Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2010, Vol. 5 Issue (1) : 48-58    https://doi.org/10.1007/s11515-010-0011-z
Research articles
Structural plasticity of dendritic spines
Shengxiang ZHANG1,Lei WANG1,Jiangbi WANG2,
1.School of Life Sciences, Lanzhou University, Lanzhou 730000, China; 2.School of Life Sciences, Lanzhou University, Lanzhou 730000, China;School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China;
 Download: PDF(272 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Dendritic spines are the major targets of excitatory synaptic input. They exist in a wide variety of shapes and sizes, from thin to mushroom-shaped to stubby. One of the striking characteristics of dendritic spines is their motile nature. Spines can undergo various structural modifications such as changes in density, shape, size, and motility. During development, spines are highly dynamic and many spines are formed and eliminated. As animals mature, most spines become stable and the vast majority of them can last throughout life. However, spine morphology can still undergo progressive changes. Structural dynamics of dendritic spines is thought to play important roles in synapse plasticity and information processing. Abnormal spine structures are often associated with malfunction of the nervous system.
Issue Date: 01 February 2010
 Cite this article:   
Lei WANG,Shengxiang ZHANG,Jiangbi WANG. Structural plasticity of dendritic spines[J]. Front. Biol., 2010, 5(1): 48-58.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-010-0011-z
https://academic.hep.com.cn/fib/EN/Y2010/V5/I1/48
Ackermann M, Matus A (2003). Activity-inducedtargeting of profilin and stabilization of dendritic spine morphology. Nat Neurosci, 6: 1194–1200

doi: 10.1038/nn1135
Adams I, Jones D G (1982). Quantitativeultrastructural changes in rat cortical synapses during early-, mid-and late-adulthood. Brain Res, 239: 349–363

doi: 10.1016/0006-8993(82)90514-5
Ashby M C, Maier S R, Nishimune A, Henley J M (2006). Lateral diffusion drives constitutive exchange of AMPA receptorsat dendritic spines and is regulated by spine morphology. J Neurosci, 26: 7046–7055

doi: 10.1523/JNEUROSCI.1235-06.2006
Blomberg F, Cohen R S, Siekevitz P (1977). The structure of postsynaptic densitiesisolated from dog cerebral cortex. II. Characterization and arrangementof some of the major proteins within the structure. J Cell Biol, 74: 204–225

doi: 10.1083/jcb.74.1.204
Bloodgood B L, Sabatini B L (2005). Neuronalactivity regulates diffusion across the neck of dendritic spines. Science, 310: 866–869

doi: 10.1126/science.1114816
Bloodgood B L, Giessel A J, Sabatini B L (2009). Biphasic synaptic Ca influx arisingfrom compartmentalized electrical signals in dendritic spines. PLoSBiol, 7: e1000190

doi: 10.1371/journal.pbio.1000190
Bonhoeffer T, Yuste R (2002). Spinemotility. Phenomenology, mechanisms, and function. Neuron, 35: 1019–1027

doi: 10.1016/S0896-6273(02)00906-6
Bourne J N, Harris K M (2008). Balancingstructure and function at hippocampal dendritic spines. Annu Rev Neurosci, 31: 47–67

doi: 10.1146/annurev.neuro.31.060407.125646
Brown C E, Li P, Boyd J D, Delaney K R, Murphy T H (2007). Extensiveturnover of dendritic spines and vascular remodeling in cortical tissuesrecovering from stroke. J Neurosci, 27: 4101–4109

doi: 10.1523/JNEUROSCI.4295-06.2007
Calabrese B, Wilson M S, Halpain S (2006). Development and regulation of dendriticspine synapses. Physiology (Bethesda), 21: 38–47

doi: 10.1152/physiol.00042.2005
Catsicas M, Allcorn S, Mobbs P (2001). Early activation of Ca(2+)-permeableAMPA receptors reduces neurite outgrowth in embryonic chick retinalneurons. J Neurobiol, 49: 200–211

doi: 10.1002/neu.1075
Chicurel M E, Harris K M (1992). Three-dimensionalanalysis of the structure and composition of CA3 branched dendriticspines and their synaptic relationships with mossy fiber boutons inthe rat hippocampus. J Comp Neurol, 325: 169–182

doi: 10.1002/cne.903250204
Cingolani L A, Goda Y (2008). Actinin action: the interplay between the actin cytoskeleton and synapticefficacy. Nat Rev Neurosci, 9: 344–356

doi: 10.1038/nrn2373
Collin C, Miyaguchi K, Segal M (1997). Dendritic spine density and LTP inductionin cultured hippocampal slices. J Neurophysiol, 77: 1614–1623
Dailey M E, Smith S J (1996). The dynamicsof dendritic structure in developing hippocampal slices. J Neurosci, 16: 2983–2994
Deng J, Dunaevsky A (2005). Dynamicsof dendritic spines and their afferent terminals: spines are moremotile than presynaptic boutons. Dev Biol, 277: 366–377

doi: 10.1016/j.ydbio.2004.09.028
Dunaevsky A, Mason C A (2003). Spinemotility: a means towards an end? TrendsNeurosci, 26: 155–160

doi: 10.1016/S0166-2236(03)00028-6
Dunaevsky A, Blazeski R, Yuste R, Mason C (2001). Spine motility with synaptic contact. Nat Neurosci, 4: 685–686

doi: 10.1038/89460
Dunaevsky A, Tashiro A, Majewska A, Mason C, Yuste R (1999). Developmental regulationof spine motility in the mammalian central nervous system. Proc Natl Acad Sci U S A, 96: 13438–13443

doi: 10.1073/pnas.96.23.13438
Engert F, Bonhoeffer T (1999). Dendriticspine changes associated with hippocampal long-term synaptic plasticity. Nature, 399: 66–70

doi: 10.1038/19978
Ethell I M, Pasquale E B (2005). Molecularmechanisms of dendritic spine development and remodeling. Prog Neurobiol, 75: 161–205

doi: 10.1016/j.pneurobio.2005.02.003
Fiala J C, Spacek J, Harris K M (2002). Dendritic spine pathology: cause orconsequence of neurological disorders? Brain Res Brain Res Rev, 39: 29–54

doi: 10.1016/S0165-0173(02)00158-3
Fiala J C, Feinberg M, Popov V, Harris K M (1998). Synaptogenesis via dendritic filopodia in developing hippocampalarea CA1. J Neurosci, 18: 8900–8911
Fischer M, Kaech S, Knutti D, Matus A(1998). Rapid actin-based plasticity in dendritic spines. Neuron, 20: 847–854

doi: 10.1016/S0896-6273(00)80467-5
Fischer M, Kaech S, Wagner U, Brinkhaus H, Matus A (2000). Glutamatereceptors regulate actin-based plasticity in dendritic spines. Nat Neurosci, 3: 887–894

doi: 10.1038/78791
Fuhrmann M, Mitteregger G, Kretzschmar H, Herms J (2007). Dendritic pathology in prion disease starts at the synaptic spine. J Neurosci, 27: 6224–6233

doi: 10.1523/JNEUROSCI.5062-06.2007
Garner C C, Kindler S (1996). Synapticproteins and the assembly of synaptic junctions. Trends Cell Biol, 6: 429–433

doi: 10.1016/S0962-8924(96)10036-2
Gomez T M, Robles E, Poo M, Spitzer N C (2001). Filopodial calcium transients promote substrate-dependentgrowth cone turning. Science, 291: 1983–1987

doi: 10.1126/science.1056490
Gray E G (1959a). Electron microscopy of synaptic contacts on dendritespines of the cerebral cortex. Nature, 183: 1592–1593

doi: 10.1038/1831592a0
Gray E G (1959b). Axo-somatic and axo-dendritic synapses of the cerebralcortex: an electron microscope study. JAnat, 93: 420–433
Gray E G, Guillery R W (1963). A Noteon the Dendritic Spine Apparatus. J Anat, 97: 389–392
Grunditz A, Holbro N, Tian L, Zuo Y, Oertner TG (2008). Spineneck plasticity controls postsynaptic calcium signals through electricalcompartmentalization. J Neurosci, 28: 13457–13466

doi: 10.1523/JNEUROSCI.2702-08.2008
Grutzendler J, Kasthuri N, Gan WB (2002). Long-term dendritic spine stabilityin the adult cortex. Nature, 420: 812–816

doi: 10.1038/nature01276
Guidetti P, Charles V, Chen E Y, Reddy P H, Kordower J H, Whetsell W O, Jr., Schwarcz R, Tagle D A (2001). Earlydegenerative changes in transgenic mice expressing mutant huntingtininvolve dendritic abnormalities but no impairment of mitochondrialenergy production. Exp Neurol, 169: 340–350

doi: 10.1006/exnr.2000.7626
Harris K M (1999). Structure, development, and plasticity of dendriticspines. Curr Opin Neurobiol, 9: 343–348

doi: 10.1016/S0959-4388(99)80050-6
Harris K M, Stevens J K (1989). Dendriticspines of CA 1 pyramidal cells in the rat hippocampus: serial electronmicroscopy with reference to their biophysical characteristics. J Neurosci, 9: 2982–2997
Harris K M, Kater S B (1994). Dendriticspines: cellular specializations imparting both stability and flexibilityto synaptic function. Annu Rev Neurosci, 17: 341–371

doi: 10.1146/annurev.ne.17.030194.002013
Harris K M, Jensen F E, Tsao B (1992). Three-dimensional structure of dendriticspines and synapses in rat hippocampus (CA1) at postnatal day 15 andadult ages: implications for the maturation of synaptic physiologyand long-term potentiation. J Neurosci, 12: 2685–2705
Hayashi Y, Majewska A K (2005). Dendriticspine geometry: functional implication and regulation. Neuron, 46: 529–532

doi: 10.1016/j.neuron.2005.05.006
Hering H, Sheng M (2001). Dendriticspines: structure, dynamics and regulation. Nat Rev Neurosci, 2: 880–888

doi: 10.1038/35104061
Higley M J, Sabatini B L (2008). Calciumsignaling in dendrites and spines: practical and functional considerations. Neuron, 59: 902–913

doi: 10.1016/j.neuron.2008.08.020
Holcman D, Schuss Z, Korkotian E (2004). Calcium dynamics in dendritic spinesand spine motility. Biophys J, 87: 81–91

doi: 10.1529/biophysj.103.035972
Holtmaat A, Wilbrecht L, Knott G W, Welker E, Svoboda K (2006). Experience-dependentand cell-type-specific spine growth in the neocortex. Nature, 441: 979–983

doi: 10.1038/nature04783
Holtmaat A J, Trachtenberg J T, Wilbrecht L, Shepherd G M, Zhang X, Knott G W, Svoboda K (2005). Transient and persistent dendritic spines in the neocortexin vivo. Neuron, 45: 279–291

doi: 10.1016/j.neuron.2005.01.003
Hoyt K R, Arden S R, Aizenman E, Reynolds I J (1998). Reverse Na+/Ca2+ exchange contributes to glutamate-inducedintracellular Ca2+ concentration increasesin cultured rat forebrain neurons. MolPharmacol, 53: 742–749
Irwin S A, Galvez R, Greenough W T (2000). Dendritic spine structural anomaliesin fragile-X mental retardation syndrome. Cereb Cortex, 10: 1038–1044

doi: 10.1093/cercor/10.10.1038
Kirov S A, Sorra K E, Harris K M (1999). Slices have more synapses than perfusion-fixedhippocampus from both young and mature rats. J Neurosci, 19: 2876–2886
Koch C, Zador A (1993). The functionof dendritic spines: devices subserving biochemical rather than electricalcompartmentalization. J Neurosci, 13: 413–422
Korkotian E, Segal M(1999). Bidirectionalregulation of dendritic spine dimensions by glutamate receptors. Neuroreport, 10: 2875–2877

doi: 10.1097/00001756-199909090-00032
Korkotian E, Segal M (2001a). Regulationof dendritic spine motility in cultured hippocampal neurons. J Neurosci, 21: 6115–6124
Korkotian E, Segal M (2001b). Spike-associatedfast contraction of dendritic spines in cultured hippocampal neurons. Neuron, 30: 751–758

doi: 10.1016/S0896-6273(01)00314-2
Lauer M, Senitz D (2006). Dendriticexcrescences seem to characterize hippocampal CA3 pyramidal neuronsin humans. J Neural Transm, 113: 1469–1475

doi: 10.1007/s00702-005-0428-8
Lee W C, Huang H, Feng G, Sanes J R, Brown E N, So P T, Nedivi E (2006). Dynamicremodeling of dendritic arbors in GABAergic interneurons of adultvisual cortex. PLoS Biol, 4: e29

doi: 10.1371/journal.pbio.0040029
Lendvai B, Stern E A, Chen B, Svoboda K (2000). Experience-dependent plasticity of dendritic spinesin the developing rat barrel cortex in vivo. Nature, 404: 876–881

doi: 10.1038/35009107
Li Z, Okamoto K, Hayashi Y, Sheng M (2004). The importance of dendritic mitochondria in the morphogenesis andplasticity of spines and synapses. Cell, 119: 873–887

doi: 10.1016/j.cell.2004.11.003
Lin B, Kramar E A, Bi X, Brucher F A, Gall C M, Lynch G (2005). Theta stimulation polymerizes actinin dendritic spines of hippocampus. J Neurosci, 25: 2062–2069

doi: 10.1523/JNEUROSCI.4283-04.2005
Lippman J, Dunaevsky A (2005). Dendriticspine morphogenesis and plasticity. J Neurobiol, 64: 47–57

doi: 10.1002/neu.20149
Lohmann C, Wong RO (2005). Regulationof dendritic growth and plasticity by local and global calcium dynamics. Cell Calcium, 37: 403–409

doi: 10.1016/j.ceca.2005.01.008
Majewska A, Sur M (2003). Motilityof dendritic spines in visual cortex in vivo: changes during the criticalperiod and effects of visual deprivation. Proc Natl Acad Sci U SA, 100: 16024–16029

doi: 10.1073/pnas.2636949100
Majewska A, Tashiro A, Yuste R (2000). Regulation of spine calcium dynamicsby rapid spine motility. J Neurosci, 20: 8262–8268
Majewska A K, Newton J R, Sur M (2006). Remodeling of synaptic structure insensory cortical areas in vivo. J Neurosci, 26: 3021–3029

doi: 10.1523/JNEUROSCI.4454-05.2006
Maletic-Savatic M, Malinow R, Svoboda K (1999). Rapid dendritic morphogenesis in CA1hippocampal dendrites induced by synaptic activity. Science, 283: 1923–1927

doi: 10.1126/science.283.5409.1923
Marrs G S, Green S H, Dailey M E (2001). Rapid formation and remodeling ofpostsynaptic densities in developing dendrites. Nat Neurosci, 4: 1006–1013

doi: 10.1038/nn717
Matsuzaki M, Honkura N, Ellis-Davies G C, Kasai H (2004). Structural basis of long-term potentiation in singledendritic spines. Nature, 429: 761–766

doi: 10.1038/nature02617
Matsuzaki M, Ellis-Davies G C, Nemoto T, Miyashita Y, Iino M, Kasai H(2001). Dendritic spine geometry is criticalfor AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci, 4: 1086–1092

doi: 10.1038/nn736
Matus A (2000). Actin-based plasticity in dendritic spines. Science, 290: 754–758

doi: 10.1126/science.290.5492.754
Matus A, Brinkhaus H, Wagner U (2000). Actin dynamics in dendritic spines:a form of regulated plasticity at excitatory synapses. Hippocampus, 10: 555–560

doi: 10.1002/1098-1063(2000)10:5<555::AID-HIPO5>3.0.CO;2-Z
McKinney R A (2005). Physiological roles of spine motility: development,plasticity and disorders. Biochem Soc Trans, 33: 1299–1302

doi: 10.1042/BST20051299
McNeill T H, Brown S A, Rafols J A, Shoulson I (1988). Atrophy of medium spiny I striatal dendrites in advancedParkinson's disease. Brain Res, 455: 148–152

doi: 10.1016/0006-8993(88)90124-2
Mizrahi A, Katz L C (2003). Dendriticstability in the adult olfactory bulb. Nat Neurosci, 6: 1201–1207

doi: 10.1038/nn1133
Mizrahi A, Crowley J C, Shtoyerman E, Katz LC (2004). High-resolution in vivo imaging of hippocampal dendrites and spines. J Neurosci, 24: 3147–3151

doi: 10.1523/JNEUROSCI.5218-03.2004
Moser M B, Trommald M, Andersen P (1994). An increase in dendritic spine densityon hippocampal CA1 pyramidal cells following spatial learning in adultrats suggests the formation of new synapses. Proc Natl Acad Sci U SA, 91: 12673–12675

doi: 10.1073/pnas.91.26.12673
Murphy T H, Li P, Betts K, Liu R (2008). Two-photon imaging of stroke onset in vivo reveals that NMDA-receptorindependent ischemic depolarization is the major cause of rapid reversibledamage to dendrites and spines. J Neurosci, 28: 1756–1772

doi: 10.1523/JNEUROSCI.5128-07.2008
Nagerl U V, Eberhorn N, Cambridge S B, Bonhoeffer T (2004). Bidirectional activity-dependent morphological plasticityin hippocampal neurons. Neuron, 44: 759–767

doi: 10.1016/j.neuron.2004.11.016
Niell C M, Meyer M P, Smith S J (2004). In vivo imaging of synapse formationon a growing dendritic arbor. Nat Neurosci, 7: 254–260

doi: 10.1038/nn1191
Nimchinsky E A, Sabatini B L, Svoboda K (2002). Structure and function of dendriticspines. Annu Rev Physiol, 64: 313–353

doi: 10.1146/annurev.physiol.64.081501.160008
Nimchinsky E A, Yasuda R, Oertner T G, Svoboda K (2004). The number of glutamate receptors opened by synapticstimulation in single hippocampal spines. J Neurosci, 24: 2054–2064

doi: 10.1523/JNEUROSCI.5066-03.2004
Noguchi J, Matsuzaki M, Ellis-Davies G C, Kasai H (2005). Spine-neck geometry determines NMDA receptor-dependentCa2+ signaling in dendrites. Neuron, 46: 609–622

doi: 10.1016/j.neuron.2005.03.015
Norrholm S D, Bibb J A, Nestler E J, Ouimet C C, Taylor J R, Greengard P (2003). Cocaine-induced proliferation of dendritic spines innucleus accumbens is dependent on the activity of cyclin-dependentkinase-5. Neuroscience, 116: 19–22

doi: 10.1016/S0306-4522(02)00560-2
Oertner T G, Matus A (2005). Calciumregulation of actin dynamics in dendritic spines. Cell Calcium, 37: 477–482

doi: 10.1016/j.ceca.2005.01.016
Okamoto K, Nagai T, Miyawaki A, Hayashi Y (2004). Rapid and persistent modulation of actin dynamics regulatespostsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci, 7: 1104–1112

doi: 10.1038/nn1311
Oray S, Majewska A, Sur M (2006). Effects of synaptic activity on dendriticspine motility of developing cortical layer v pyramidal neurons. Cereb Cortex, 16: 730–741

doi: 10.1093/cercor/bhj019
Passafaro M, Nakagawa T, Sala C, Sheng M (2003). Induction of dendritic spines by an extracellular domain of AMPAreceptor subunit GluR2. Nature, 424: 677–681

doi: 10.1038/nature01781
Peters A, Kaiserman-Abramof I R (1970). The small pyramidal neuron of the rat cerebral cortex. The perikaryon,dendrites and spines. Am J Anat, 127: 321–355

doi: 10.1002/aja.1001270402
Rakic P, Bourgeois J P, Eckenhoff M F, Zecevic N, Goldman-Rakic PS (1986). Concurrent overproduction of synapses in diverse regions of the primatecerebral cortex. Science, 232: 232–235

doi: 10.1126/science.3952506
Ramon yCajal S (1888). Estructurade los centros nervioso de las aves. RevTrim Histol Norm Pat, 1: 1–10
Ramon yCajal S (1899a). La Texturadel sistema nervioso del hombre y de los vertebrados. Moya: Madrid
Ramon yCajal S (1899b). Reglasy consejos sobre investigacion biologica. Imprenta de Fontanet: Madrid
Rao A, Craig A M (2000). Signalingbetween the actin cytoskeleton and the postsynaptic density of dendriticspines. Hippocampus, 10: 527–541

doi: 10.1002/1098-1063(2000)10:5<527::AID-HIPO3>3.0.CO;2-B
Robinson T E, Kolb B (1999). Alterationsin the morphology of dendrites and dendritic spines in the nucleusaccumbens and prefrontal cortex following repeated treatment withamphetamine or cocaine. Eur J Neurosci, 11: 1598–1604

doi: 10.1046/j.1460-9568.1999.00576.x
Roelandse M, Matus A (2004). Hypothermia-associatedloss of dendritic spines. J Neurosci, 24: 7843–7847

doi: 10.1523/JNEUROSCI.2872-04.2004
Sala C (2002). Molecular regulation of dendritic spine shape and function. Neurosignals, 11: 213–223

doi: 10.1159/000065433
Segal I, Korkotian I, Murphy D D (2000). Dendritic spine formation and pruning:common cellular mechanisms? Trends Neurosci, 23: 53–57

doi: 10.1016/S0166-2236(99)01499-X
Selkoe D J (2002). Alzheimer's disease is a synaptic failure. Science, 298: 789–791

doi: 10.1126/science.1074069
Shepherd G M (1996). The dendritic spine: a multifunctional integrative unit. J Neurophysiol, 75: 2197–2210
Shepherd G M (2004). The Synaptic Organization of the Brain, Fifth Edition. New York: Oxford University Press

doi: 10.1093/acprof:oso/9780195159561.001.1
Smith D L, Pozueta J, Gong B, Arancio O, Shelanski M (2009). Reversalof long-term dendritic spine alterations in Alzheimer disease models. Proc Natl Acad Sci U S A, 106: 16877–16882

doi: 10.1073/pnas.0908706106
Sorra K E, Harris K M (2000). Overviewon the structure, composition, function, development, and plasticityof hippocampal dendritic spines. Hippocampus, 10: 501–511

doi: 10.1002/1098-1063(2000)10:5<501::AID-HIPO1>3.0.CO;2-T
Spacek J, Harris K M (1997). Three-dimensionalorganization of smooth endoplasmic reticulum in hippocampal CA1 dendritesand dendritic spines of the immature and mature rat. J Neurosci, 17: 190–203
Star E N, Kwiatkowski D J, Murthy V N (2002). Rapid turnover of actin in dendriticspines and its regulation by activity. Nat Neurosci, 5: 239–246

doi: 10.1038/nn811
Steward O, Schuman E M (2001). Proteinsynthesis at synaptic sites on dendrites. Annu Rev Neurosci, 24: 299–325

doi: 10.1146/annurev.neuro.24.1.299
Svoboda K, Mainen Z F (1999). Synaptic[Ca2+]: intracellular stores spill theirguts. Neuron, 22: 427–430

doi: 10.1016/S0896-6273(00)80698-4
Swann J W, Al-Noori S, Jiang M, Lee C L (2000). Spine loss and other dendritic abnormalities in epilepsy. Hippocampus, 10: 617–625

doi: 10.1002/1098-1063(2000)10:5<617::AID-HIPO13>3.0.CO;2-R
Tada T, Sheng M (2006). Molecularmechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol, 16: 95–101

doi: 10.1016/j.conb.2005.12.001
Takashima S, Becker L E, Armstrong D L, Chan F (1981). Abnormal neuronal development in the visual cortex of the human fetusand infant with down's syndrome. A quantitative and qualitative Golgistudy. Brain Res, 225: 1–21

doi: 10.1016/0006-8993(81)90314-0
Takashima S, Iida K, Mito T, Arima M (1994). Dendritic and histochemical development and ageing in patients withDown's syndrome. J Intellect Disabil Res, 38 (Pt3): 265–273
Takumi Y, Ramirez-Leon V, Laake P, Rinvik E, Ottersen O P (1999). Differentmodes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat Neurosci, 2: 618–624

doi: 10.1038/10172
Tarrant S B, Routtenberg A (1977). The synapticspinule in the dendritic spine: electron microscopic study of thehippocampal dentate gyrus. Tissue Cell, 9: 461–473

doi: 10.1016/0040-8166(77)90006-4
Tashiro A, Yuste R (2004). Regulationof dendritic spine motility and stability by Rac1 and Rho kinase:evidence for two forms of spine motility. Mol Cell Neurosci, 26: 429–440

doi: 10.1016/j.mcn.2004.04.001
Trachtenberg J T, Chen B E, Knott G W, Feng G, Sanes J R, Welker E, Svoboda K (2002). Long-termin vivo imaging of experience-dependent synaptic plasticity in adultcortex. Nature, 420: 788–794

doi: 10.1038/nature01273
Westrum L E, Jones D H, Gray E G, Barron J (1980). Microtubules, dendritic spines and spine appratuses. Cell Tissue Res, 208: 171–181

doi: 10.1007/BF00234868
Wong W T, Wong R O (2001). Changingspecificity of neurotransmitter regulation of rapid dendritic remodelingduring synaptogenesis. Nat Neurosci, 4: 351–352

doi: 10.1038/85987
Woolley C S, Gould E, Frankfurt M, McEwen B S (1990). Naturally occurring fluctuation in dendritic spine density on adulthippocampal pyramidal neurons. J Neurosci, 10: 4035–4039
Xu H T, Pan F, Yang G, Gan W B (2007). Choice of cranial window type for in vivo imaging affects dendriticspine turnover in the cortex. Nat Neurosci, 10: 549–551

doi: 10.1038/nn1883
Yuste R, Bonhoeffer T (2004). Genesisof dendritic spines: insights from ultrastructural and imaging studies. Nat Rev Neurosci, 5: 24–34

doi: 10.1038/nrn1300
Zhang S, Murphy T H (2004). Ca(2+)-independentspine dynamics in cultured hippocampal neurons. Mol Cell Neurosci, 25: 334–344

doi: 10.1016/j.mcn.2003.10.017
Zhang S, Murphy T H (2007). Imagingthe impact of cortical microcirculation on synaptic structure andsensory-evoked hemodynamic responses in vivo. PLoS Biol, 5: e119

doi: 10.1371/journal.pbio.0050119
Zhang S, Boyd J, Delaney K, Murphy T H (2005). Rapid reversible changes in dendritic spine structure in vivo gatedby the degree of ischemia. J Neurosci, 25: 5333–5338

doi: 10.1523/JNEUROSCI.1085-05.2005
Zhou Q, Homma K J, Poo M M (2004). Shrinkage of dendritic spines associatedwith long-term depression of hippocampal synapses. Neuron, 44: 749–757

doi: 10.1016/j.neuron.2004.11.011
Zito K, Scheuss V, Knott G, Hill T, Svoboda K (2009). Rapid functional maturationof nascent dendritic spines. Neuron, 61: 247–258

doi: 10.1016/j.neuron.2008.10.054
Ziv N E, Smith S J (1996). Evidencefor a role of dendritic filopodia in synaptogenesis and spine formation. Neuron, 17: 91–102

doi: 10.1016/S0896-6273(00)80283-4
Zuo Y, Lin A, Chang P, Gan W B (2005a). Development of long-term dendritic spine stability in diverse regionsof cerebral cortex. Neuron, 46: 181–189

doi: 10.1016/j.neuron.2005.04.001
Zuo Y, Yang G, Kwon E, Gan W B (2005b). Long-term sensory deprivation prevents dendritic spine loss in primarysomatosensory cortex. Nature, 436: 261–265

doi: 10.1038/nature03715
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed