Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2010, Vol. 5 Issue (3) : 204-210    https://doi.org/10.1007/s11515-010-0048-z
REVIEW
Unique features of myosin VI: a structural view
Wei FENG()
National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
 Download: PDF(277 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Myosin VI is the only known molecular motor for the transportation of cargo vesicles from the plus end to the minus end of actin filaments. Thus, myosin VI possesses several unique features to distinguish it from other myosin family motors, such as the ability to move in a reverse direction, the unusual large walking step size, and the cargo-mediated dimerization. Recent structural studies of myosin VI have provided mechanistic insights into these unique features. On the basis of the resolved structures of myosin VI each domains (i.e., the structures of the N-terminal motor domain, the C-terminal cargo binding domain, and the region in the middle), the unique features of myosin VI will be reviewed here from a structural perspective. The structural studies of myosin VI definitely provide some answers about the unique features of myosin VI, but also raise significant questions on how myosin VI functions as a special motor both for directional cargo transport and for structural anchoring.

Keywords molecular motor      myosin VI      cargo transport      cargo binding      walking step size     
Corresponding Author(s): FENG Wei,Email:wfeng@ibp.ac.cn   
Issue Date: 01 June 2010
 Cite this article:   
Wei FENG. Unique features of myosin VI: a structural view[J]. Front Biol, 2010, 5(3): 204-210.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-010-0048-z
https://academic.hep.com.cn/fib/EN/Y2010/V5/I3/204
Fig.1  . : Domain organization of myosin VI. Myosin VI contains an N-terminal motor domain, a short neck region/lever arm (including a unique insertion and one “IQ” motif), a lever arm extension (LAE) and a single a-helix (SAH) (a putative coiled-coil domain) in the middle, and a C-terminal cargo-binding domain (CBD). : Myosin VI is an actin-filament minus-end-orientated myosin motor and plays diverse roles in a variety of cellular processes, including clathrin-coated/uncoated vesicle-mediated endocytosis and stabilization of the basal region of stereo-cilia, the trans-Golgi complexes, and the nuclear transcription machinery. Myosin VI is shown in a dimeric state with two motor heads attaching to actin-filaments.
Fig.1  . : Domain organization of myosin VI. Myosin VI contains an N-terminal motor domain, a short neck region/lever arm (including a unique insertion and one “IQ” motif), a lever arm extension (LAE) and a single a-helix (SAH) (a putative coiled-coil domain) in the middle, and a C-terminal cargo-binding domain (CBD). : Myosin VI is an actin-filament minus-end-orientated myosin motor and plays diverse roles in a variety of cellular processes, including clathrin-coated/uncoated vesicle-mediated endocytosis and stabilization of the basal region of stereo-cilia, the trans-Golgi complexes, and the nuclear transcription machinery. Myosin VI is shown in a dimeric state with two motor heads attaching to actin-filaments.
Fig.2  . : A ribbon diagram combined with surface representation of the myosin VI motor domain in the ADP/Pi-bound state (the pre-powerstroke state) (PDB code: 2V26). The lever arm not included in the structure is represented by a dash cylinder. : A ribbon diagram combined with surface representation of the motor domain together with the lever arm (including the unique insertion and the “IQ” motif both in complex with the CaM) in the nucleotide-free state (the post-powerstroke state) (PDB code: 2BKI). The motor domain (including the converter/insertion region and the lever arm), the Ca-CaM, and the apo-CaM are colored in purple, orange, and green respectively. From the pre-powerstroke state to the post-powerstroke state, the “converter/insertion” region of the motor undergoes significant conformational changes and the lever arm rotates about 180° re-pointing from the plus end to the minus end of actin-filaments.
Fig.2  . : A ribbon diagram combined with surface representation of the myosin VI motor domain in the ADP/Pi-bound state (the pre-powerstroke state) (PDB code: 2V26). The lever arm not included in the structure is represented by a dash cylinder. : A ribbon diagram combined with surface representation of the motor domain together with the lever arm (including the unique insertion and the “IQ” motif both in complex with the CaM) in the nucleotide-free state (the post-powerstroke state) (PDB code: 2BKI). The motor domain (including the converter/insertion region and the lever arm), the Ca-CaM, and the apo-CaM are colored in purple, orange, and green respectively. From the pre-powerstroke state to the post-powerstroke state, the “converter/insertion” region of the motor undergoes significant conformational changes and the lever arm rotates about 180° re-pointing from the plus end to the minus end of actin-filaments.
Fig.3  . A schematic model showing the dimeric myosin VI walks along actin-filaments with a ~36 nm step size. The synergistic binding between the CBD and the Dab2 (i.e., two continuous helices of Dab2 C-terminal tail tether the two CBD together) results in the dimerization of myosin VI. Interestingly, both the isolated CBD and the isolated Dab2 are monomers, and therefore, myosin VI forms specific dimmers only upon cargo-binding. The large ~36 nm step size of myosin VI might be contributed by both the SAH and the LAE expansion (indicated by the dash arrows). The myosin VI CBD/Dab2 complex structure (PDB code: 3H8D) is in the combined surface and ribbon representations; other domains of myosin VI, the cargo adaptor Dab2, and the cargoes, are all in the cartoon representations for simplicity.
Fig.3  . A schematic model showing the dimeric myosin VI walks along actin-filaments with a ~36 nm step size. The synergistic binding between the CBD and the Dab2 (i.e., two continuous helices of Dab2 C-terminal tail tether the two CBD together) results in the dimerization of myosin VI. Interestingly, both the isolated CBD and the isolated Dab2 are monomers, and therefore, myosin VI forms specific dimmers only upon cargo-binding. The large ~36 nm step size of myosin VI might be contributed by both the SAH and the LAE expansion (indicated by the dash arrows). The myosin VI CBD/Dab2 complex structure (PDB code: 3H8D) is in the combined surface and ribbon representations; other domains of myosin VI, the cargo adaptor Dab2, and the cargoes, are all in the cartoon representations for simplicity.
1 Altman D, Goswami D, Hasson T, Spudich J A, Mayor S (2007). Precise positioning of myosin VI on endocytic vesicles in vivo. PLoS Biol , 5(8): e210
doi: 10.1371/journal.pbio.0050210
2 Altman D, Sweeney H L, Spudich J A (2004). The mechanism of myosin VI translocation and its load-induced anchoring. Cell , 116(5): 737-749
doi: 10.1016/S0092-8674(04)00211-9
3 Aschenbrenner L, Naccache S N, Hasson T (2004). Uncoated endocytic vesicles require the unconventional myosin, Myo6, for rapid transport through actin barriers. Mol Biol Cell , 15(5): 2253-2263
doi: 10.1091/mbc.E04-01-0002
4 Au J S, Puri C, Ihrke G, Kendrick-Jones J, Buss F (2007). Myosin VI is required for sorting of AP-1B-dependent cargo to the basolateral domain in polarized MDCK cells. J Cell Biol , 177(1): 103-114
doi: 10.1083/jcb.200608126
5 Avraham K B, Hasson T, Steel K P, Kingsley D M, Russell L B, Mooseker M S, Copeland N G, Jenkins N A (1995). The mouse Snell’s waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat Genet , 11(4): 369-375
doi: 10.1038/ng1295-369
6 Bahloul A, Chevreux G, Wells A L, Martin D, Nolt J, Yang Z, Chen L Q, Potier N, Van Dorsselaer A, Rosenfeld S, Houdusse A, Sweeney H L (2004). The unique insert in myosin VI is a structural calcium-calmodulin binding site. Proc Natl Acad Sci U S A , 101(14): 4787-4792
doi: 10.1073/pnas.0306892101
7 Buss F, Arden S D, Lindsay M, Luzio J P, Kendrick-Jones J (2001). Myosin VI isoform localized to clathrin-coated vesicles with a role in clathrin-mediated endocytosis. EMBO J , 20(14): 3676-3684
doi: 10.1093/emboj/20.14.3676
8 Buss F, Kendrick-Jones J (2008). How are the cellular functions of myosin VI regulated within the cell? Biochem Biophys Res Commun , 369(1): 165-175
doi: 10.1016/j.bbrc.2007.11.150
9 Buss F, Spudich G, Kendrick-Jones J (2004). Myosin VI: cellular functions and motor properties. Annu Rev Cell Dev Biol , 20: 649-676
doi: 10.1146/annurev.cellbio.20.012103.094243
10 Chibalina M V, Puri C, Kendrick-Jones J, Buss F (2009). Potential roles of myosin VI in cell motility. Biochem Soc Trans , 37(Pt 5): 966-970
doi: 10.1042/BST0370966
11 Dance A L, Miller M, Seragaki S, Aryal P, White B, Aschenbrenner L, Hasson T (2004). Regulation of myosin-VI targeting to endocytic compartments. Traffic , 5(10): 798-813
doi: 10.1111/j.1600-0854.2004.00224.x
12 Dunn T A, Chen S, Faith D A, Hicks J L, Platz E A, Chen Y, Ewing C M, Sauvageot J, Isaacs W B, De Marzo A M, Luo J (2006). A novel role of myosin VI in human prostate cancer. Am J Pathol , 169(5): 1843-1854
doi: 10.2353/ajpath.2006.060316
13 Foth B J, Goedecke M C, Soldati D (2006). New insights into myosin evolution and classification. Proc Natl Acad Sci U S A , 103(10): 3681-3686
doi: 10.1073/pnas.0506307103
14 Geisbrecht E R, Montell D J (2002). Myosin VI is required for E-cadherin-mediated border cell migration. Nat Cell Biol , 4(8): 616-620
15 Hasson T, Gillespie P G, Garcia J A, MacDonald R B, Zhao Y, Yee A G, Mooseker M S, Corey D P (1997). Unconventional myosins in inner-ear sensory epithelia. J Cell Biol , 137(6): 1287-1307
doi: 10.1083/jcb.137.6.1287
16 Hasson T, Mooseker M S (1994). Porcine myosin-VI: characterization of a new mammalian unconventional myosin. J Cell Biol , 127(2): 425-440
doi: 10.1083/jcb.127.2.425
17 Iwaki M, Tanaka H, Iwane A H, Katayama E, Ikebe M, Yanagida T (2006). Cargo-binding makes a wild-type single-headed myosin-VI move processively. Biophys J , 90(10): 3643-3652
doi: 10.1529/biophysj.105.075721
18 Kellerman K A, Miller K G (1992). An unconventional myosin heavy chain gene from Drosophila melanogaster. J Cell Biol , 119(4): 823-834
doi: 10.1083/jcb.119.4.823
19 Lister I, Schmitz S, Walker M, Trinick J, Buss F, Veigel C, Kendrick-Jones J (2004). A monomeric myosin VI with a large working stroke. EMBO J , 23(8): 1729-1738
doi: 10.1038/sj.emboj.7600180
20 Maddugoda M P, Crampton M S, Shewan A M, Yap A S (2007). Myosin VI and vinculin cooperate during the morphogenesis of cadherin cell cell contacts in mammalian epithelial cells. J Cell Biol , 178(3): 529-540
doi: 10.1083/jcb.200612042
21 Mehta A D, Rock R S, Rief M, Spudich J A, Mooseker M S, Cheney R E (1999). Myosin-V is a processive actin-based motor. Nature , 400(6744): 590-593
doi: 10.1038/23072
22 Melchionda S, Ahituv N, Bisceglia L, Sobe T, Glaser F, Rabionet R, Arbones M L, Notarangelo A, Di Iorio E, Carella M, Zelante L, Estivill X, Avraham K B, Gasparini P (2001). MYO6, the human homologue of the gene responsible for deafness in Snell’s waltzer mice, is mutated in autosomal dominant nonsyndromic hearing loss. Am J Hum Genet , 69(3): 635-640
doi: 10.1086/323156
23 Ménétrey J, Bahloul A, Wells A L, Yengo C M, Morris C A, Sweeney H L, Houdusse A (2005). The structure of the myosin VI motor reveals the mechanism of directionality reversal. Nature , 435(7043): 779-785
doi: 10.1038/nature03592
24 Ménétrey J, Llinas P, Mukherjea M, Sweeney H L, Houdusse A (2007). The structural basis for the large powerstroke of myosin VI. Cell , 131(2): 300-308
doi: 10.1016/j.cell.2007.08.027
25 Mermall V, McNally J G, Miller K G (1994). Transport of cytoplasmic particles catalysed by an unconventional myosin in living Drosophila embryos. Nature , 369(6481): 560-562
doi: 10.1038/369560a0
26 Morris S M, Arden S D, Roberts R C, Kendrick-Jones J, Cooper J A, Luzio J P, Buss F (2002). Myosin VI binds to and localises with Dab2, potentially linking receptor-mediated endocytosis and the actin cytoskeleton. Traffic , 3(5): 331-341
doi: 10.1034/j.1600-0854.2002.30503.x
27 Mukherjea M, Llinas P, Kim H, Travaglia M, Safer D, Ménétrey J, Franzini-Armstrong C, Selvin P R, Houdusse A, Sweeney H L (2009). Myosin VI dimerization triggers an unfolding of a three-helix bundle in order to extend its reach. Mol Cell , 35(3): 305-315
doi: 10.1016/j.molcel.2009.07.010
28 Nishikawa S, Homma K, Komori Y, Iwaki M, Wazawa T, Hikikoshi Iwane A, Saito J, Ikebe R, Katayama E, Yanagida T, Ikebe M (2002). Class VI myosin moves processively along actin filaments backward with large steps. Biochem Biophys Res Commun , 290(1): 311-317
doi: 10.1006/bbrc.2001.6142
29 O’Connell C B, Tyska M J, Mooseker M S (2007). Myosin at work: motor adaptations for a variety of cellular functions. Biochim Biophys Acta , 1773(5): 615-630
doi: 10.1016/j.bbamcr.2006.06.012
30 Park H, Ramamurthy B, Travaglia M, Safer D, Chen L Q, Franzini-Armstrong C, Selvin P R, Sweeney H L (2006). Full-length myosin VI dimerizes and moves processively along actin filaments upon monomer clustering. Mol Cell , 21(3): 331-336
doi: 10.1016/j.molcel.2005.12.015
31 Phichith D, Travaglia M, Yang Z, Liu X, Zong A B, Safer D, Sweeney H L (2009). Cargo binding induces dimerization of myosin VI. Proc Natl Acad Sci U S A , 106(41): 17320-17324
doi: 10.1073/pnas.0909748106
32 Rock R S, Ramamurthy B, Dunn A R, Beccafico S, Rami B R, Morris C, Spink B J, Franzini-Armstrong C, Spudich J A, Sweeney H L (2005). A flexible domain is essential for the large step size and processivity of myosin VI. Mol Cell , 17(4): 603-609
doi: 10.1016/j.molcel.2005.01.015
33 Rock R S, Rice S E, Wells A L, Purcell T J, Spudich J A, Sweeney H L (2001). Myosin VI is a processive motor with a large step size. Proc Natl Acad Sci U S A , 98(24): 13655-13659
doi: 10.1073/pnas.191512398
34 Sahlender D A, Roberts R C, Arden S D, Spudich G, Taylor M J, Luzio J P, Kendrick-Jones J, Buss F (2005). Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J Cell Biol , 169(2): 285-295
doi: 10.1083/jcb.200501162
35 Seiler C, Ben-David O, Sidi S, Hendrich O, Rusch A, Burnside B, Avraham K B, Nicolson T (2004). Myosin VI is required for structural integrity of the apical surface of sensory hair cells in zebrafish. Dev Biol , 272(2): 328-338
doi: 10.1016/j.ydbio.2004.05.004
36 Sellers J R (2000). Myosins: a diverse superfamily. Biochim Biophys Acta , 1496(1): 3-22
doi: 10.1016/S0167-4889(00)00005-7
37 Spink B J, Sivaramakrishnan S, Lipfert J, Doniach S, Spudich J A (2008). Long single α-helical tail domains bridge the gap between structure and function of myosin VI. Nat Struct Mol Biol , 15(6): 591-597
doi: 10.1038/nsmb.1429
38 Spudich J A (2001). The myosin swinging cross-bridge model. Nat Rev Mol Cell Biol , 2(5): 387-392
doi: 10.1038/35073086
39 Spudich J A, Sivaramakrishnan S (2010). Myosin VI: an innovative motor that challenged the swinging lever arm hypothesis. Nat Rev Mol Cell Biol , 11(2): 128-137
doi: 10.1038/nrm2833
40 Sweeney H L, Houdusse A (2007). What can myosin VI do in cells? Curr Opin Cell Biol , 19(1): 57-66
doi: 10.1016/j.ceb.2006.12.005
41 Vreugde S, Ferrai C, Miluzio A, Hauben E, Marchisio P C, Crippa M P, Bussi M, Biffo S (2006). Nuclear myosin VI enhances RNA polymerase II-dependent transcription. Mol Cell , 23(5): 749-755
doi: 10.1016/j.molcel.2006.07.005
42 Walker M L, Burgess S A, Sellers J R, Wang F, Hammer J A 3rd, Trinick J, Knight P J (2000). Two-headed binding of a processive myosin to F-actin. Nature , 405(6788): 804-807
doi: 10.1038/35015592
43 Warner C L, Stewart A, Luzio J P, Steel K P, Libby R T, Kendrick-Jones J, Buss F (2003). Loss of myosin VI reduces secretion and the size of the Golgi in fibroblasts from Snell’s waltzer mice. EMBO J , 22(3): 569-579
doi: 10.1093/emboj/cdg055
44 Wells A L, Lin A W, Chen L Q, Safer D, Cain S M, Hasson T, Carragher B O, Milligan R A, Sweeney H L (1999). Myosin VI is an actin-based motor that moves backwards. Nature , 401(6752): 505-508
doi: 10.1038/46835
45 Yoshida H, Cheng W, Hung J, Montell D, Geisbrecht E, Rosen D, Liu J, Naora H (2004). Lessons from border cell migration in the Drosophila ovary: A role for myosin VI in dissemination of human ovarian cancer. Proc Natl Acad Sci U S A , 101(21): 8144-8149
doi: 10.1073/pnas.0400400101
46 Yu C, Feng W, Wei Z, Miyanoiri Y, Wen W, Zhao Y, Zhang M (2009). Myosin VI undergoes cargo-mediated dimerization. Cell , 138(3): 537-548
doi: 10.1016/j.cell.2009.05.030
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed