Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2010, Vol. 5 Issue (3) : 211-218    https://doi.org/10.1007/s11515-010-0037-2
REVIEW
Outline and computational approaches of protein misfolding
Xin LIU()
The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(225 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Protein misfolding is a general causation of classical conformational diseases and many pathogenic changes that are the result of structural conversion. Here I review recent progress in clinical and computational approaches for each stage of the misfolding process, aiming to present readers an outline for swift comprehension of this field.

Keywords computational approaches      protein misfolding      conformational diseases     
Corresponding Author(s): LIU Xin,Email:liuxin@lnm.imech.ac.cn   
Issue Date: 01 June 2010
 Cite this article:   
Xin LIU. Outline and computational approaches of protein misfolding[J]. Front Biol, 2010, 5(3): 211-218.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-010-0037-2
https://academic.hep.com.cn/fib/EN/Y2010/V5/I3/211
Fig.1  Sketch map of the energy landscape for disease-related proteins. The free energy (F) is shown as a function of the number of native contacts (Q and Q) in domain α and β. The metastable state 1 denotes the oligomer in early step of protein aggregation that is highly toxic in amyloidosis. Proteins at metastable state 2 aggregate into amyloid fibrils by ‘Steric zipper’ β-sheets architecture. The red and yellow trajectories denote the fast and slow tracks in folding pathway of the corresponding protein ().
Fig.1  Sketch map of the energy landscape for disease-related proteins. The free energy (F) is shown as a function of the number of native contacts (Q and Q) in domain α and β. The metastable state 1 denotes the oligomer in early step of protein aggregation that is highly toxic in amyloidosis. Proteins at metastable state 2 aggregate into amyloid fibrils by ‘Steric zipper’ β-sheets architecture. The red and yellow trajectories denote the fast and slow tracks in folding pathway of the corresponding protein ().
1 Abrahamson M (1996). Molecular basis for amyloidosis related to hereditary brain hemorrhage. Scand J Clin Lab Invest , 226: 47–56
2 Bemporad F, Calloni G, Campioni S, Plakoutsi G, Taddei N, Chiti F (2006). Sequence and structural determinants of amyloid fibril formation. Acc Chem Res , 39: 620–627
3 Bitan G, Vollers S S, Teplow D B (2003). Elucidation of primary structure elements controlling early amyloid-beta protein oligomerisation. J Biol Chem , 278: 34882–34889
4 Bonvin A M (2006). Flexible protein-protein docking. Curr Opin Struct Biol , 16: 194–200
5 Bornholdt Z A, Prasad B V V (2008). X-ray structure of NS1 from a highly pathogenic H5N1 influenza virus. Nature , 456: 985–988
6 Br?ndén C I, Tooze J (1999). Introduction to protein structure. 2nd ed. New York: Garland Publishing
7 Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002). Inherent cytotoxicity of aggregates implies a common origin for protein misfolding diseases. Nature , 416: 507–511
8 Caflisch A (2006). Computational models for the prediction of polypeptide aggregation propensity. Curr Opin Chem Biol , 10: 437–444
9 Capaldi A P, Kleanthous C, Radford S E (2002). Im7 folding mechanism: misfolding on a path to the native state. Nat Struct Biol , 9: 209–216
10 Carrell R W, Gooptu B (1998). Conformational changes and diseases-serpins, prions, and Alzheimer's. Curr Opin Struct Biol , 8: 799–809
11 Carrell R W, Lomas D A (1997). Conformational disease. Lancet , 350: 134–138
12 Castillo V, Ventura S (2009). Amyloidogenic Regions and Interaction Surfaces Overlap in Globular Proteins Related to Conformational Diseases. PLoS Comput Biol , 5: e1000476
doi: 10.1371/journal.pcbi.1000476
13 Caughey B, Lansbury P T (2003). Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci , 26: 267–298
14 Chiti F, Taddei N, Baroni F, Capanni C, Stefani M, Ramponi G, Dobson C M (2002). Kinetic partitioning of protein folding and aggregation. Nat Struct Biol , 9:137–143
15 Davis R, Dobson C M, Vendruscolo M (2002). Determination of the structures of distinct transition state ensembles for a β-sheet peptide with parallel folding pathways. J Chem Phys , 117: 9510–9517
16 DeMarco M L, Daggett V (2004). From conversion to aggregation: Protofibril formation of the prion protein. Proc Natl Acad Sci USA , 101:2293–2298
17 Dill K A, Chan H S (1997). From Levinthal to pathways to funnels. Nat Struct Biol , 4: 10–19
18 Dinner A R, Sali A, Smith L J, Dobson C M, Karplus M (2000). Understanding protein folding via free energy surfaces from theory and experiment. Trends Biochem Sci , 25: 331–339
19 Dobson C M (1999). Protein misfolding, evolution and disease. Trends Biochem Sci , 24: 329–332
20 Dobson C M (2002). Getting out of shape-protein misfolding diseases. Nature , 418: 729–730
21 Dobson C M (2003). Protein folding and disease: a view from the first Horizon symposium. Nat Rev Drug Discov , 2: 154–160
22 Dobson C M (2004). Principles of protein folding, misfolding and aggregation. Semin Cell Dev Bio , 15: 3–16
23 Dobson C M, Sali A, Karplus M (1998). Protein folding: a perspective from theory and experiment. Angew Chem Int Ed Eng , 37: 868–893
24 Fernandez-Escamilla A M, Rousseau F, Schymkowitz J, Serrano L (2004). Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol , 22: 1302–1306
25 Fersht A (1999). Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. New York: WH Freeman
26 Fersht A R (2000). Transition-state structure as a unifying basis in protein-folding mechanisms: contact order, chain topology, stability, and the extended nucleus mechanism. Proc Natl Acad Sci USA , 97:1525–1529
27 Galzitskaya O V, Garbuzynskiy S O, Lobanov M Y (2006). Is it possible to predict amyloidogenic regions from sequence alone? J Bioinform Comput Biol , 4: 373–388
28 Garten R J, Davis C T, Russell C A, Shu B, Lindstrom S, Balish A, Sessions W M, Xu X, Skepner E, Deyde V, Okomo-Adhiambo M, Gubareva L, Barnes J, Smith C B, Emery S L, Hillman M J, Rivailler P, Smagala J, de Graaf M, Burke D F, Fouchier R A, Pappas C, Alpuche-Aranda C M, López-Gatell H, Olivera H, López I, Myers C A, Faix D, Blair P J, Yu C, Keene K M, Dotson P D Jr, Boxrud D, Sambol A R, Abid S H, St George K, Bannerman T, Moore A L, Stringer D J, Blevins P, Demmler-Harrison G J, Ginsberg M, Kriner P, Waterman S, Smole S, Guevara H F, Belongia E A, Clark P A, Beatrice S T, Donis R, Katz J, Finelli L, Bridges C B, Shaw M, Jernigan D B, Uyeki T M, Smith D J, Klimov A I, Cox N J (2009). Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science , 325: 197–201
doi: 10.1126/science.1176225
29 Gething M J, Sambrook J (1992). Protein folding in the cell. Nature , 355: 33–45
doi: 10.1038/355033a0
30 Govaerts C, Wille H, Prusiner S B, Cohen F E (2004). Evidence for assembly of prions with left-handed beta-helices into trimers. Proc Natl Acad Sci USA , 101: 8342–8347
doi: 10.1073/pnas.0402254101
31 Gray J J (2006). High-resolution protein-protein docking. Curr Opin Struct Biol , 16: 183–193
doi: 10.1016/j.sbi.2006.03.003
32 Hardesty B, Kramer G (2001). Folding of a nascent peptide on the ribosome. Prog Nucleic Acid Res Mol Biol , 66:41–66
doi: 10.1016/S0079-6603(00)66026-9
33 Hardy J, Cai H, Cookson M R, Gwinn-Hardy K, Singleton A (2006). Genetics of Parkinson's disease and parkinsonism. Ann Neurol , 60: 389–398
doi: 10.1002/ana.21022
34 Hardy J, Selkoe D J (2002). The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science , 297: 353–356
doi: 10.1126/science.1072994
35 Hartl F U, Hayer-Hartl M (2002). Molecular chaperones in the cytosol: from nascent chain to folded protein. Science , 295: 1852–1858
doi: 10.1126/science.1068408
36 Hore P J, Winder S L, Roberts C H, Dobson C M (1997). Stopped-flow photo-CIDNP observation of protein folding. J Am Chem Soc , 119: 5049–5050
37 H?ppener J W, Nieuwenhuis M G, Vroom T M, Ahrén B, Lips C J (2002). Role of islet amyloid in type 2 diabetes mellitus: consequence or cause? Mol Cell Endocrinol , 197: 205–212
38 Huang Z W, Prusiner S B, Cohen F E (1996). Scrapie prions: a three-dimensional model of an infectious fragment. Fold Des , 1: 13–19
doi: 10.1016/S1359-0278(96)00007-7
39 Ivanova M I, Sawaya M R, Gingery M, Attinger A, Eisenberg D (2004). An amyloid-forming segment of beta2-microglobulin suggests a molecular model for the fibril. Proc Natl Acad Sci USA , 101: 10584–10589
doi: 10.1073/pnas.0403756101
40 Karplus M (1997). The Levinthal paradox, yesterday and today. Fold Des , 2: S69–S76
41 Kelly J W (1996). Alternative conformations of amyloidogenic proteins govern their behavior. Curr Opin Struct Biol , 6: 11–17
doi: 10.1016/S0959-440X(96)80089-3
42 Koo E H, Lansbury P T Jr, Kelly J W (1999). Amyloid diseases: abnormal protein aggregation in neurodegeneration. Proc Natl Acad Sci USA , 96: 9989–9990
doi: 10.1073/pnas.96.18.9989
43 Kuwata K, Nishida N, Matsumoto T, Kamatari Y O, Hosokawa-Muto J, Kodama K, Nakamura H K, Kimura K, Kawasaki M, Takakura Y, Shirabe S, Takata J, Kataoka Y, Katamine S (2007). Hot spots in prion protein for pathogenic conversion. Proc Natl Acad Sci USA , 104: 11921–11926
doi: 10.1073/pnas.0702671104
44 Liu X, Zhao Y P (2009a). A scheme for multiple sequence alignment optimization-- an improvement based on family representative mechanics features. J Theor Biol , 261: 593–597
doi: 10.1016/j.jtbi.2009.08.028
45 Liu X, Zhao Y P (2009b). Donut-shaped fingerprint in homologous polypeptide relationships--a topological feature related to pathogenic structural conversion of conformational disease. J Theor Biol , 258: 294–301
doi: 10.1016/j.jtbi.2009.02.009
46 Liu X, Zhao Y P (2010a). Generating artificial homologous proteins according to the representative family characteristic in molecular mechanics properties. FEBS Lett , (in press)
doi: 10.1016/j.febslet.2010.02.010
47 Liu X, Zhao Y P (2010b). Simulated pathogenic conformational switch regions matched well with the biochemical findings. J Biomed Inform , (in press)
48 Liu X, Zhao Y P (2010c). Switch region for pathogenic structural change in conformational disease and its prediction. Plos One , 5(1): e8441
doi: 10.1371/journal.pone.0008441
49 López de la Paz M, Goldie K, Zurdo J, Lacroix E, Dobson C M, Hoenger A, Serrano L (2002). De novo designed peptide-based amyloid fibrils. Proc Natl Acad Sci USA , 99: 16052–16057
doi: 10.1073/pnas.252340199
50 López de la Paz M, Serrano L (2004). Sequence determinants of amyloid fibril formation. Proc Natl Acad Sci USA , 101: 87–92
doi: 10.1073/pnas.2634884100
51 Makarov D E, Plaxco K W (2003). The topomer search model: a simple, quantitative theory of two-state protein folding kinetics. Protein Sci , 12: 17–26
doi: 10.1110/ps.0220003
52 Mastrangelo I, Ahmed M, Sato T, Liu W, Wang C, Hough P, Smith S O (2006). High-resolution atomic force microscopy of soluble Abeta42 oligomers. J Mol Biol , 358: 106–109
doi: 10.1016/j.jmb.2006.01.042
53 Matouschek A, Kellis J T, Serrano L, Fersht A R (1989). Mapping the transition state and pathway of protein folding by protein engineering. Nature , 342: 122–126
doi: 10.1038/340122a0
54 Meiering E M (2008). The threat of instability: neurodegeneration predicted by protein destabilization and aggregation propensity. Plos Biol , 6: e193
doi: 10.1371/journal.pbio.0060193
55 Nelson R, Sawaya M R, Balbirnie M, Madsen A ?, Riekel C, Grothe R, Eisenberg D (2005). Structure of the cross-beta spine of amyloid-like fibrils. Nature , 435: 773–778
doi: 10.1038/nature03680
56 ólafsson í, Grubb A (2000). Hereditary cystatin C amyloid angiopathy. Amyloid , 7: 70–79
doi: 10.3109/13506120009146827
57 Pawar A P, Dubay K F, Zurdo J, Chiti F, Vendruscolo M, Dobson C M (2005). Prediction of “aggregation-prone” and “aggregation-susceptible” regions in proteins associated with neurodegenerative diseases. J Mol Biol , 350: 379–392
doi: 10.1016/j.jmb.2005.04.016
58 Pepys M B (1995). The Oxford textbook of medicine. 3rd ed. Oxford: Oxford University Press , 1512–1524
59 Polverino de Laureto P, Taddei N, Frare E, Capanni C, Costantini S, Zurdo J, Chiti F, Dobson C M, Fontana A (2003). Protein aggregation and amyloid fibril formation by an SH3 domain probed by limited proteolysis. J Mol Biol , 334: 129–141
doi: 10.1016/j.jmb.2003.09.024
60 Prusiner S B (1997). Prion diseases and the BSE crisis. Science , 278: 245–251
doi: 10.1126/science.278.5336.245
61 Saiki M, Konakahara T, Morii H (2006). Interaction-based evaluation of the propensity for amyloid formation with cross-beta structure. Biochem Biophys Res Commun , 343: 1262–1271
doi: 10.1016/j.bbrc.2006.03.089
62 Sánchez de Groot N, Pallarés I, Avilés FX, Vendrell J, Ventura S (2005). Prediction of “hot spots” of aggregation in disease-linked polypeptides. BMC Struct Biol , 5: 18
63 Sawaya M R, Sambashivan S, Nelson R, Ivanova M I, Sievers S A, Apostol M I, Thompson MJ, Balbirnie M, Wiltzius J J, McFarlane H T, Madsen A ?, Riekel C, Eisenberg D (2007). Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature , 447(7143): 453–457
doi: 10.1186/1472-6807-5-18
64 Smirnovas V, Kim J I, Lu X, Atarashi R, Caughey B, Surewicz W K (2009). Distinct structures of Scrapie Prion Protein (PrPSc)-seeded versus spontaneous recombinant prion protein fibrils revealed by hydrogen/deuterium exchange. J Biol Chem , 284(36): 24233–24241
doi: 10.1074/jbc.M109.036558
65 Soto C (2001). Protein misfolding and disease; protein refolding and therapy. FEBS lett , 498: 204–207
doi: 10.1016/S0014-5793(01)02486-3
66 Stefani M, Dobson C M (2003). Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med , 81: 678–699
doi: 10.1007/s00109-003-0464-5
67 Thomas P J, Qu B H, Pedersen P L (1995). Defective protein folding as a basis of human disease. Trends Biochem Sci , 20: 456–459
doi: 10.1016/S0968-0004(00)89100-8
68 Walsh D M, Klyubin I, Fadeeva J V, Cullen W K, Anwyl R, Wolfe M S, Rowan M J, Selkoe D J (2002). Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature , 416: 535–539
doi: 10.1038/416535a
69 Wei G, Mousseau N, Derreumaux P (2007). Computational simulations of the early steps of pProtein aggregation. Prion , 1: 3–8
doi: 10.4161/pri.1.1.3969
70 Wolynes P G, Onuchic J N, Thirumalai D (1995). Navigating the folding routes. Science , 267: 1619–1623
doi: 10.1126/science.7886447
71 Vendruscolo M, Paci E, Dobson C M, Karplus M (2001). Three key residues form a critical contact network in a transition state for protein folding. Nature , 409: 641–645
doi: 10.1038/35054591
72 Ventura S, Zurdo J, Narayanan S, Parre?o M, Mangues R, Reif B, Chiti F, Giannoni E, Dobson C M, Aviles F X, Serrano L (2004). Short amino acid stretches can mediate amyloid formation in globular proteins: the Src homology 3 (SH3) case. Proc Natl Acad Sci USA , 101: 7258–7263
doi: 10.1073/pnas.0308249101
73 Yoon S, Welsh W J (2004). Detecting hidden sequence propensity for amyloid fibril formation. Protein Sci , 13: 2149–2160
doi: 10.1110/ps.04790604
74 Zhang Z, Chen H, Lai L (2007). Identification of amyloid fibril-forming segments based on structure and residue-based statistical potential. Bioinformatics , 23: 2218–2225
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed