Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2010, Vol. 5 Issue (6) : 546-555    https://doi.org/10.1007/s11515-010-0720-3
RESEARCH ARTICLE
Comparative analysis of panicle proteomes of two upland rice varieties upon hyper-osmotic stress
Wei HUANG, Ting BI, Weining SUN()
SIBS–UC (Berkeley) Center of Molecular Life Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Graduate School of the Chinese Academy of Sciences, Shanghai 200032, China
 Download: PDF(371 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Drought is a major environmental factor that limits the yield of rice dramatically. Upland rice is now regarded as a promising rice cultivar in water saving agriculture. Two varieties of upland rice Zhonghan 3 and IR29 were used to compare the physiological and proteomic responses to hyper-osmotic stress induced by 15% polyethyleneglycol (PEG) at the reproductive stage. Osmotic stress affected the growth development and caused the loss of production especially the grain yield. IR29 was more tolerant to PEG than Zhonghan 3 as shown by less yield loss under osmotic stress conditions. Comparative proteomic analysis of the panicle suggested that the up-regulation of glycolysis related proteins and defense proteins may contribute to the better osmotic tolerance in IR29.

Keywords upland rice      panicle proteome      grain yield      glycolysis      cytosolic ascorbate peroxidase     
Corresponding Author(s): SUN Weining,Email:wnsun@sibs.ac.cn   
Issue Date: 01 December 2010
 Cite this article:   
Wei HUANG,Ting BI,Weining SUN. Comparative analysis of panicle proteomes of two upland rice varieties upon hyper-osmotic stress[J]. Front Biol, 2010, 5(6): 546-555.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-010-0720-3
https://academic.hep.com.cn/fib/EN/Y2010/V5/I6/546
Fig.1  Growth of the rice was inhibited by polyethyleneglycol (PEG). The photo was taken 10 days after treatment with 15% PEG (A). The plant height (B), biomass (C), fertility (D), grain yield (E) and drop index of grain yield (F) were plotted. The experiment was performed with 6 plants and repeated for 3 times. The values were mean±SD of 18 plants from 3 replicates.
Fig.1  Growth of the rice was inhibited by polyethyleneglycol (PEG). The photo was taken 10 days after treatment with 15% PEG (A). The plant height (B), biomass (C), fertility (D), grain yield (E) and drop index of grain yield (F) were plotted. The experiment was performed with 6 plants and repeated for 3 times. The values were mean±SD of 18 plants from 3 replicates.
Fig.2  (A) and (B) are panicle proteins from Zhonghan 3 at normal growth conditions and treated with 15% PEG 6000 for 3 days, respectively. (C) and (D) are panicle proteins from IR29 at normal growth conditions and treated with 15% PEG 6000 for 3 days, respectively. The osmotic stress responsive proteins are numbered. IEF: isoelectric focusing.
Fig.2  (A) and (B) are panicle proteins from Zhonghan 3 at normal growth conditions and treated with 15% PEG 6000 for 3 days, respectively. (C) and (D) are panicle proteins from IR29 at normal growth conditions and treated with 15% PEG 6000 for 3 days, respectively. The osmotic stress responsive proteins are numbered. IEF: isoelectric focusing.
Fig.3  A–F corresponds to 6 groups. A: Spots up-regulated only in Zhonghan 3; B: spots down-regulated only in Zhonghan 3; C: spots up-regulated only in IR29; D: spots down-regulated only in IR29; E: spots up-regulated in both varieties; F: spots down-regulated in both varieties.
Fig.3  A–F corresponds to 6 groups. A: Spots up-regulated only in Zhonghan 3; B: spots down-regulated only in Zhonghan 3; C: spots up-regulated only in IR29; D: spots down-regulated only in IR29; E: spots up-regulated in both varieties; F: spots down-regulated in both varieties.
spot no.accession no.protein namescorepeptidetheoretical Mr/pIobserved Mr/pIgroupaexpression change in ZH3/IR29b
ENERGY
2NP_00105886323 kDa polypeptide of photosystem II284EFPGQVLRQYYSVTVLTRTNTEFIAYSGEGFK26.92/8.6621.00/5.56A13/–
7NP_001046020phosphoglycerate kinase, cytosolic427YSLKPLVPRLAAALPEGGVLLLENVRLAAVADLYVNDAFGTAHR42.08/5.6444.80/5.87B3.3/5
20NP_001042016triosephosphate isomerase99WLAANVSAEVAESTRVATPDQAQEVHDGLRK27.59/6.6028.50/5.20C–/5.3
21CAE02009glyceraldehyde-3-phosphate dehydrogenase93GILGYVEEDLVSTDFQGDNR42.03/6.4131.00/5.90C–/2.6
23NP_001046020phosphoglycerate kinase, cytosolic112LAAALPEGGVLLLENVR42.08/5.6442.02/5.42C–/4.1
31NP_039391ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit286DTDILAAFRLTYYTPEYETKTFQGPPHGIQVER52.85/6.2222.03/5.50E6.1/9.9
34AAA82047glyceraldehyde-3-phosphate dehydrogenase473VPTVDVSVVDLTVRLVAWYDNEWGYSNRGIIGYVEEDLVSTDFVGDSR36.47/6.6132.50/6.32E2.4/3.1
METABOLISM
4NP_001065060glycine decarboxylase complex H-protein; hypothetical protein228YSSSHEWVKVKPSSPSELDALLDPAKKLSETPGLINSSPYEDGWMIK17.36/4.9217.51/4.61A13/–
5NP_001053928aminomethyl transferase, mitochondrial precursor249WHVHDERDGTGTLTVFTNDRTALYDFHVAHGGKTGYTGEDGFEISVPSENAVDLAK43.94/8.5334.34/6.41A2.5/–
16NP_001052013arginase224VIDASLTLIRVLTDVGDVPIQEIRDVLNILHNLQGDVVAGDVVEFNPQR36.92/5.9041.08/5.63B0.36/–
29NP_001051328UDP-glucose 6-dehydrogenase402NLFFSTDVEKAADLTYWESAARIYDNMQKPAFVFDGRAQISIYDPQVTEDQIQR52.87/5.7960.00/6.10D–/0.24
30BAD22334putative acetyl-CoA C-acyltransferase92NSGAFAWEIVPIEVPVGR41.00/6.1543.00/6.49D–/0.5
33NP_001049723UDP-glucuronic acid decarboxylase378QHGIEIRIFNTYGPRVVSNFIAQAVRGEPLTVQKPGTQTR39.28/7.1629.00/6.20E3/7.2
37Q6K669leucine aminopeptidase 2, chloroplastic478DVEFSEWKGLTFDSGGYNIKYANDLSSGVIFGKGDILAIAVTENDLVKQVDLIGFGSGPEVDQK61.78/8.2960.00/5.90F0.19/0.29
DEFENSE
11NP_001060741APX2593QDKPEPPPEGRLPDATQGSDHLRLAWHSAGTFDVSSR27.10/5.2128.0/5.4B0.24/–
17NP_001048274heat shock 70 kDa protein667HLNITLTREVDEVLLVGGMTRAVITVPAYFNDAQRSQVFSTAADNQTQVGIR72.85/5.4973.00/5.51B0.42/–
19BAB71741glyoxalase I111GNAYAQVAIGTEDVYK32.53/5.5130.00/5.37C–/7.8
22XP_470658putative ascorbate peroxidase (APX1)417SGFEGPWTRLAWHSAGTFDVSSKALLSDPAFRPLVEKTPAELSHAANAGLDIAVR27.14/5.4226.00/5.15C–/4.5
24NP_001049769APX1192TPAELSHAANAGLDIAVR27.14/5.4227.00/5.30C–/3.6
25NP_001049769APX1410EDKPAPPPEGRAFFEDYKEAHLKTPAELSHAANAGLDIAVR27.14/5.4226.53/5.30C–/3.3
35NP_001060741APX2298LAWHSAGTFDVSSRYAADEDAFFADYAEAHLK27.10/5.2127.02/4.80E2.6/2.8
PROTEIN DESTINATION
36BAA88950importin alpha 1b410SPPIEEVINTGVVPRGKPQPNFEQVKPALSALQR58.50/5.1862.00/5.40F0.14/0.30
Tab.1  
1 Abbasi F M, Komatsu S (2004). A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics , 4(7): 2072-2081
doi: 10.1002/pmic.200300741
2 Agrawal G K, Rakwal R (2006). Rice proteomics: a cornerstone for cereal food crop proteomes. Mass Spectrom Rev , 25(1): 1-53
doi: 10.1002/mas.20056
3 Bernier J, Atlin G N, Serraj R, Kumar A, Spaner D (2008). Breeding upland rice for drought resistance. J Sci Food Agric , 88(6): 927-939
doi: 10.1002/jsfa.3153
4 Bernier J, Kumar A, Ramaiah V, Spaner D, Atlin G (2007). A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci , 47(2): 507-516
doi: 10.2135/cropsci2006.07.0495
5 Del Buono D, Prinsi B, Espen L, Scarponi L (2009). Triosephosphate isomerases in Italian ryegrass (Lolium multiflorum ): characterization and susceptibility to herbicides. J Agric Food Chem , 57(17): 7924-7930
doi: 10.1021/jf901681q
6 Douce R, Bourguignon J, Neuburger M, Rébeillé F (2001). The glycine decarboxylase system: a fascinating complex. Trends Plant Sci , 6(4): 167-176
doi: 10.1016/S1360-1385(01)01892-1
7 Jiang C J, Shoji K, Matsuki R, Baba A, Inagaki N, Ban H, Iwasaki T, Imamoto N, Yoneda Y, Deng X W, Yamamoto N (2001). Molecular cloning of a novel importin alpha homologue from rice, by which constitutive photomorphogenic 1 (COP1) nuclear localization signal (NLS)-protein is preferentially nuclear imported. J Biol Chem , 276(12): 9322-9329
doi: 10.1074/jbc.M006430200
8 Johansson H, Sterky F, Amini B, Lundeberg J, Kleczkowski L A (2002). Molecular cloning and characterization of a cDNA encoding poplar UDP-glucose dehydrogenase, a key gene of hemicellulose/pectin formation. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression , 1576: 53-58
9 Jubault M, Hamon C, Gravot A, Lariagon C, Delourme R, Bouchereau A, Manzanares-Dauleux M J (2008). Differential regulation of root arginine catabolism and polyamine metabolism in clubroot-susceptible and partially resistant Arabidopsis genotypes. Plant Physiol , 146(4): 2008-2019
doi: 10.1104/pp.108.117432
10 Király Z (1998). Plant infection-biotic stress. Ann N Y Acad Sci , 851(STRESS OF LIFE: FROM MOLECULES TO MAN): 233-240
11 Liu G L, Mei H W, Yu X Q, Zou G H, Liu H Y, Li M S, Chen L, Wu J H, Luo L J (2007). Panicle water potential, a physiological trait to identify drought tolerance in rice. J Integr Plant Biol , 49(10): 1464-1469
doi: 10.1111/j.1672-9072.2007.00551.x
12 Liu H Y, Mei H W, Yu X Q, Zou G H, Liu G L, Luo L J (2006). Towards improving the drought tolerance of rice in China. Plant Genetic Resources , 4(1): 47-53
doi: 10.1079/PGR2006111
13 Lu Z, Liu D, Liu S (2007). Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep , 26(10): 1909-1917
doi: 10.1007/s00299-007-0395-7
14 Lu Z, Neumann P M (1999). Water stress inhibits hydraulic conductance and leaf growth in rice seedlings but not the transport of water via mercury-sensitive water channels in the root. Plant Physiol , 120(1): 143-152
doi: 10.1104/pp.120.1.143
15 Peng Z Y, Wang M C, Li F, Lv H J, Li C L, Xia G M (2009). A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol Cell Proteomics , 8(12): 2676-2686
doi: 10.1074/mcp.M900052-MCP200
16 Pillai M A, Lihuang Z, Akiyama T (2002). Molecular cloning, characterization, expression and chromosomal location of OsGAPDH, a submergence responsive gene in rice (Oryza sativa L.). Theor Appl Genet , 105(1): 34-42
doi: 10.1007/s00122-001-0833-9
17 Rabello A R, Guimar?es C M, Rangel P H, da Silva F R, Seixas D, de Souza E, Brasileiro A C, Spehar C R, Ferreira M E, Mehta A (2008). Identification of drought-responsive genes in roots of upland rice (Oryza sativa L). BMC Genomics , 9(1): 485
doi: 10.1186/1471-2164-9-485
18 Riccardi F, Gazeau P, Zivy Mde Vienne D, Zivy M (1998). Protein changes in response to progressive water deficit in maize. Quantitative variation and polypeptide identification. Plant Physiol , 117(4): 1253-1263
doi: 10.1104/pp.117.4.1253
19 Salekdeh G H, Siopongco J, Wade L J, Ghareyazie B, Bennett J (2002). A proteomic approach to analyzing drought- and salt-responsiveness in rice. Field Crops Res , 76(2-3): 199-219
doi: 10.1016/S0378-4290(02)00040-0
20 Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002). Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot , 53(372): 1305-1319
doi: 10.1093/jexbot/53.372.1305
21 Singla-Pareek S L, Yadav S K, Pareek A, Reddy M K, Sopory S K (2006). Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol , 140(2): 613-623
doi: 10.1104/pp.105.073734
22 Smirnoff N (1998). Plant resistance to environmental stress. Curr Opin Biotechnol , 9(2): 214-219
doi: 10.1016/S0958-1669(98)80118-3
23 Sun Z X, Cheng S H, Si H MZongxiu S, Shihua C, Huamin S (1993). Determination of critical temperatures and panicle development stage for fertility change of thermo-sensitive genic male sterile rice line '5460S'. Euphytica , 67(1-2): 27-33
24 Suzuki K, Watanabe K, Masumura T, Kitamura S (2004). Characterization of soluble and putative membrane-bound UDP-glucuronic acid decarboxylase (OsUXS) isoforms in rice. Arch Biochem Biophys , 431(2): 169-177
doi: 10.1016/j.abb.2004.08.029
25 Suzuki M, Hashioka A, Munyra T, Ashihara H (2005). Salt stress and glycolytic regulation in suspension-cultured cells of the mangrove tree, Bruguiera sexangula. Physiol Plant ,123(3): 246-253
doi: 10.1111/j.1399-3054.2005.00456.x
26 Taylor N L, Day D A, Millar A H (2002). Environmental stress causes oxidative damage to plant mitochondria leading to inhibition of glycine decarboxylase. J Biol Chem , 277(45): 42663-42668
doi: 10.1074/jbc.M204761200
27 Thornalley P J (1990). The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J , 269(1): 1-11
28 Vauclare P, Diallo N, Bourguignon J, Macherel D, Douce R (1996). Regulation of the expression of the glycine decarboxylase complex during pea leaf development. Plant Physiol , 112(4): 1523-1530
29 Venuprasad R, Lafitte H R, Atlin G N (2007). Response to direct selection for grain yield under drought stress in rice. Crop Sci , 47(1): 285-293
doi: 10.2135/cropsci2006.03.0181
30 Xiao X, Yang Y, Yang Y, Lin J, Tang D, Liu X (2009). Comparative analysis of young panicle proteome in thermo-sensitive genic male-sterile rice Zhu-1S under sterile and fertile conditions. Biotechnol Lett , 31(1): 157-161
doi: 10.1007/s10529-008-9838-7
31 Xie J H, Zapata-Arias F J, Shen M, Afza R (2000). Salinity tolerant performance and genetic diversity of four rice varieties. Euphytica , 116(2): 105-110
doi: 10.1023/A:1004041900101
32 Yadav S K, Singla-Pareek S L, Ray M, Reddy M K, Sopory S K (2005a). Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem Biophys Res Commun , 337(1): 61-67
doi: 10.1016/j.bbrc.2005.08.263
33 Yadav S K, Singla-Pareek S L, Reddy M K, Sopory S K (2005b). Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Lett , 579(27): 6265-6271
doi: 10.1016/j.febslet.2005.10.006
34 Yan S P, Tang Z C, Su W A, Sun W N (2005). Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics , 5(1): 235-244
doi: 10.1002/pmic.200400853
35 Yan S P, Zhang Q Y, Tang Z C, Su W A, Sun W N (2006). Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics , 5(3): 484-496
doi: 10.1074/mcp.M500251-MCP200
36 Yang S L, Lan S S, Gong M (2009). Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings. J Plant Physiol , 166(15): 1694-1699
doi: 10.1016/j.jplph.2009.04.006
37 Yue B, Xue W Y, Xiong L Z, Yu X Q, Luo L J, Cui K H, Jin D M, Xing Y Z, Zhang Q F (2006). Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics , 172(2): 1213-1228
doi: 10.1534/genetics.105.045062
38 Zang X, Komatsu S (2007). A proteomics approach for identifying osmotic-stress-related proteins in rice. Phytochemistry , 68(4): 426-437
doi: 10.1016/j.phytochem.2006.11.005
39 Zhang Q S, Shirley N, Lahnstein J, Fincher G B (2005). Characterization and expression patterns of UDP-D-glucuronate decarboxylase genes in barley. Plant Physiol , 138(1): 131-141
doi: 10.1104/pp.104.057869
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed