|
|
|
Exogenous nucleic acids aggregate in non-P-body cytoplasmic granules when transfected into cultured cells |
Huang HUANG1, Na WEI1, Yingfei XIONG1,2, Feng YANG1, Huaqiang FANG1, Wenjun XIE1, Zhuan ZHOU1, Heping CHENG1, Zicai LIANG1( ), Quan DU1( ) |
| 1. Institute of Molecular Medicine, Peking University, Beijing 100871, China; 2. Institute of Neurosciences, The Fourth Military Medical University, Xi'an 710032, China |
|
|
|
|
Abstract To modulate gene expression in research studies or in potential clinical therapies, transfection of exogenous nucleic acids including plasmid DNA and small interference RNA (siRNA) are generally performed. However, the cellular processing and the fate of these nucleic acids remain elusive. By investigating the cellular behavior of transfected nucleic acids using confocal imaging, here we show that when siRNA was co-transfected into cultured cells with other nucleic acids, including single-stranded RNA oligonucleotides, single and double-stranded DNA oligonucleotides, as well as long double-stranded plasmid DNA, they all aggregate in the same cytoplasmic granules. Interestingly, the amount of siRNA aggregating in granules was found not to correlate with the gene silencing activity, suggesting that assembly of cytoplasmic granules triggered by siRNA transfection may be separable from the siRNA silencing event. Our results argue against the claim that the siRNA-aggregating granules are the functional site of RNA interference (RNAi). Taken together, our studies suggest that, independent of their types or forms, extraneously transfected nucleic acids are processed through a common cytoplasmic pathway and trigger the formation of a new type of cytoplasmic granules “ transfection granules” .
|
| Keywords
small interference RNA (siRNA)
nucleic acids
P-body
RNA interference (RNAi)
transfection
|
|
Corresponding Author(s):
LIANG Zicai,Email:liangz@pku.edu.cn; DU Quan,Email:quan.du@pku.edu.cn
|
|
Issue Date: 01 June 2010
|
|
| 1 |
Anderson P, Kedersha N (2006). RNA granules. J Cell Biol , 172(6): 803– 808 doi: 10.1083/jcb.200512082
|
| 2 |
Anderson P, Kedersha N (2008). Stress granules: the Tao of RNA triage. Trends Biochem Sci , 33(3): 141– 150
|
| 3 |
Arimoto K, Fukuda H, Imajoh-Ohmi S, Saito H, Takekawa M (2008). Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat Cell Biol , 10(11): 1324– 1332 doi: 10.1038/ncb1791
|
| 4 |
Berezhna S Y, Supekova L, Supek F, Schultz P G, Deniz A A (2006). siRNA in human cells selectively localizes to target RNA sites. Proc Natl Acad Sci U S A , 103(20): 7682– 7687 doi: 10.1073/pnas.0600148103
|
| 5 |
Bhattacharyya S N, Habermacher R, Martine U, Closs E I, Filipowicz W (2006). Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell , 125(6): 1111– 1124 doi: 10.1016/j.cell.2006.04.031
|
| 6 |
Brengues M, Teixeira D, Parker R (2005). Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science , 310(5747): 486– 489 doi: 10.1126/science.1115791
|
| 7 |
Chiu Y L, Ali A, Chu C Y, Cao H, Rana T M (2004). Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem Biol , 11(8): 1165– 1175 doi: 10.1016/j.chembiol.2004.06.006
|
| 8 |
Chu C Y, Rana T M (2006). Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol , 4(7): e210 doi: 10.1371/journal.pbio.0040210
|
| 9 |
Coller J, Parker R (2005). General translational repression by activators of mRNA decapping. Cell , 122(6): 875– 886 doi: 10.1016/j.cell.2005.07.012
|
| 10 |
de Semir D, Petriz J, Avinyó A, Larriba S, Nunes V, Casals T, Estivill X, Aran J M (2002). Non-viral vector-mediated uptake, distribution, and stability of chimeraplasts in human airway epithelial cells. J Gene Med , 4(3): 308– 322 doi: 10.1002/jgm.264
|
| 11 |
Eulalio A, Behm-Ansmant I, Schweizer D, Izaurralde E (2007). P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol Cell Biol , 27(11): 3970– 3981 doi: 10.1128/MCB.00128-07
|
| 12 |
Godbey W T, Wu K K, Mikos A G (1999). Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc Natl Acad Sci U S A , 96(9): 5177– 5181 doi: 10.1073/pnas.96.9.5177
|
| 13 |
Golzio M, Teissie J, Rols M P (2002). Direct visualization at the single-cell level of electrically mediated gene delivery. Proc Natl Acad Sci U S A , 99(3): 1292– 1297 doi: 10.1073/pnas.022646499
|
| 14 |
Jagannath A, Wood M J (2008) Localization of Double-stranded siRNA to Cytoplasmic P-Bodies Is Ago2-dependent and Results in Upregulation of GW182 and Ago2. Mol Biol Cell .
|
| 15 |
Jakymiw A, Lian S, Eystathioy T, Li S, Satoh M, Hamel J C, Fritzler M J, Chan E K (2005). Disruption of GW bodies impairs mammalian RNA interference. Nat Cell Biol , 7(12): 1267– 1274 doi: 10.1038/ncb1334
|
| 16 |
Jakymiw A, Pauley K M, Li S, Ikeda K, Lian S, Eystathioy T, Satoh M, Fritzler M J, Chan E K (2007). The role of GW/P-bodies in RNA processing and silencing. J Cell Sci , 120(Pt 8): 1317– 1323 doi: 10.1242/jcs.03429
|
| 17 |
Kedersha N, Anderson P (2007). Mammalian stress granules and processing bodies. Methods Enzymol , 431: 61– 81 doi: 10.1016/S0076-6879(07)31005-7
|
| 18 |
Lian S, Fritzler M J, Katz J, Hamazaki T, Terada N, Satoh M, Chan E K (2007). Small interfering RNA-mediated silencing induces target-dependent assembly of GW/P bodies. Mol Biol Cell , 18(9): 3375– 3387 doi: 10.1091/mbc.E07-01-0070
|
| 19 |
Liu J, Rivas F V, Wohlschlegel J, Yates J R 3rd, Parker R, Hannon G J (2005a). A role for the P-body component GW182 in microRNA function. Nat Cell Biol , 7(12): 1261– 1266 doi: 10.1038/ncb1333
|
| 20 |
Liu J, Valencia-Sanchez M A, Hannon G J, Parker R (2005b). MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol , 7(7): 719– 723 doi: 10.1038/ncb1274
|
| 21 |
Lukacs G L, Haggie P, Seksek O, Lechardeur D, Freedman N, Verkman A S (2000). Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem , 275(3): 1625– 1629 doi: 10.1074/jbc.275.3.1625
|
| 22 |
Marcusson E G, Bhat B, Manoharan M, Bennett C F, Dean N M (1998). Phosphorothioate oligodeoxyribonucleotides dissociate from cationic lipids before entering the nucleus. Nucleic Acids Res , 26(8): 2016– 2023 doi: 10.1093/nar/26.8.2016
|
| 23 |
Niidome T, Huang L (2002). Gene therapy progress and prospects: nonviral vectors. Gene Ther , 9(24): 1647– 1652 doi: 10.1038/sj.gt.3301923
|
| 24 |
Pauley K M, Eystathioy T, Jakymiw A, Hamel J C, Fritzler M J, Chan E K (2006). Formation of GW bodies is a consequence of microRNA genesis. EMBO Rep , 7(9): 904– 910 doi: 10.1038/sj.embor.7400783
|
| 25 |
Sen G L, Blau H M (2005). Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol , 7(6): 633– 636 doi: 10.1038/ncb1265
|
| 26 |
Serman A, Le Roy F, Aigueperse C, Kress M, Dautry F, Weil D (2007). GW body disassembly triggered by siRNAs independently of their silencing activity. Nucleic Acids Res , 35(14): 4715– 4727 doi: 10.1093/nar/gkm491
|
| 27 |
Shimizu N, Kamezaki F, Shigematsu S (2005). Tracking of microinjected DNA in live cells reveals the intracellular behavior and elimination of extrachromosomal genetic material. Nucleic Acids Res , 33(19): 6296– 6307 doi: 10.1093/nar/gki946
|
| 28 |
St Johnston D (2005). Moving messages: the intracellular localization of mRNAs. Nat Rev Mol Cell Biol , 6(5): 363– 375 doi: 10.1038/nrm1643
|
| 29 |
Vickers T A, Lima W F, Wu H, Nichols J G, Linsley P S, Crooke S T (2009). Off-target and a portion of target-specific siRNA mediated mRNA degradation is Ago2 ‘ Slicer’ independent and can be mediated by Ago1. Nucleic Acids Res , 37(20): 6927– 6941 doi: 10.1093/nar/gkp735
|
| 30 |
Wells D J (2004). Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther , 11(18): 1363– 1369 doi: 10.1038/sj.gt.3302337
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|