Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol Chin    0, Vol. Issue () : 1-6    https://doi.org/10.1007/s11515-008-0074-2
Research Article
Urokinase-targeted recombinant bacterial protein toxins – a rationally designed and engineered anticancer agent for cancer therapy
Yizhen LIU1, Shi-Yan LI2()
1. Department of Biomedical Sciences, Colorado State University, Font Collins; 2. Cancer Research Institute of Scott & White, Temple
 Download: PDF(209 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Urokinase-targeted recombinant bacterial protein toxins are a sort of rationally designed and engineered anticancer recombinant fusion proteins representing a novel class of agents for cancer therapy. Bacterial protein toxins have long been known as the primary virulence factor(s) for a variety of pathogenic bacteria and are the most powerful human poisons. On the other hand, it has been well documented that urokinase-type plasminogen activator (uPA) and urokinase plasminogen activator receptor (uPAR), making up the uPA system, are overexpressed in a variety of human tumors and tumor cell lines. The expression of uPA system is highly correlated with tumor invasion and metastasis. To exploit these characteristics in the design of tumor cell-selective cytotoxins, two prominent bacterial protein toxins, i.e., the diphtheria toxin and anthrax toxin are deliberately engineered through placing a sequence targeted specifically by the uPA system to form anticancer recombinant fusion proteins. These uPA system-targeted bacterial protein toxins are activated selectively on the surface of uPA system-expressing tumor cells, thereby killing these cells. This article provides a review on the latest progress in the exploitation of these recombinant fusion proteins as potent tumoricidal agents. It is perceptible that the strategies for cancer therapy are being innovated by this novel therapeutic approach.

Keywords urokinase-type plasminogen activator (uPA)      diphtheria toxin, anthrax toxin      recombinant fusion proteins      cancer therapy     
Corresponding Author(s): LI Shi-Yan,Email:sli@swmail.sw.org   
Issue Date: 05 March 2009
 Cite this article:   
Yizhen LIU,Shi-Yan LI. Urokinase-targeted recombinant bacterial protein toxins – a rationally designed and engineered anticancer agent for cancer therapy[J]. Front Biol Chin, 0, (): 1-6.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-008-0074-2
https://academic.hep.com.cn/fib/EN/Y0/V/I/1
Fig0  Uptake and activity of the diphtheria toxin in eukaryotic cells. The figure is revised from Todar's Online Textbook of Bacteriology. A represents the A/B toxin's A (catalytic) domain; B is the B (receptor) domain; T is the hydrophobic domain that inserts into the cell membrane.
1 Abi-HabibR J, LiuS H, BuggeT H, LepplaS H, FrankelA E (2004). A urokinase-activated recombinant diphtheria toxin targeting the granulocyte-macrophage colony-stimulating factor receptor is selectively cytotoxic to human acute myeloid leukemia blasts. Blood , 104: 2143–2148
doi: 10.1182/blood-2004-01-0339
2 Abi-HabibR J, SinghR, LiuS, BuggeT H, LepplaS H, FrankelA E (2006). A urokinase-activated recombinant anthrax toxin is selectively cytotoxic to many human tumor cell types. Mol Cancer Ther , 5: 2556–2562
doi: 10.1158/1535-7163.MCT-06-0315
3 AroraN, LepplaS H (1993). Residues 1–254 of anthrax toxin lethal factor are sufficient to cause cellular uptake of fused polypeptides. J Biol Chem , 268: 3334–3341
4 ChoongP F, NadesapillaiA P (2003). Urokinase plasminogen activator system: a multifunctional role in tumor progression and metastasis. Clin Orthop Relat Res , 415(Suppl) S46–58
doi: 10.1097/01.blo0000093845.72468.bd
5 DuffyM J (2004). The urokinase plasminogen activator system: role in malignancy. Curr Pharm Design , 10: 39–49
doi: 10.2174/1381612043453559
6 DuffyM J, DugganC (2004). The urokinase plasminogen activator system: a rich source of tumour markers for the individualized management of patients with cancer. Clinical Biochemistry , 37: 541–548 Special Issue: Recent Advances in Cancer Biomarkers
doi: 10.1016/j.clinbiochem.2004.05.013
7 EhrlichP (1956). The relationship existing between chemical constitution, distribution, and pharmacologic action. In: Himmelweite F, Marquardt M, Dale H, ed. The Collected Papers of Paul Ehrlich , 1. London: Pergamon Press, 596–618
8 FitzGeraldD J, KreitmanR, WilsonW, SquiresD, PastanI (2004). Recombinant immunotoxins for treating cancer. Int J Med Microbiol , 293: 577–582
doi: 10.1078/1438-4221-00302
9 FrankelA E, BeranM, HoggeD E, PowellB L, ThorburnA, ChenY Q, ValleraD A (2002). Malignant progenitors from patients with CD87+ acute myelogenous leukemia are sensitive to a diphtheria toxin-urokinase fusion protein. Exp Hematol , 30: 1316–1323
doi: 10.1016/S0301-472X(02)00925-6
10 FrankelA E, RossiP, KuzelT M, FossF (2002). Diphtheria fusion protein therapy of chemoresistant malignancies. Curr Cancer Drug Targets , 2: 19–36
doi: 10.2174/1568009023333944
11 HolmesR K (2000). Biology and molecular epidemiology of diphtheria toxin and the tox gene. J? Infect Dis , 181Suppl 1: S156–167
doi: 10.1086/315554
12 KlimpelK R, MolloyS S, ThomasG, LepplaS H (1992). Anthrax toxin protective antigen is activated by a cell surface protease with the sequence specificity and catalytic properties of furin. Proc Natl Acad Sci USA , 89: 10277–10281
doi: 10.1073/pnas.89.21.10277
13 LiuS, AaronsonH, MitolaD J, LepplaS H, BuggeT H (2003). Potent antitumor activity of a urokinase-activated engineered anthrax toxin. Proc Natl Acad Sci U S A , 100: 657–662
doi: 10.1073/pnas.0236849100
14 LiuS, BuggeT H, LepplaS H (2001). Targeting of tumor cells by cell surface urokinase plasminogen activator-dependent anthrax toxin. J Biol Chem , 276: 17976–17984
doi: 10.1074/jbc.M011085200
15 LiuS, RedeyeV, KuremskyJ G, KuhnenM, MolinoloA, BuggeT H, LepplaS H (2005). Intermolecular complementation achieves high-specificity tumor targeting by anthrax toxin. Nat Biotechnol , 23: 725–730
doi: 10.1038/nbt1091
16 LiuS, SchubertR L, BuggeT H, LepplaS H (2003). Anthrax toxin: structures, functions and tumour targeting. Expert Opin Biol Ther , 3: 843–853
doi: 10.1517/14712598.3.5.843
17 MogridgeJ, CunninghamK, CollierR J (2002). Stoichiometry of anthrax toxin complexes. Biochemistry , 41: 1079–1082
doi: 10.1021/bi015860m
18 MooltenF L, CapparellN J, ZajdelS H, CooperbandS R (1975). Antitumor Effects of Antibody-Diphtheria Toxin Conjugates. II. Immunotherapy with Conjugates Directed against Tumor Antigens Induced by Simian Virus 40.J Natl Cancer Inst , 55: 473–477
19 RamageJ G, ValleraD A, BlackJ H, AplanP D, KeesU R, FrankelA E (2003). The diphtheria toxin/urokinase fusion protein (DTAT) is selectively toxic to CD87 expressing leukemic cells. Leuk Res , 27: 79–84
doi: 10.1016/S0145-2126(02)00077-2
20 R?n?B, R?merJ, LiuS, BuggeT H, LepplaS H, KristjansenP E (2006). Antitumor efficacy of a urokinase activation-dependent anthrax toxin. Mol Cancer Ther , 5: 89–96
doi: 10.1158/1535-7163.MCT-05-0163
21 RustamzadehE, HallW A, TodhunterD A, ValleraV D, LowW C, LiuH, Panoskaltsis-MortariA, ValleraD A (2006). Intracranial therapy of glioblastoma with the fusion protein DTAT in immunodeficient mice. Int J Cancer , 120: 411–419
doi: 10.1002/ijc.22278
22 RustamzadehE, ValleraD A, TodhunterD A, LowW C, Panoskaltsis-MortariA, HallW A (2006). Immunotoxin pharmacokinetics: a comparison of the anti-glioblastoma bi-specific fusion protein (DTAT13) to DTAT and DTIL13. J Neurooncol , 77: 257–266
doi: 10.1007/s11060-005-9051-7
23 SchlessingerD, SchaechterM (1993). Bacterial toxins. In: Schaechter M, Medoff G, Eisenstein B I, editors.Mechanisms of microbial disease . 2nd ed. Baltimore: Williams and Wilkins, 162–175
24 SuY, OrtizJ, LiuS, BuggeT H, SinghR, LepplaS H, FrankelA E (2007). Systematic urokinase-activated anthrax toxin therapy produces regressions of subcutaneous human non-small cell lung tumor in athymic nude mice. Cancer Res , 67: 3329–3336
doi: 10.1158/0008-5472.CAN-06-4642
25 TodarK (2008a). Bacterial Protein Toxins. In: Todar's Online Textbook of Bacteriology(http://www.textbookofbacteriology.net/proteintoxins.html)
26 TodarK (2008b). Diphtheria. In: Todar's Online Textbook of Bacteriology (http://www.textbookofbacteriology.net/diphtheria.html)
27 TodarK (2008c). Pseudomonas aeruginosa. In: Todar's Online Textbook of Bacteriology (http://www.textbookofbacteriology.net/pseudomonas.html)
28 TodarK (2008d). Bacillus anthracis and anthrax. In: Todar's Online Textbook of Bacteriology(http://www.textbookofbacteriology.net/Anthrax.html)
29 TodhunterD A, HallW A, RustamzadehE, ShuY, DoumbiaS O, ValleraD A (2004). A bispecific immunotoxin (DTAT13) targeting human IL-13 receptor (IL-13R) and urokinase-type plasminogen activator receptor (uPAR) in a mouse xenograft model. Protein Eng Des Sel , 17: 157–164
doi: 10.1093/protein/gzh023
30 ValleraD A, LiC, JinN, Panoskaltsis-MortariA, HallW A (2002). Targeting urokinase-type plasminogen activator receptor on human glioblastoma tumors with diphtheria toxin fusion protein DTAT. J Natl Cancer Inst , 94: 597–606
[1] Joana BARBOSA, Ana Vanessa NASCIMENTO, Juliana FARIA, Patrícia SILVA, Hassan BOUSBAA. The spindle assembly checkpoint: perspectives in tumorigenesis and cancer therapy[J]. Front Biol, 2011, 6(2): 147-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed