal stability of polyvinyl butyral (PVB) is not influenced by humidity, with thermal stability ranging from 170 to 260 °C, depending on different types. Ultraviolet (UV)-cured acrylics are thermally stable until 400 °C. The hydrolysis degradation can take place at room temperature. Moreover, this review covers the thermal stability of different colorants used for printing ink application and elaborates on several thermal-stable alternatives of some common colors. This study further reviews how the binder resin affects the quality of recyclates, revealing it to be not only induced by the degradation of the binder resin but also by the immiscibility between the plastic and binder resin. In advanced recycling processes, mainly selective dissolution-precipitation and pyrolysis, the presence of binder resin and its degradation products could still affect the quality of the product. This review accentuates the imperative need for in-depth research to unravel the impact of printing ink constituents on the quality of recycled products.

Keywords Plastic recycling      Flexible packaging      Polymer degradation      Green chemistry     
Corresponding Author(s): Jinyang Guo,Kerstin Kuchta   
Issue Date: 06 August 2024
 Cite this article:   
Jinyang Guo,Cong Luo,Zhi Kai Chong, et al. Thermal degradation and hydrolysis depolymerization of printing ink components for plastic packaging in recycling processes: a review[J]. Front. Environ. Sci. Eng., 2024, 18(10): 128.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1888-0
https://academic.hep.com.cn/fese/EN/Y2024/V18/I10/128
Binder resin Application Source
Nitrocellulose (NC) Printing ink for flexible plastic packaging Guo et al. (2023b); Ügdüler et al. (2023); Kaedin-Koppers (2023)
Polyurethane (PU) Printing ink for flexible plastic packaging (currently mainly for multilayer plastic packaging) Akindoyo et al. (2016); Kaedin-Koppers (2023); Szabo (2002)
Polyvinyl butyral (PVB) Printing ink for flexible plastic packaging (flexographic and gravure printing) Rathschlag (2021); Hancock (1993)
Polyamide (PA) Mainly used as a co-binder or OPV Hinden and Whyzmuzis (1973); Szabo (2002); Ramadan et al. (2019)
Cellulose acetate (CA) and derivatives Mainly used as overprint varnish Yu and Gray (1998); Flick (1999); Yu and Gray (1998); Meng et al. (2017); Robert (2015)
Polymethyl methacrylate (PMMA) Mainly used for screen printing for textile Kuo et al. (2022)
Polyvinyl acetate (PVA) Mainly used for ink jet printing (i.e., paper) Zhang et al. (2015); Lamminmäki et al. (2011)
Polyacrylic resin Mainly used label, including in-mold labeling (IML) of rigid packaging material Duan et al. (2017); Robert (2015)
Tab.1  Common binder resins for printing inks according to Guo et al. (2023b) and Ügdüler et al. (2023)
Fig.1  Chemical structures of common printing ink binders (a) nitrocellulose, (b) polyurethane (aliphatic), (c) polyvinyl butyral, (d) cellulose acetate propionate, (e) polyamide, (f) upper: acrylate monomer, lower: acrylate polymer after UV curing (crosslinking).
Fig.2  Depolymerization reactions of polycondensate polymer.
Fig.3  Thermal decomposition and hydrolysis reactions of nitrocellulose, summarized based on Katoh et al. (2010); Rychlý et al. (2012); Wei et al. (2019).
Proportion Degradation product Source
Major (> 10%) NO2, NO, CO, CO2, H2O, char Klein et al. (1950); MWolfrom et al. (1955); Gelernter et al. (1956); Eyer et al. (2007); Rychlý et al. (2012)
Minor (5%–10%) HCOOH, HCHO, (HCO)2 Gelernter et al. (1956); Wolfrom and Arsenault (1960)
Trace (less than 10%) HCN, N2, N2O, CH3CHO, (H2C)2CO, CH3=CHCHO, CH4, H2C=CH2, CH2OH, CH2CH2OH, HCONH2 Klein et al. (1950); Wolfrom et al. (1955); Wolfrom and Arsenault (1960); Meyer et al. (2007)
Tab.2  Degradation products of NC, based on Dauerman and Tajima (1968); Wei et al. (2019)
Functional groups Dissociation temperature (°C)
Allophanate 80–120
Biuret 100–125
Urethane 160–200
Urea 140–250
Tab.3  Functional groups in polyurethane that possibly degrade under extrusion temperature (Oenema et al., 2022)
Fig.4  Hydrolysis mechanism of PU, summarized based on Mondal and Martin (2012); Datta and Włoch (2017).
Functional group Wavelength (cm−1) Degradation temperature (°C)
C–H (benzene ring) 918 280–300
C–N 1220 175
N–H 1531 175
C=C (benzene ring) 1604.4 280–300
C=O 1620 175
C=O 1665 35°C hydrolysis
C=O 1739 175
C=O 1800 175
Isocyanate (–N=C=O) 2274 200 in air, 250 in N2
Isocyanate (–N=C=O) 2276 RT-200
Isocyanate (–N=C=O) 2280 320–350
CO2 2340 200 in air, 250 in N2
Methylene (polyether polyol) 2873 340–360
Methylene (polyether polyol) 2929 340–360
Methyl (polyether polyol) 2979.5 340–360
N–H 3310 175
N–H 3326 100–200
N–H 3389 280–300
Polyol 3600 200 in air, 250 in N2
Tab.4  Degradation temperature of different functional groups in PU and their accordingly wavelength under FTIR, Summarized by Mondal and Martin (2012); Jiao et al. (2013); Sui et al. (2014); He et al. (2016)
Fig.5  Thermal stability of different pigments (name demonstrated following the Color Index naming method) applied in printing ink for plastics (P-Pigment, R-Red, Y-Yellow, B-Blue, V-Violet, G-Green, O-Orange, Bk-Black, numbers are the color index (C.I.) numbers), adapted from Guo et al. (2023a).
Binder resin Degradation behavior Impact on recyclate quality
NC Complete degradation unknown
PU Partially degradation when humidity involved Decrease in tensile strength
PVB No degradation Slightly decrease the melting temperature and increase the degree of crystallinityDecrease the notch impact strength
UV-acrylics Partially degradation when humidity involved Generating more carboxyl groups facilitates the degradation of PO, with an unknown quality impact
CA derivatives Partially degradation when humidity involved Decreasing the melt temperature and degree of crystallinityIncreasing in tensile strength and decreasing in elastic modulus
PA Partially degradation when humidity involved Slightly increase in MFISlightly decreasing in the degree of crystallinity
Tab.5  Degradation behaviors in extrusion process and potential impact on recyclate quality of common binder resins for plastic printing ink
Binder resin Degradation products Reaction condition Source
PU Gas including H2, NH3, H2O, CO, and CO2, nitrogen-containing hydrocarbons (i.e., nitrile), high molecular compounds including polyaromatics, polyesters, polyethers, etc. Various, above 250 °C Oenema et al. (2022)
PVB Acetic acid, butanoic acid, furan,butanal, butenal, butanol 360–450 °C Liau et al. (1996)
PA Caprolactam, hydrocarbons, and N-Containing hydrocarbons, 400–600 °C, 1–1.15 bar with Zeolite catalyst Bockhorn et al. (2001); Zakharyan and Maksimov (2022)
Acrylics Different tertiary ether, ketone, alcohols, and acrylate monomers 400 °C Matsubara et al. (2002); Belbakra et al. (2021)
Cellulose acetate derivatives CO, CO2, methyl acetate, butyric acid, methyl butyrate, ketene, acetaldehyde, CAB oligomer 400–600 °C Gongwer et al. (1997)
Tab.6  Possible reaction conditions and products of binder resins except nitrocellulose (NC) in pyrolysis process
1 H Abd El-Wahab, G El-Meligi, M G Hassaan, A Kazlauciunas, L Lin. (2020). New water-based copolymer nanoparticles and their use as eco-friendly binders for industry of flexographic ink: Part I. Pigment & Resin Technology, 49(3): 239–248
https://doi.org/10.1108/PRT-10-2019-0095
2 J O Akindoyo, M D H Beg, S Ghazali, M R Islam, N Jeyaratnam, A R Yuvaraj. (2016). Polyurethane types, synthesis and applications: a review. RSC Advances, 6(115): 114453–114482
https://doi.org/10.1039/C6RA14525F
3 H Aoi, S Kato, H Ohtani, S Sakaigawa, T Okita, Y Nishida, Y Kudo. (2023). Effective pretreatment for thermally-assisted hydrolysis and methylation GC-MS of intractably cross-linked acrylate copolymers. Journal of Analytical and Applied Pyrolysis, 171: 105949
https://doi.org/10.1016/j.jaap.2023.105949
4 J Baena-González, A Santamaria-Echart, J L Aguirre, S González. (2020). Chemical recycling of plastic waste: bitumen, solvents, and polystyrene from pyrolysis oil. Waste Management, 118: 139–149
https://doi.org/10.1016/j.wasman.2020.08.035
5 R B Barendregt, P J van den Berg. (1980). The degradation of polyurethane. Thermochimica Acta, 38(2): 181–195
https://doi.org/10.1016/0040-6031(80)87059-6
6 A Bashirgonbadi, Lase I Saputra, L Delva, Geem KM van, S de Meester, K Ragaert. (2022). Quality evaluation and economic assessment of an improved mechanical recycling process for post-consumer flexible plastics. Waste Management, 153: 41–51
https://doi.org/10.1016/j.wasman.2022.08.018
7 Z Belbakra, A Napoli, Z Cherkaoui, X Allonas. (2021). Analysis of acrylic and methacrylic networks through pyrolysis-GC/MS. Polymers, 13(24): 4349
https://doi.org/10.3390/polym13244349
8 I Berkane, I Aracil, A Fullana. (2023). Evaluation of thermal drying for the recycling of flexible plastics. Waste Management, 168: 116–125
https://doi.org/10.1016/j.wasman.2023.05.054
9 H BockhornS DonnerM GernsbeckA HornungU (2001) Hornung. Pyrolysis of polyamide 6 under catalytic conditions and its application to reutilization of carpets. Journal of Analytical and Applied Pyrolysis, 58–59: 79–94
10 F BozzolaNascimento B G doJ C Vasco N SilvaF LagoaC CapelaL HelenoM Gaspar N S (2022) Oliveira. Ink Removal on Plastic Films Printed by Flexography. Proceedings of the 2nd International Conference on Water Energy Food and Sustainability (ICoWEFS 2022). ICoWEFS 2022. Leiria. Cham: Springer
11 R Brendgen, C Graßmann, T Grethe, B Mahltig, A Schwarz-Pfeiffer. (2021). Coatings with recycled polyvinyl butyral on polyester and polyamide mono- and multifilament yarns. Journal of Coatings Technology and Research, 18(3): 819–829
https://doi.org/10.1007/s11998-020-00445-x
12 M Broeren, ER Lindgreen, G Bergsma. (2019). Verkenning Chemische Recycling. Update,
13 G Campanella, M Ghaani, G Quetti, S Farris. (2015). On the origin of primary aromatic amines in food packaging materials. Trends in Food Science & Technology, 46(1): 137–143
https://doi.org/10.1016/j.tifs.2015.09.002
14 G A Campbell, W C Meluch. (1976). Polyurethane foam recycling. Superheated steam hydrolysis. Environmental Science & Technology, 10(2): 182–185
https://doi.org/10.1021/es60113a008
15 C CarrotA BendaoudC (2016) Pillon. Polyvinyl Butyral. In Olagoke Olabisi O, Adewale K P, eds. Handbook of Thermoplastics.Boca Raton: CRC Press
16 E S Carvalho, R J Sánchez, M I B Tavares, Á C Lamônica. (2010). Characterization and properties of hydrophilic cellulose acetate propionate derivative. Journal of Polymers and the Environment, 18(4): 661–667
https://doi.org/10.1007/s10924-010-0221-0
17 CEFLEX. (2020). . ,
18 N Chaupart, G Serpe, J Verdu. (1998). Molecular weight distribution and mass changes during polyamide hydrolysis. Polymer, 39(6−7): 1375–1380
https://doi.org/10.1016/S0032-3861(97)00414-X
19 X Chen, N Kroell, A Feil, T Pretz. (2020). Determination of the composition of multilayer plastic packaging with nir spectroscopy. Detritus, (13): 62–66
https://doi.org/10.31025/2611-4135/2020.14027
20 Christiani J, Beckamp S (2020). What Can the Mechanical Processing of Plastics And Material Recycling Achieve? Neuruppin: Thomé-Kozmiensky Verlag GmbH
21 COWI (2019) Report: Study about Plastic Sorting and Recycling. Lyngby: COWI A/S
22 S A Cruz, M Zanin. (2003). Evaluation and identification of degradative processes in post-consumer recycled high-density polyethylene. Polymer Degradation & Stability, 80(1): 31–37
https://doi.org/10.1016/S0141-3910(02)00379-8
23 Z Czech, K Agnieszka, P Ragańska, A Antosik. (2015). Thermal stability and degradation of selected poly(alkyl methacrylates) used in the polymer industry. Journal of Thermal Analysis and Calorimetry, 119(2): 1157–1161
https://doi.org/10.1007/s10973-014-4290-5
24 Z Dai, B Hatano, H Tagaya. (2002). Effect of diaminotoluene on the decomposition of polyurethane foam waste in superheated water. Polymer Degradation & Stability, 76(2): 179–184
https://doi.org/10.1016/S0141-3910(02)00010-1
25 J DattaM (2017) Włoch. Recycling of Polyurethanes. In: Thomas S, Datta J, Haponiuk J T, Reghunadhan A, eds. Polyurethane Polymers. Amsterdam: Elsevier
26 L Dauerman, Y A Tajima. (1968). Thermal decomposition and combustion of nitrocellulose. AIAA Journal, 6(8): 1468–1473
https://doi.org/10.2514/3.4790
27 P Y Dave. (2020). Short review on printing ink technology to prevent counterfeit of the products. Journal of Advanced Chemical Sciences, 6(4): 693–697
https://doi.org/10.30799/jacs.227.20060401
28 D de Smet, W Uyttendaele, M Vanneste. (2022). Bio-based 2K PU coating for durable textile applications. Coatings, 12(2): 169
https://doi.org/10.3390/coatings12020169
29 R Demets, M Grodent, K van Kets, S de Meester, K Ragaert. (2022). Macromolecular insights into the altered mechanical deformation mechanisms of non-polyolefin contaminated polyolefins. Polymers, 14(2): 239
https://doi.org/10.3390/polym14020239
30 Y DengR DewilL AppelsR AnsartJ Baeyens Q (2021) Kang. Reviewing the thermo-chemical recycling of waste polyurethane foam. Journal of Environmental Management, 278(Pt 1): 111527
31 R S DevraN SrivastavaM VadaliA (2022) Arora. Polymer Filament Extrusion Using LDPE Waste Polymer: Effect of Processing Temperature. In: Proceedings of the ASME 2022 17th International Manufacturing Science and Engineering Conference. June 27-July 1, ASME, West Lafayette, Indiana, USA
32 A K Dhaliwal, J N Hay. (2002). The characterization of polyvinyl butyral by thermal analysis. Thermochimica Acta, 391(1−2): 245–255
https://doi.org/10.1016/S0040-6031(02)00187-9
33 Y Duan, Y Huo, L Duan. (2017). Preparation of acrylic resins modified with epoxy resins and their behaviors as binders of waterborne printing ink on plastic film. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 535: 225–231
https://doi.org/10.1016/j.colsurfa.2017.09.041
34 E Dyer, G E Jr Newborn. (1958). Thermal degradation of carbamates of methylenebis-(4-phenyl isocyanate) 1. Journal of the American Chemical Society, 80(20): 5495–5498
https://doi.org/10.1021/ja01553a045
35 E Dyer, G C Wright. (1959). Thermal degradation of Alkyl N-phenylcarbamates. Journal of the American Chemical Society, 81(9): 2138–2143
https://doi.org/10.1021/ja01518a030
36 (2021) EuPIA. Printing inks and Plastic Recycling – Q & A. Brussels: The European Printing Ink Association
37 Commission (2008) European. Commission Regulation (EC) No 597/2008 of 24 June 2008 Amending Regulation (Ec) No. 372/2007 Laying Down Transitional Migration Limits for Plasticisers in Gaskets in Lids Intended to Come into Contact With Foods. Brussels: The European Printing Ink Association
38 M Emamikia, M Barikani, G Bakhshandeh. (2015). Relationship between structure and aromatic solvent permeability of crosslinked polyurethanes based on hyperbranched polyesters. Polymer International, 64(9): 1142–1154
https://doi.org/10.1002/pi.4882
39 R Ferreira, R Dias, L Laqua, F Pavan, C Marangoni, R Machado. (2021). Development and scale-up of thermoplastic poly(ether-ester) glycol polyurethanes for flexography. Journal of Applied Polymer Science, 138(43): 51273
https://doi.org/10.1002/app.51273
40 S FischerK ThümmlerB VolkertK HettrichI Schmidt K (2008) Fischer. Cellulose Esters, Organic // Properties and Applications of Cellulose Acetate. Macromolecular Symposia, 262(1), 89–96
41 E W (1999) Flick. Printing Ink and Overprint Varnish Formulations, 2nd ed. Norwich.: Noyes Publications
42 A FullanaM A (2015) Lozano. Method for Removing Ink Printed on Plastic Films. European Patent EP 2832459A1, 04. February 2015
43 G Gadaleta, S de Gisi, A Sorrentino, L Sorrentino, M Notarnicola, K Kuchta, C Picuno, M Oliviero. (2023). Effect of cellulose-based bioplastics on current LDPE recycling. Materials, 16(13): 4869
https://doi.org/10.3390/ma16134869
44 H Gecol, J F Scamehorn, S D Christian, B P Grady, F Riddell. (2001). Use of surfactants to remove waterbased inks from plastic films. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 189(1−3): 55–64
https://doi.org/10.1016/S0927-7757(01)00591-X
45 H Gecol, J F Scamehorn, S D Christian, B P Grady, F E Riddell. (2002). Deinking of water-based ink printing from plastic film using nonionic surfactants. Journal of Surfactants and Detergents, 5(4): 363–374
https://doi.org/10.1007/s11743-002-0235-8
46 H Gecol, J F Scamehorn, S D Christian, F E Riddell. (2003). Use of surfactants to remove solvent-based inks from plastic films. Colloid & Polymer Science, 281(12): 1172–1177
https://doi.org/10.1007/s00396-003-0891-4
47 G Gelernter, L C Browning, S R Harris, C M Mason. (1956). The slow thermal decomposition of cellulose nitrate. Journal of Physical Chemistry, 60(9): 1260–1264
https://doi.org/10.1021/j150543a027
48 J L Gerlock, J Braslaw, L R Mahoney, F C Ferris. (1980). Reaction of polyurethane foam with dry steam: kinetics and mechanism of reactions. Journal of Polymer Science: Polymer Chemistry Edition, 18(2): 541–557
https://doi.org/10.1002/pol.1980.170180215
49 R Geyer, J R Jambeck, K L Law. (2017). Production, use and fate of all plastics ever made. Sciecne Advances, 3: e1700782
https://doi.org/10.1126/sciadv.1700782
50 J GoffT (1988) Whelan. The Dynisco Extrusion Processors Handbook, 2nd edition. Franklin: Dynisco
51 P E Gongwer, H Arisawa, T B Brill. (1997). Kinetics and products from flash pyrolysis of cellulose acetate butyrate (CAB) at 460–600 °C. Combustion and Flame, 109(3): 370–381
https://doi.org/10.1016/S0010-2180(96)00188-5
52 A Goswami, G Srivastava, A M Umarji, G Madras. (2012). Thermal degradation kinetics of poly(trimethylol propane triacrylate)/poly(hexane diol diacrylate) interpenetrating polymer network. Thermochimica Acta, 547: 53–61
https://doi.org/10.1016/j.tca.2012.08.006
53 N Grassie, G A Perdomo Mendoza. (1985). Thermal degradation of polyether-urethanes: Part 3—polyether-urethanes prepared from methylene bis(4-phenylisocyanate) and low molecular weight poly(ethylene glycols). Polymer Degradation & Stability, 10(3): 267–286
https://doi.org/10.1016/0141-3910(85)90007-2
54 J GuoA Alassali K (2023a) Kuchta. Influence from Printing Ink Binder Resin on the Quality of Low-Density-Polyethylene (LDPE) Recycling under Extrusion Process. In: Cossu R , He P, Huber-Humer M, Kumpiene J, and Stegmann R, ed. 19th International Symposium on Waste Management and Sustainable Landfilling. 9–13, October, 2023, Pula, Croatia
55 J Guo, Y Kim, Z K Chong, A Alassali, J P Chacon, D Gottschalk, M Kitzberger, K Kuchta. (2022). Quality changes of low-density polyethylene (LDPE) recyclates from the pretreatment process with a cationic surfactant and a nonionic surfactant as cleaning agents upstream of extrusion. Processes, 10(11): 2174
https://doi.org/10.3390/pr10112174
56 J Guo, C Luo, C Wittkowski, I Fehr, Z Chong, M Kitzberger, A Alassali, X Zhao, R Leineweber, Y Feng. et al.. (2023b). Screening the impact of surfactants and reaction conditions on the de-inkability of different printing ink systems for plastic packaging. Polymers, 15(9): 2220
https://doi.org/10.3390/polym15092220
57 B (1993) Gravure inks Hancock. In: Leach R H, Pierce R J, Hickman E P, Mackenzie M J, Smith H G (Hrsg), eds. The Printing Ink Manual. Dordrecht: Springer
58 Y He, Y He, J Liu, P Li, M Chen, R Wei, J Wang. (2017). Experimental study on the thermal decomposition and combustion characteristics of nitrocellulose with different alcohol humectants. Journal of Hazardous Materials, 340: 202–212
https://doi.org/10.1016/j.jhazmat.2017.06.029
59 J He, J Lin, J Sun, S Lo. (2016). Thermal degradation study of pure rigid polyurethane in oxidative and non-oxidative atmospheres. Journal of Analytical and Applied Pyrolysis, 120: 269–283
https://doi.org/10.1016/j.jaap.2016.05.015
60 Heinze T, Liebert T, Matyjaszewski K, Möller M (2012). Celluloses and Polyoses/Hemicelluloses/Polymer Science: A Comprehensive Reference Amsterdam: Elsevier Science
61 M Herrera, G Matuschek, A Kettrup. (2001). Main products and kinetics of the thermal degradation of polyamides. Chemosphere, 42(5−7): 601–607
https://doi.org/10.1016/S0045-6535(00)00233-2
62 Hinden ER, Whyzmuzis PD (1973) Polyamide Resin Solubility. In: Tess RW (Hrsg) Solvents Theory and Practice Symposium, September 15–16, 1971, Washington, DC, USA
63 P R Hornsby, J Wang, R Rothon, G Jackson, G Wilkinson, K Cossick. (1996). Thermal decomposition behaviour of polyamide fire-retardant compositions containing magnesium hydroxide filler. Polymer Degradation & Stability, 51(3): 235–249
https://doi.org/10.1016/0141-3910(95)00181-6
64 K Huang, B Wang, Y Cao, H Li, J Wang, W Lin, C Mu, D Liao. (2011). Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid. Journal of Agricultural and Food Chemistry, 59(10): 5376–5381
https://doi.org/10.1021/jf104881f
65 V B Ivanov, A A Zavodchikova, E I Popova, O L Lazareva, O A Belova, I A Kryuchkov, E V Bykov. (2014). Accelerated testing of thermo-oxidative degradation of polyvinyl butyral. Thermochimica Acta, 589: 70–75
https://doi.org/10.1016/j.tca.2014.05.016
66 X Ji, J Liu, W Zhang, W Liu, C Wang. (2020). Thermochromic behaviors of terminated waterborne thermochromic polyurethane with tailored molecular weight. Progress in Organic Coatings, 145: 105164
https://doi.org/10.1016/j.porgcoat.2019.06.010
67 L Jiao, H Xiao, Q Wang, J Sun. (2013). Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS. Polymer Degradation & Stability, 98(12): 2687–2696
https://doi.org/10.1016/j.polymdegradstab.2013.09.032
68 A Kaedin-Koppers. (2023). PrintCYC provides important input for “Design for Recycling” guidelines: industrial research on the influence of printing inks on the recyclability of plastic films. Flexo+Tief-Druck, (2): 10–11
69 K Kaiser, M Schmid, M Schlummer. (2018). Recycling of polymer-based multilayer packaging: a review. Recycling, 3(1): 1
https://doi.org/10.3390/recycling3010001
70 K Katoh, E Higashi, K Nakano, S Ito, Y Wada, J Kasamatsu, H Miya, M Yamamoto, Y Wada. (2010). Thermal behavior of nitrocellulose with inorganic salts and their mechanistic action. Propellants, Explosives, Pyrotechnics, 35(5): 461–467
https://doi.org/10.1002/prep.200900074
71 K J Kim, B K Kim. (1993). Crosslinking of HDPE during reactive extrusion: rheology, thermal, and mechanical properties. Journal of Applied Polymer Science, 48(6): 981–986
https://doi.org/10.1002/app.1993.070480605
72 Y Kismet, A Dogan, M H Wagner. (2021). Thermoset powder coating wastes as filler in LDPE – Characterization of mechanical, thermal and morphological properties. Polymer Testing, 93: 106897
https://doi.org/10.1016/j.polymertesting.2020.106897
73 R Klein, M Mentser, G von Elbe, B Lewis. (1950). Determination of the thermal structure of a combustion wave by fine thermocouples. Journal of Physical and Colloid Chemistry, 54(6): 877–884
https://doi.org/10.1021/j150480a018
74 J S Koh, J P Kim. (1998). Synthesis of phthalimide-based alkali-dischargeable azo disperse dyes and analysis of their alkali: hydrolysis mechanism. Dyes and Pigments, 37(3): 265–272
https://doi.org/10.1016/S0143-7208(97)00066-1
75 G Koinig, K Friedrich, B Rutrecht, G Oreski, C Barretta, D Vollprecht. (2022). Influence of reflective materials, emitter intensity and foil thickness on the variability of near-infrared spectra of 2D plastic packaging materials. Waste Management, 144: 543–551
https://doi.org/10.1016/j.wasman.2021.12.019
76 R Kol, Somer T de, D R D’Hooge, F Knappich, K Ragaert, D S Achilias, Meester S de. (2021b). State-of-the-art quantification of polymer solution viscosity for plastic waste recycling. ChemSusChem, 14(19): 4071–4102
https://doi.org/10.1002/cssc.202100876
77 R KolM Roosen S ÜgdülerGeem K vanK Ragaert D S AchiliasMeester S (2021a) de. Waste material recycling in the circular economy: challenges and developments. IntechOpen.
78 P M Kosaka, Y Kawano, H M Petri, M C A Fantini, D F S Petri. (2007). Structure and properties of composites of polyethylene or maleated polyethylene and cellulose or cellulose esters. Journal of Applied Polymer Science, 103(1): 402–411
https://doi.org/10.1002/app.24836
79 L N Kotter, L J Groven. (2022). Hansen solubility parameters of nitrocellulose and application toward printable energetics. Langmuir, 38(29): 8766–8772
https://doi.org/10.1021/acs.langmuir.2c00597
80 K KousakaT InoueT (1994) Miyamoto. Polyurethane resin based printing ink. European Patent EP 0 604 890 B1. 15, April, 1998
81 Krehula L Kratofil, Z Hrnjak-Murgić, J Jelenčić. (2015). Study of masterbatch effect on miscibility and morphology in PET/HDPE blends. Journal of Adhesion Science and Technology, 29(2): 74–93
https://doi.org/10.1080/01694243.2014.975913
82 K KuchtaJ GuoJ WoidaskyM AuerJ Schmidt R PombergerA Tischberger-AldrianN E (2023) Kuhn. Comparison of Innovative Identification Methods for Post-Consumer Lightweight Packaging: Final Report. Cologne: Forum Rezyklat
83 C H Kuo, J W Shiu, S P Rwei. (2022). Preparation and characterization of PMMA encapsulated carbon black for water-based digital jet printing ink on different fibers of cotton and PET. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 648: 129450
https://doi.org/10.1016/j.colsurfa.2022.129450
84 T T Lamminmäki, J P Kettle, P J T Puukko, P A C Gane. (2011). Absorption capability and inkjet ink colorant penetration into binders commonly used in pigmented paper coatings. Industrial & Engineering Chemistry Research, 50(6): 3287–3294
https://doi.org/10.1021/ie102178x
85 I S Lase, A Bashirgonbadi, F van Rhijn, J Dewulf, K Ragaert, L Delva, M Roosen, M Brandsma, M Langen, S de Meester. (2022). Material flow analysis and recycling performance of an improved mechanical recycling process for post-consumer flexible plastics. Waste Management, 153: 249–263
https://doi.org/10.1016/j.wasman.2022.09.002
86 D Lee, H Nam, S Wang, H Kim, J H Kim, Y Won, B W Hwang, Y D Kim, H Nam, K H Lee. et al.. (2021). Characteristics of fractionated drop-in liquid fuel of plastic wastes from a commercial pyrolysis plant. Waste Management, 126: 411–422
https://doi.org/10.1016/j.wasman.2021.03.020
87 L C K Liau, T C K Yang, D S Viswanath. (1996). Reaction pathways and kinetic analysis of PVB Thermal degradation using TG/FT-IR. Applied Spectroscopy, 50(8): 1058–1065
https://doi.org/10.1366/0003702963905231
88 T LinJ H Lin L (2020) Bao. Polypropylene/thermoplastic polyurethane blends: mechanical characterizations, recyclability and sustainable development of thermoplastic materials. Journal of Materials Research and Technology 9:5304–5312
89 Y Liu, H Zhou, K Tran, J Schackmann, M Zhang, Y Lu, K Ho, M Soleimani, F Lucas, M A Winnik. (2020). Monitoring polymer diffusion in a waterborne 2K polyurethane formulation based on an acrylic polyol latex. Macromolecules, 53(24): 10744–10753
https://doi.org/10.1021/acs.macromol.0c02129
90 M Malíková, J Rychlý, L Matisová-Rychlá, K Csomorová, I Janigová, H W Wilde. (2010). Assessing the progress of degradation in polyurethanes by chemiluminescence. I. Unstabilised polyurethane films. Polymer Degradation & Stability, 95(12): 2367–2375
https://doi.org/10.1016/j.polymdegradstab.2010.08.016
91 C J Malm, R E Glegg, J T Salzer, D F Ingerick, L J Tanghe. (1966). Hydrolysis of cellulose esters. Industrial & Engineering Chemistry Process Design and Development, 5(1): 81–87
https://doi.org/10.1021/i260017a017
92 H Matsubara, A Yoshida, H Ohtani, S Tsuge. (2002). Compositional analysis of UV-cured acrylic ester resins by pyrolysis–gas chromatography in the presence of organic alkali. Journal of Analytical and Applied Pyrolysis, 64(2): 159–175
https://doi.org/10.1016/S0165-2370(02)00028-1
93 K C Matuszak M L Frisch, S L Reegen. (1973). Hydrolysis of linear polyurethanes and model monocarbamates. Journal of Polymer Science: Polymer Chemistry Edition, 11(7): 1683–1690
https://doi.org/10.1002/pol.1973.170110716
94 L W (2017) McKeen. Permeability Properties of Plastics and Elastomers. Oxford: William Andrew Pub
95 C Meng, G P Cao, Y Z Yan, E Y Zhao, L Y Hou, H Y Shi. (2017). Synthesis of cellulose acetate propionate with controllable contents and distributions of acetyl and propionyl in the C2, C3 and C6 positions. Reaction Kinetics, Mechanisms and Catalysis, 122(2): 1031–1047
https://doi.org/10.1007/s11144-017-1260-5
96 A Meyer, N Jones, Y Lin, D Kranbuehl. (2002). Characterizing and modeling the hydrolysis of polyamide-11 in a pH 7 water environment. Macromolecules, 35(7): 2784–2798
https://doi.org/10.1021/ma010541o
97 R MeyerJ KöhlerA (2007) Homburg. Explosives, 6th ed. Weinheim: Wiley-VCH
98 S Mondal, D Martin. (2012). Hydrolytic degradation of segmented polyurethane copolymers for biomedical applications. Polymer Degradation & Stability, 97(8): 1553–1561
https://doi.org/10.1016/j.polymdegradstab.2012.04.008
99 S Motokucho, Y Nakayama, H Morikawa, H Nakatani. (2018). Environment-friendly chemical recycling of aliphatic polyurethanes by hydrolysis in a CO2–water system. Journal of Applied Polymer Science, 135(8): 45897
https://doi.org/10.1002/app.45897
100 J Oenema, H Liu, N de Coensel, A Eschenbacher, R van de Vijver, J Weng, L Li, C Wang, K M van Geem. (2022). Review on the pyrolysis products and thermal decomposition mechanisms of polyurethanes. Journal of Analytical and Applied Pyrolysis, 168: 105723
https://doi.org/10.1016/j.jaap.2022.105723
101 C Picuno, E van Eygen, M T Brouwer, K Kuchta, E U Thoden van Velzen. (2021). Factors shaping the recycling systems for plastic packaging waste: a comparison between Austria, Germany and The Netherlands. Sustainability, 13(12): 6772
https://doi.org/10.3390/su13126772
102 Europe (2022) Plastic. Plastics-The Facts 2022: an Analysis of European Plastics Production, Demand and Waste Data- Plastic Europe. Brussels: Plastics Europe
103 Recycler Europe (2020) Plastic. Flexible Films Market in Europe: State of Play-Production, Collection And Recycling Data. Brussels: Plastics Europe
104 Plastic Recycler Europe (2023) Flexible Films Market in Europe: State of Play-Production, Collection And Recycling Data. Brussels: Plastics Europe
105 S M Pourmortazavi, S G Hosseini, M Rahimi-Nasrabadi, S S Hajimirsadeghi, H Momenian. (2009). Effect of nitrate content on thermal decomposition of nitrocellulose. Journal of Hazardous Materials, 162(2−3): 1141–1144
https://doi.org/10.1016/j.jhazmat.2008.05.161
106 Initiative (2020) PrintCYC. PrintCYC entwickelt Recycling von bedruckten Kunststoff-Folien. Huerth: Ella Verlag und Medien GmbH
107 C (2011) Prisacariu. Chemistry of polyurethane elastomers. In: Prisacariu C, ed. Polyurethane Elastomers: From Morphology to Mechanical Aspects New York: Springer
108 K Ragaert, L Delva, K van Geem. (2017). Mechanical and chemical recycling of solid plastic waste. Waste Management, 69: 24–58
https://doi.org/10.1016/j.wasman.2017.07.044
109 Ramadan A, Gomaa A, Abdallah M (2019) Preparation and evaluation of polyamides for printing ink. Egyptian Journal of Chemistry 63(5): 1639–1653
110 S Ramanaiah, P R Rani, K S Reddy. (2012). Hansen solubility parameters for the solid surface of cellulose acetate propionate by inverse gas chromatography. Journal of Macromolecular Science, Part B: Physics, 51(11): 2191–2200
https://doi.org/10.1080/00222348.2012.669681
111 S Ramanaiah, P R Rani, T V M Sreekanth, K S Reddy. (2011). Determination of Hansen solubility parameters for the solid surface of cellulose acetate butyrate by inverse gas chromatography. Journal of Macromolecular Science, Part B: Physics, 50(3): 551–562
https://doi.org/10.1080/00222341003784527
112 Rathschlag T (2021). Colorants in printing applications. Physical Sciences Reviews, 7(3): 163–195
113 M Ravey, E M Pearce. (1997). Flexible polyurethane foam. I. Thermal decomposition of a polyether-based, water-blown commercial type of flexible polyurethane foam. Journal of Applied Polymer Science, 63(1): 47–74
https://doi.org/10.1002/(SICI)1097-4628(19970103)63:1<47::AID-APP7>3.0.CO;2-S
114 T Robert. (2015). Green ink in all colors—Printing ink from renewable resources. Progress in Organic Coatings, 78: 287–292
https://doi.org/10.1016/j.porgcoat.2014.08.007
115 J Rychlý, A Lattuati-Derieux, L Matisová-Rychlá, K Csomorová, I Janigová, B Lavédrine. (2012). Degradation of aged nitrocellulose investigated by thermal analysis and chemiluminescence. Journal of Thermal Analysis and Calorimetry, 107(3): 1267–1276
https://doi.org/10.1007/s10973-011-1746-8
116 E Rynkowska, K Fatyeyeva, J Kujawa, K Dzieszkowski, A Wolan, W Kujawski. (2018). The effect of reactive ionic liquid or plasticizer incorporation on the physicochemical and transport properties of cellulose acetate propionate-based membranes. Polymers, 10(1): 86
https://doi.org/10.3390/polym10010086
117 D Simón, A M Borreguero, Lucas A de, J F Rodríguez. (2018). Recycling of polyurethanes from laboratory to industry, a journey towards the sustainability. Waste Management, 76: 147–171
https://doi.org/10.1016/j.wasman.2018.03.041
118 F H Su, H X Huang. (2009). Rheology and thermal properties of polypropylene modified by reactive extrusion with dicumyl peroxide and trimethylol propane triacrylate. Advances in Polymer Technology, 28(1): 16–25
https://doi.org/10.1002/adv.20146
119 Suh M, Proctor D, Chappell G, Rager J, Thompson C, Borghoff S, Finch L, Ellis-Hutchings R, Wiench K (2018). A review of the genotoxic, mutagenic, and carcinogenic potentials of several lower acrylates. Toxicology, 402–403: 50–67
120 H Sui, X Ju, X Liu, K Cheng, Y Luo, F Zhong. (2014). Primary thermal degradation effects on the polyurethane film. Polymer Degradation & Stability, 101: 109–113
https://doi.org/10.1016/j.polymdegradstab.2013.11.021
121 Y N (1998) Sun. Pyrolysis Behavior of Polymeric Binders. Dissertation for the Doctoral Degree. Gainesville: Univeristy of Florida
122 B (2002) Szabo. Applications for Printing Inks. In: Urban D, Takamura K eds. Polymer Dispersions and Their Industrial Applications. Weinheim: Wiley-VCH
123 T TaniguchiN SatoM MatsushitaH TakahashiT Suzuki Y HoshinoN (1999a) Studies on resin recycling by shear flow stage reaction control technology Abe. I. Hydrolysis of polyurethane resin using a twin screw reactive extruder for recycle. Ronbunshu 56: 709–716
124 T TaniguchiN SatoM MatsushitaH TakahashiT Suzuki Y HoshinoN (1999b) Studies on resin recycling by shear flow stage reaction control technology Abe. II. Reactive blend of thermosetting polyurethane and thermoplastic polypropylene using a twin screw extruder for recycling. Kobunshi Ronbunshu 56: 717–724
125 S Tang, K Nozaki. (2022). Advances in the synthesis of copolymers from carbon dioxide, dienes, and olefins. Accounts of Chemical Research, 55(11): 1524–1532
https://doi.org/10.1021/acs.accounts.2c00162
126 R Thahir, A Altway, S R Juliastuti. (2019). Production of liquid fuel from plastic waste using integrated pyrolysis method with refinery distillation bubble cap plate column. Energy Reports, 5: 70–77
https://doi.org/10.1016/j.egyr.2018.11.004
127 A Thevenon, I Vollmer. (2023). Towards a cradle-to-cradle polyolefin lifecycle. Angewandte Chemie, 135(3): e202216163
https://doi.org/10.1002/ange.202216163
128 S Ügdüler, Laere T van, Somer T de, S Gusev, Geem K M van, A Kulawig, R Leineweber, M Defoin, den Bergen H van, D Bontinck. et al.. (2023). Understanding the complexity of deinking plastic waste: an assessment of the efficiency of different treatments to remove ink resins from printed plastic film. Journal of Hazardous Materials, 452: 131239
https://doi.org/10.1016/j.jhazmat.2023.131239
129 P Van Puyvelde, S Velankar, P Moldenaers. (2001). Rheology and morphology of compatibilized polymer blends. Current Opinion in Colloid & Interface Science, 6(5−6): 457–463
https://doi.org/10.1016/S1359-0294(01)00113-3
130 R Volk, C Stallkamp, J J Steins, S P Yogish, R C Müller, D Stapf, F Schultmann. (2021). Techno-economic assessment and comparison of different plastic recycling pathways: a German case study. Journal of Industrial Ecology, 25(5): 1318–1337
https://doi.org/10.1111/jiec.13145
131 I Vollmer, M J F Jenks, M C P Roelands, R J White, T van Harmelen, P de Wild, G P van der Laan, F Meirer, J T F Keurentjes, B M Weckhuysen. (2020). Beyond mechanical recycling: giving new life to plastic waste. Angewandte Chemie International Edition, 59(36): 15402–15423
https://doi.org/10.1002/anie.201915651
132 T W Walker, N Frelka, Z Shen, A K Chew, J Banick, S Grey, M S Kim, J A Dumesic, R C van Lehn, G W Huber. (2020). Recycling of multilayer plastic packaging materials by solvent-targeted recovery and precipitation. Science Advances, 6(47): eaba7599
https://doi.org/10.1126/sciadv.aba7599
133 D Wang, G Sun, B S Chiou. (2008). Fabrication of tunable submicro- or nano-structured polyethylene materials from immiscible blends with cellulose acetate butyrate. Macromolecular Materials and Engineering, 293(8): 657–665
https://doi.org/10.1002/mame.200800120
134 M Wang, Y Qiu, T Chen, L Zhao. (2023). The catalytic mechanism and limiting factor of polyamide hydrolysis for chemical recycling: the classic hydrolysis of polyamide 4. Journal of Polymer Research, 30(5): 186
https://doi.org/10.1007/s10965-023-03567-z
135 X Wang, B Mu, H Wang. (2015). Preparation and properties of thermoplastic polyurethane/ultra high molecular weight polyethylene blends. Polymer Composites, 36(5): 897–906
https://doi.org/10.1002/pc.23009
136 R Wei, S Huang, Z Wang, X Wang, C Ding, R Yuen, J Wang. (2019). Thermal behavior of nitrocellulose with different aging periods. Journal of Thermal Analysis and Calorimetry, 136(2): 651–660
https://doi.org/10.1007/s10973-018-7653-5
137 M L Wolfrom, G P Arsenault. (1960). The controlled thermal decomposition of cellulose nitrate. VII. carbonyl compounds 1,2. Journal of the American Chemical Society, 82(11): 2819–2823
https://doi.org/10.1021/ja01496a037
138 M L Wolfrom, J H Frazer, L P Kuhn, E E Dickey, S M Olin, D O Hoffman, R S Bower, A Chaney, E Carpenter, P McWain. (1955). The controlled thermal decomposition of cellulose nitrate. I 1,2. Journal of the American Chemical Society, 77(24): 6573–6580
https://doi.org/10.1021/ja01629a045
139 S Xiao, H J Sue. (2019). Effect of molecular weight on scratch and abrasive wear behaviors of thermoplastic polyurethane elastomers. Polymer, 169: 124–130
https://doi.org/10.1016/j.polymer.2019.02.059
140 X Xie, Y Qin, S Yang, Y Sun, H Mo, H Zheng, N Liu, Q Zhang. (2023). Effect of enhanced hydrolytic acidification process on the treatment of azo dye wastewater. Molecules, 28(9): 3930
https://doi.org/10.3390/molecules28093930
141 W Yang, Q Dong, S Liu, H Xie, L Liu, J Li. (2012). Recycling and disposal methods for polyurethane foam wastes. Procedia Environmental Sciences, 16: 167–175
https://doi.org/10.1016/j.proenv.2012.10.023
142 N Yu, G R Gray. (1998). Analysis of the positions of substitution of acetate and propionate groups in cellulose acetate–propionate by the reductive-cleavage method. Carbohydrate Research, 313(1): 29–36
https://doi.org/10.1016/S0008-6215(98)00256-0
143 E M Zakharyan, A L Maksimov. (2022). Pyrolysis of polyamide-containing materials. process features and composition of reaction products. Russian Journal of Applied Chemistry, 95(7): 895–928
https://doi.org/10.1134/S1070427222070011
144 J Zhang, H Xu, L Hu, Y Yang, H Li, C Huang, X Liu. (2017). Novel waterborne UV-curable hyperbranched polyurethane acrylate/silica with good printability and rheological properties applicable to flexographic ink. ACS Omega, 2(11): 7546–7558
https://doi.org/10.1021/acsomega.7b00939
145 Y Zhang, K Cheng, J Xu. (2005). Thermal stability studies of polyamides and their block copolymers. Thermochimica Acta, 425(1−2): 137–141
https://doi.org/10.1016/j.tca.2004.06.013
146 Y Zhang, Z Liu, Y Cao, R Li, Y Jing. (2015). Impact of binder composition on inkjet printing paper. Bioengineering and Resuscitation Research, 10(1): 1462–1476
147 Y B Zhao, X D Lv, H G Ni. (2018). Solvent-based separation and recycling of waste plastics: a review. Chemosphere, 209: 707–720
https://doi.org/10.1016/j.chemosphere.2018.06.095
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed