|
|
Unique features of myosin VI: a structural view |
Wei FENG( ) |
National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China |
|
|
Abstract Myosin VI is the only known molecular motor for the transportation of cargo vesicles from the plus end to the minus end of actin filaments. Thus, myosin VI possesses several unique features to distinguish it from other myosin family motors, such as the ability to move in a reverse direction, the unusual large walking step size, and the cargo-mediated dimerization. Recent structural studies of myosin VI have provided mechanistic insights into these unique features. On the basis of the resolved structures of myosin VI each domains (i.e., the structures of the N-terminal motor domain, the C-terminal cargo binding domain, and the region in the middle), the unique features of myosin VI will be reviewed here from a structural perspective. The structural studies of myosin VI definitely provide some answers about the unique features of myosin VI, but also raise significant questions on how myosin VI functions as a special motor both for directional cargo transport and for structural anchoring.
|
Keywords
molecular motor
myosin VI
cargo transport
cargo binding
walking step size
|
Corresponding Author(s):
FENG Wei,Email:wfeng@ibp.ac.cn
|
Issue Date: 01 June 2010
|
|
1 |
Altman D, Goswami D, Hasson T, Spudich J A, Mayor S (2007). Precise positioning of myosin VI on endocytic vesicles in vivo. PLoS Biol , 5(8): e210 doi: 10.1371/journal.pbio.0050210
|
2 |
Altman D, Sweeney H L, Spudich J A (2004). The mechanism of myosin VI translocation and its load-induced anchoring. Cell , 116(5): 737-749 doi: 10.1016/S0092-8674(04)00211-9
|
3 |
Aschenbrenner L, Naccache S N, Hasson T (2004). Uncoated endocytic vesicles require the unconventional myosin, Myo6, for rapid transport through actin barriers. Mol Biol Cell , 15(5): 2253-2263 doi: 10.1091/mbc.E04-01-0002
|
4 |
Au J S, Puri C, Ihrke G, Kendrick-Jones J, Buss F (2007). Myosin VI is required for sorting of AP-1B-dependent cargo to the basolateral domain in polarized MDCK cells. J Cell Biol , 177(1): 103-114 doi: 10.1083/jcb.200608126
|
5 |
Avraham K B, Hasson T, Steel K P, Kingsley D M, Russell L B, Mooseker M S, Copeland N G, Jenkins N A (1995). The mouse Snell’s waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat Genet , 11(4): 369-375 doi: 10.1038/ng1295-369
|
6 |
Bahloul A, Chevreux G, Wells A L, Martin D, Nolt J, Yang Z, Chen L Q, Potier N, Van Dorsselaer A, Rosenfeld S, Houdusse A, Sweeney H L (2004). The unique insert in myosin VI is a structural calcium-calmodulin binding site. Proc Natl Acad Sci U S A , 101(14): 4787-4792 doi: 10.1073/pnas.0306892101
|
7 |
Buss F, Arden S D, Lindsay M, Luzio J P, Kendrick-Jones J (2001). Myosin VI isoform localized to clathrin-coated vesicles with a role in clathrin-mediated endocytosis. EMBO J , 20(14): 3676-3684 doi: 10.1093/emboj/20.14.3676
|
8 |
Buss F, Kendrick-Jones J (2008). How are the cellular functions of myosin VI regulated within the cell? Biochem Biophys Res Commun , 369(1): 165-175 doi: 10.1016/j.bbrc.2007.11.150
|
9 |
Buss F, Spudich G, Kendrick-Jones J (2004). Myosin VI: cellular functions and motor properties. Annu Rev Cell Dev Biol , 20: 649-676 doi: 10.1146/annurev.cellbio.20.012103.094243
|
10 |
Chibalina M V, Puri C, Kendrick-Jones J, Buss F (2009). Potential roles of myosin VI in cell motility. Biochem Soc Trans , 37(Pt 5): 966-970 doi: 10.1042/BST0370966
|
11 |
Dance A L, Miller M, Seragaki S, Aryal P, White B, Aschenbrenner L, Hasson T (2004). Regulation of myosin-VI targeting to endocytic compartments. Traffic , 5(10): 798-813 doi: 10.1111/j.1600-0854.2004.00224.x
|
12 |
Dunn T A, Chen S, Faith D A, Hicks J L, Platz E A, Chen Y, Ewing C M, Sauvageot J, Isaacs W B, De Marzo A M, Luo J (2006). A novel role of myosin VI in human prostate cancer. Am J Pathol , 169(5): 1843-1854 doi: 10.2353/ajpath.2006.060316
|
13 |
Foth B J, Goedecke M C, Soldati D (2006). New insights into myosin evolution and classification. Proc Natl Acad Sci U S A , 103(10): 3681-3686 doi: 10.1073/pnas.0506307103
|
14 |
Geisbrecht E R, Montell D J (2002). Myosin VI is required for E-cadherin-mediated border cell migration. Nat Cell Biol , 4(8): 616-620
|
15 |
Hasson T, Gillespie P G, Garcia J A, MacDonald R B, Zhao Y, Yee A G, Mooseker M S, Corey D P (1997). Unconventional myosins in inner-ear sensory epithelia. J Cell Biol , 137(6): 1287-1307 doi: 10.1083/jcb.137.6.1287
|
16 |
Hasson T, Mooseker M S (1994). Porcine myosin-VI: characterization of a new mammalian unconventional myosin. J Cell Biol , 127(2): 425-440 doi: 10.1083/jcb.127.2.425
|
17 |
Iwaki M, Tanaka H, Iwane A H, Katayama E, Ikebe M, Yanagida T (2006). Cargo-binding makes a wild-type single-headed myosin-VI move processively. Biophys J , 90(10): 3643-3652 doi: 10.1529/biophysj.105.075721
|
18 |
Kellerman K A, Miller K G (1992). An unconventional myosin heavy chain gene from Drosophila melanogaster. J Cell Biol , 119(4): 823-834 doi: 10.1083/jcb.119.4.823
|
19 |
Lister I, Schmitz S, Walker M, Trinick J, Buss F, Veigel C, Kendrick-Jones J (2004). A monomeric myosin VI with a large working stroke. EMBO J , 23(8): 1729-1738 doi: 10.1038/sj.emboj.7600180
|
20 |
Maddugoda M P, Crampton M S, Shewan A M, Yap A S (2007). Myosin VI and vinculin cooperate during the morphogenesis of cadherin cell cell contacts in mammalian epithelial cells. J Cell Biol , 178(3): 529-540 doi: 10.1083/jcb.200612042
|
21 |
Mehta A D, Rock R S, Rief M, Spudich J A, Mooseker M S, Cheney R E (1999). Myosin-V is a processive actin-based motor. Nature , 400(6744): 590-593 doi: 10.1038/23072
|
22 |
Melchionda S, Ahituv N, Bisceglia L, Sobe T, Glaser F, Rabionet R, Arbones M L, Notarangelo A, Di Iorio E, Carella M, Zelante L, Estivill X, Avraham K B, Gasparini P (2001). MYO6, the human homologue of the gene responsible for deafness in Snell’s waltzer mice, is mutated in autosomal dominant nonsyndromic hearing loss. Am J Hum Genet , 69(3): 635-640 doi: 10.1086/323156
|
23 |
Ménétrey J, Bahloul A, Wells A L, Yengo C M, Morris C A, Sweeney H L, Houdusse A (2005). The structure of the myosin VI motor reveals the mechanism of directionality reversal. Nature , 435(7043): 779-785 doi: 10.1038/nature03592
|
24 |
Ménétrey J, Llinas P, Mukherjea M, Sweeney H L, Houdusse A (2007). The structural basis for the large powerstroke of myosin VI. Cell , 131(2): 300-308 doi: 10.1016/j.cell.2007.08.027
|
25 |
Mermall V, McNally J G, Miller K G (1994). Transport of cytoplasmic particles catalysed by an unconventional myosin in living Drosophila embryos. Nature , 369(6481): 560-562 doi: 10.1038/369560a0
|
26 |
Morris S M, Arden S D, Roberts R C, Kendrick-Jones J, Cooper J A, Luzio J P, Buss F (2002). Myosin VI binds to and localises with Dab2, potentially linking receptor-mediated endocytosis and the actin cytoskeleton. Traffic , 3(5): 331-341 doi: 10.1034/j.1600-0854.2002.30503.x
|
27 |
Mukherjea M, Llinas P, Kim H, Travaglia M, Safer D, Ménétrey J, Franzini-Armstrong C, Selvin P R, Houdusse A, Sweeney H L (2009). Myosin VI dimerization triggers an unfolding of a three-helix bundle in order to extend its reach. Mol Cell , 35(3): 305-315 doi: 10.1016/j.molcel.2009.07.010
|
28 |
Nishikawa S, Homma K, Komori Y, Iwaki M, Wazawa T, Hikikoshi Iwane A, Saito J, Ikebe R, Katayama E, Yanagida T, Ikebe M (2002). Class VI myosin moves processively along actin filaments backward with large steps. Biochem Biophys Res Commun , 290(1): 311-317 doi: 10.1006/bbrc.2001.6142
|
29 |
O’Connell C B, Tyska M J, Mooseker M S (2007). Myosin at work: motor adaptations for a variety of cellular functions. Biochim Biophys Acta , 1773(5): 615-630 doi: 10.1016/j.bbamcr.2006.06.012
|
30 |
Park H, Ramamurthy B, Travaglia M, Safer D, Chen L Q, Franzini-Armstrong C, Selvin P R, Sweeney H L (2006). Full-length myosin VI dimerizes and moves processively along actin filaments upon monomer clustering. Mol Cell , 21(3): 331-336 doi: 10.1016/j.molcel.2005.12.015
|
31 |
Phichith D, Travaglia M, Yang Z, Liu X, Zong A B, Safer D, Sweeney H L (2009). Cargo binding induces dimerization of myosin VI. Proc Natl Acad Sci U S A , 106(41): 17320-17324 doi: 10.1073/pnas.0909748106
|
32 |
Rock R S, Ramamurthy B, Dunn A R, Beccafico S, Rami B R, Morris C, Spink B J, Franzini-Armstrong C, Spudich J A, Sweeney H L (2005). A flexible domain is essential for the large step size and processivity of myosin VI. Mol Cell , 17(4): 603-609 doi: 10.1016/j.molcel.2005.01.015
|
33 |
Rock R S, Rice S E, Wells A L, Purcell T J, Spudich J A, Sweeney H L (2001). Myosin VI is a processive motor with a large step size. Proc Natl Acad Sci U S A , 98(24): 13655-13659 doi: 10.1073/pnas.191512398
|
34 |
Sahlender D A, Roberts R C, Arden S D, Spudich G, Taylor M J, Luzio J P, Kendrick-Jones J, Buss F (2005). Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J Cell Biol , 169(2): 285-295 doi: 10.1083/jcb.200501162
|
35 |
Seiler C, Ben-David O, Sidi S, Hendrich O, Rusch A, Burnside B, Avraham K B, Nicolson T (2004). Myosin VI is required for structural integrity of the apical surface of sensory hair cells in zebrafish. Dev Biol , 272(2): 328-338 doi: 10.1016/j.ydbio.2004.05.004
|
36 |
Sellers J R (2000). Myosins: a diverse superfamily. Biochim Biophys Acta , 1496(1): 3-22 doi: 10.1016/S0167-4889(00)00005-7
|
37 |
Spink B J, Sivaramakrishnan S, Lipfert J, Doniach S, Spudich J A (2008). Long single α-helical tail domains bridge the gap between structure and function of myosin VI. Nat Struct Mol Biol , 15(6): 591-597 doi: 10.1038/nsmb.1429
|
38 |
Spudich J A (2001). The myosin swinging cross-bridge model. Nat Rev Mol Cell Biol , 2(5): 387-392 doi: 10.1038/35073086
|
39 |
Spudich J A, Sivaramakrishnan S (2010). Myosin VI: an innovative motor that challenged the swinging lever arm hypothesis. Nat Rev Mol Cell Biol , 11(2): 128-137 doi: 10.1038/nrm2833
|
40 |
Sweeney H L, Houdusse A (2007). What can myosin VI do in cells? Curr Opin Cell Biol , 19(1): 57-66 doi: 10.1016/j.ceb.2006.12.005
|
41 |
Vreugde S, Ferrai C, Miluzio A, Hauben E, Marchisio P C, Crippa M P, Bussi M, Biffo S (2006). Nuclear myosin VI enhances RNA polymerase II-dependent transcription. Mol Cell , 23(5): 749-755 doi: 10.1016/j.molcel.2006.07.005
|
42 |
Walker M L, Burgess S A, Sellers J R, Wang F, Hammer J A 3rd, Trinick J, Knight P J (2000). Two-headed binding of a processive myosin to F-actin. Nature , 405(6788): 804-807 doi: 10.1038/35015592
|
43 |
Warner C L, Stewart A, Luzio J P, Steel K P, Libby R T, Kendrick-Jones J, Buss F (2003). Loss of myosin VI reduces secretion and the size of the Golgi in fibroblasts from Snell’s waltzer mice. EMBO J , 22(3): 569-579 doi: 10.1093/emboj/cdg055
|
44 |
Wells A L, Lin A W, Chen L Q, Safer D, Cain S M, Hasson T, Carragher B O, Milligan R A, Sweeney H L (1999). Myosin VI is an actin-based motor that moves backwards. Nature , 401(6752): 505-508 doi: 10.1038/46835
|
45 |
Yoshida H, Cheng W, Hung J, Montell D, Geisbrecht E, Rosen D, Liu J, Naora H (2004). Lessons from border cell migration in the Drosophila ovary: A role for myosin VI in dissemination of human ovarian cancer. Proc Natl Acad Sci U S A , 101(21): 8144-8149 doi: 10.1073/pnas.0400400101
|
46 |
Yu C, Feng W, Wei Z, Miyanoiri Y, Wen W, Zhao Y, Zhang M (2009). Myosin VI undergoes cargo-mediated dimerization. Cell , 138(3): 537-548 doi: 10.1016/j.cell.2009.05.030
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|