Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2010, Vol. 5 Issue (2) : 98-104    https://doi.org/10.1007/s11515-010-0023-8
Research articles
Application of Bayesian networks on large-scale biological data
Yi LIU1,Jing-Dong J. HAN1, 2,
1.Chinese Academy of Sciences Key Laboratory of Molecular Developmental Biology, Center for Molecular Systems Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; 2.2010-07-06 15:15:16;
 Download: PDF(128 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The investigation of the interplay between genes, proteins, metabolites and diseases plays a central role in molecular and cellular biology. Whole genome sequencing has made it possible to examine the behavior of all the genes in a genome by high-throughput experimental techniques and to pinpoint molecular interactions on a genome-wide scale, which form the backbone of systems biology. In particular, Bayesian network (BN) is a powerful tool for the ab-initial identification of causal and non-causal relationships between biological factors directly from experimental data. However, scalability is a crucial issue when we try to apply BNs to infer such interactions. In this paper, we not only introduce the Bayesian network formalism and its applications in systems biology, but also review recent technical developments for scaling up or speeding up the structural learning of BNs, which is important for the discovery of causal knowledge from large-scale biological datasets. Specifically, we highlight the basic idea, relative pros and cons of each technique and discuss possible ways to combine different algorithms towards making BN learning more accurate and much faster.
Keywords Bayesian networks (BN)      large-scale biological data      
Issue Date: 01 April 2010
 Cite this article:   
Yi LIU,Jing-Dong J. HAN,管理员. Application of Bayesian networks on large-scale biological data[J]. Front. Biol., 2010, 5(2): 98-104.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-010-0023-8
https://academic.hep.com.cn/fib/EN/Y2010/V5/I2/98
Akaike H(1974). A new look at the statistical modelidentification. IEEE Trans Automat Control, 19(6): 716―723

doi: 10.1109/TAC.1974.1100705
Chickering D M(1995). A Transformational Characterizationof Equivalent Bayesian Network Structures. Proc 11th Ann Conf Uncertainty Artif Intell, 87―98
Cvijovic D, Klinowski J(1995). Taboo search- an approach to the multiple minima problem. Science, 267: 664―666

doi: 10.1126/science.267.5198.664
Efron B, Hastie T, Johnstone I, Tibshirani R(2004). Least angle regression. Ann Statis, 32: 407―499

doi: 10.1214/009053604000000067
Friedman N(1997). Learning Belief Networks in the Presenceof Missing Values and Hidden Variables. Proc 14th Intl Conf Mach Learn, 125―133
Fu S, Desmarais M(2008). Fast Markov Blanket Discovery Algorithm Via Local Learningwithin Single Pass. Canadian Conf AI, 96―107
Geiger D, Heckerman D(1995). Learning Gaussian Networks. Proc 10th Ann Conf Uncertainty Artif Intell, 235―243
Geman S, Geman D(1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restorationof images. IEEE Trans Automat Control, 6(6): 721―741
Giudici P, Castelo R(2003). Improving Markov chain Monte Carlo Model search fordata mining. Mach Learn, 50(1―2): 127―158

doi: 10.1023/A:1020202028934
Grünwald P(2007). The Minimum Description Length principle. Cambridge, MA: MIT Press
Heckerman D(1999). A Tutorial on Learning with BayesianNetworks. In: Jordan M, ed. Learning in Graphical Models. Cambridge, MA: MIT Press
Heckerman D, Geiger D, Chickering D M(1995). LearningBayesian Networks: The Combination of Knowledge and Statistical Data. Machine Learning, 20(3): 197―243
Koivisto M(2006). Advances in Exact Bayesian StructureDiscovery in Bayesian Networks. Proc 22ndConf Uncertainty Artif Intell
Koivisto M, Sood K(2004). Exact Bayesian structure discovery in Bayesian networks. J Mach Learn Res, 5: 549―573
Koller D, Friedman N(2009). Probabilistic Graphical Models: Principles and Techniques. Cambridge, MA: MIT Press
Lauritzen S L, Spiegelhalter D J(1988). Local computations with probabilities on graphical structuresand their application to expert systems. J Royal Statist Society. Series B (Methodological), 50(2): 157―224
Meek C(1995). Causal inference and causal explanationwith background knowledge. Proc 11th AnnConf Uncertainty Artif Intell: 403―410
Moore A W, Lee M S(1998). Cached sufficient statistics for efficient machine learning withlarge datasets. J Artif Intell Res (JAIR)8: 67―91
Peña J M, Nilsson R, Björkegren J, Tegnér J(2007). Towards scalable and data efficientlearning of Markov boundaries. Intl J ApproxReasoning, 45(2): 211―232

doi: 10.1016/j.ijar.2006.06.008
Pearl J(1988). Probabilistic Reasoning in IntelligentSystems: Networks of Plausible Inference. San Fransisco, CA: Morgan KaufmannPublishers
Pearl J, Verma T(1991). A Theory of Inferred Causation. Proc 2ndIntl Conf Princip Knowledge Representation and Reasoning (KR'91): 441―452
Schwarz G E(1978). Estimating the dimension of a model. Ann Statis, 6(2): 461―464

doi: 10.1214/aos/1176344136
Silander T, Myllymäki P(2006). A Simple Approach for Finding the Globally Optimal BayesianNetwork Structure. Proc 22nd Conf UncertaintyArtif Intell
Spirtes P, Glymour C, Scheines R(2001). Causation,Prediction, and Search, 2nd ed. Cambridge,MA: MIT Press
Tsamardinos I, Brown L E, Aliferis C F(2006). The max-minhill-climbing Bayesian network structure learning algorithm. Mach Learn, 65(1): 31―78

doi: 10.1007/s10994-006-6889-7
van Steensel B, Braunschweig U, Filion G J, Chen M, van Bemmel J G, Ideker T(2010). Bayesiannetwork analysis of targeting interactions in chromatin. Genome Res, 20: 190―200

doi: 10.1101/gr.098822.109
Verma T, Pearl J(1991). Equivalence and synthesis of causal models. Proc Sixth Ann Conf Uncertainty Artif Intell, 255―270
Xie X, Geng Z(2008). A recursive method for structural learning of directed acyclic graphs. J Mach Learn Res, 9: 459―483
Yu H, Zhu S S, Zhou B, Xue H L, Han J D J(2008). Inferringcausal relationships among different histone modifications and geneexpression. Genome Res, 18(8): 1314―1324

doi: 10.1101/gr.073080.107
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed