Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2011, Vol. 6 Issue (4) : 300-311    https://doi.org/10.1007/s11515-011-1120-z
REVIEW
Developmental genes during placentation: insights from mouse mutants
Jinhua LU1,2, Qiang WANG1,2, Bingyan WANG1, Fengchao WANG1, Haibin WANG1()
1. State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; 2. Graduate University of the Chinese Academy of Sciences, Beijing 100039, China
 Download: PDF(333 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Placenta, a temporary organ first formed during the development of a new life is essential for the survival and growth of the fetus in eutherian mammals. It serves as an interface for the exchange of nutrients, gases and wastes between the maternal and fetal compartments. During the past decades, studies employing gene-engineered mouse mutants have revealed a wide range of signaling molecules governing the trophoblast development and function during placentation under various pathophysiological conditions. Here, we summarize the recent progress with particular respect to the involvement of developmental genes during placentation.

Keywords developmental gene      placentation      mouse mutant     
Corresponding Author(s): WANG Haibin,Email:hbwang@ioz.ac.cn   
Issue Date: 01 August 2011
 Cite this article:   
Jinhua LU,Qiang WANG,Bingyan WANG, et al. Developmental genes during placentation: insights from mouse mutants[J]. Front Biol, 2011, 6(4): 300-311.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-011-1120-z
https://academic.hep.com.cn/fib/EN/Y2011/V6/I4/300
Fig.1  A diagram showing the development of mouse placenta. The development of placenta from embryonic day (E) 4.0-E12.5, showing the origin of the trophoblast, primitive endoderm, ICM and extra-embryonic mesoderm lineages and derivatives.
GeneExpression in placentasPlacenta phenotype of mutant miceReference
Fgfr2Trophectoderm and its derived extraembryonic ectodermFailure of chorioallantoic fusion; Defect of fetal vascular invasion into chorionArman et al., 1998; Xu et al., 1998
PLCδ1/PLCδ3Placenta trophoblastReduced vascularization, proliferation and aberrant apoptosis in labyrinth areaNakamura et al., 2005
Pkbα (Akt1)Trophoblast giant cell, spongiotrophoblast, labyrinth, the endothelium of fetal capillariesSmall layer of labyrinth and spongiotrophoblast; marked reduction of glycogen-containing cells in spongiotrophoblast; disordered fetal vasculature with fewer vesselsYang et al., 2003
Gab1Labyrinth trophoblast cells and spongiotrophoblast CellsSeverely reduced number of trophoblast cells in the labyrinth regionItoh et al., 2000
Grb2UnknownDefects in chorioallantoic fusion, smaller labyrinth structuresSaxton et al., 2001
Sos1Trophoblast giant cell, spongiotrophoblast, labyrinth layerDisorganized spongiotrophoblastand labyrinth trophoblast layers, incomplete embryonic vasculature in labyrinthQian et al., 2000
B-RafUnknownDiscontinuous spongiotrophoblast and giant trophoblast layers, underdeveloped labyrinth layer (hypocellular areas filled with stroma in labyrinth)Galabova-Kovacs et al., 2006
C-raf-1UnknownReduced size of spongiotrophoblast and the labyrinth layer, poorly vascularized and abundant mesenchymal cells-contained labyrinth layerMikula et al., 2001
Mekk3 (Map3k3)UnknownReduced embryonic blood vessels in the labyrinth layerYang et al., 2000
Mekk4 (Map3k4)Labyrinth, spongiotrophoblast, and giant cell layersA point mutation exhibited dysregulated placental development with increased trophoblast invasion.Abell et al., 2009
Mek1 (Map2k1)Labyrinth layerLess defined spongiotrophoblast layer, more compact labyrinthine region with fewer blood vesselsGiroux et al., 1999; Bissonauth et al., 2006; Nadeau et al., 2009
Erk2 (Mapk1)Trophoectoderm and its derivatives including ectoplacental cone, extraembryonic ectoderm and giant cellsFailure to form the ectoplacental cone and extraembryonic ectoderm in ERK2 (Ex3) mutants; Thinner labyrinthine layers, few fetal blood vessels penetrating into the labyrinthine layer in Erk2 (Ex2) mutants.Hatano et al., 2003; Saba-El-Leil et al., 2003
Erk5 (Mapk7)Labyrinth layerThinner labyrinth layer, less intermixing between embryonic and maternal blood vessels in the labyrinthine region, more apoptosis.Regan et al., 2002; Sohn et al., 2002; Yan et al., 2003
FRS2αExtraembryonic ectodermTrophoblast stem cells failed to maintenance of self-renewing.Melillo et al., 2001; Gotoh et al., 2005
p38α (Mapk14)Diploid trophoblast of the placenta, including the labyrinth, yolk sacThinner labyrinth layer, greatly reduced spongiotrophoblast,decreased vascular network within the labyrinth layerAdams et al., 2000; Mudgett et al., 2000
Shp2 (Ptpn11)Spongiotrophoblast and labyrinth trophoblast (unpublished data)Diminished numbers of trophoblast giant cells, and failure to yield trophoblast stem (TS) cell lines.Yang et al., 2006
Tab.1  The placenta phenotype of FGF family mutant mice
Fig.2  The regulation of developmental genes during trophoblast development and cell lineage specification.
GeneExpression in placentasPlacenta phenotype of mutant miceReference
Wnt2Allantois, fetal blood vessels in the labyrinth (unpublished data)Defects of vascularization in placentaMonkley et al., 1996
Wnt7bChorionic trophoblastDefects in chorioallantoic attachment and cell organization in chorionic plateParr et al., 2001
Fzd5Labyrinth trophoblast, yolk sacSmall labyrinth, failure of fetal vascular invasion into the chorion, defects in yolk sac angiogenesisIshikawa et al., 2001
Tcf1/Lef1Placenta trophoblast (unpublished data)Unknown defect in placentaGalceran et al., 1999
Tab.2  The placenta phenotype of Wnt family mutant mice.
GeneExpression in placentasPlacenta phenotype of mutant miceReference
Jagged 1UnknownDied at E10.0 due to the vascular defects.Large blood vessels were not present in the yolk sac.Xue et al., 1999
Delta-like 4Trophoblast giant cells, umbilical and vitelline arteriesAt E10.5 no viable null embryos were found. Yolk sac defects. Haploid insufficiency leads embryonic lethality. Vascular remodeling defects in the yolk sacs and the major central placenta arteries undergo degeneration and regression.Duarte et al., 2004; Gale et al., 2004
Notch 1Vascular endothelial cells in labyrinth, maternal blood sinus (unpublished data)Single knockout null embryos died before E11.5, but had no placenta defects. Conditional knockout (with tie2-cre) had yolk sac vascular remodeling failure and placenta blood vessels labyrinth invasion defects.Swiatek et al., 1994; Limbourg et al., 2005
Notch 2Allantois, spongiotrophoblast, giant cells, endovascular trophoblasts and mesenchymal derivatives in labyrinthDelayed entry of maternal blood into the mutant placenta and poor blood sinus formation at later stages.Nakayama et al., 1997; Hamada et al., 1999; Hamada et al., 2007
Notch 4Vascular endothelial cells in labyrinthSingle knockout exhibited no obvious mutant phenotype. Notch 1 and Notch 4 double knockout had pale yolk sacs, lacking obvious blood vessels and failture of mutant endothelial cells to invade the labyrinth.Krebs et al., 2000
RBP-J kappaMesodermal derivatives in labyrinthDied before E10.0 due to the deficiency of chorioallantoic fusion.Oka et al., 1995; Krebs et al., 2004
Hey1 and Hey2Blood vessels of the allantois and chorionic plateComplete lack of embryonic blood vessels in the placental labyrinth.Fischer et al., 2004
Mash2Ectoplacental cone, chorion and their derivatives in the placentaDied at E10.0 because of the placental defects. No spongiotrophoblast cells and their precursors, more trophoblast giant cells.Guillemot et al., 1994; Tanaka et al., 1997
Tab.3  The placenta phenotype of Notch family mutant mice
GeneExpression in placentasPlacenta phenotype of mutant miceReference
TGF-β1Extraembryonic blood islands of the yolk sac, mesodermal cells of the allantoisAbout 50% homozygous and 25% heterozygous embryos died around E10.5. The yolk sac vasculature defects.Akhurst et al., 1990; Dickson et al., 1995
NodalSpongiotrophoblastsInsertional null mutant loss of the diploid spongiotrophoblasts and labyrinth, and had more giant cells. Hypomorphic mutation results in an expansion of the giant cell and spongiotrophoblast layers, and a decrease in labyrinthine development.Iannaccone et al., 1992; Ma et al., 2001
Bmp2Extraembryonic mesoderm, allantois.Died at midgestation. Allantois had delayed development.Winnier et al., 1995
Bmp4AllantoisDied between E6.5-E9.5. Yolk sac defects, reduced blood islands and no allantois.Zhang and Bradley, 1996; Lawson et al., 1999
Bmp5and 7Allantois, endoderm of the visceral yolk sac.Died at E10.5. Allantois developed abnormal. Failure of chorioallantoic fusion.Solloway and Robertson, 1999
Bmp8bExtraembryonic ectoderm.Short allantois, no allantois in some more severe mutant.Lawler et al., 1994; Oshima et al., 1996
TGF-β receptorType IIExtraembryonic blood islands of the yolk sac, mesodermal cells of the allantoisHomozygous embryos died around E10.5. Yolk sac hematopoiesis and vasculogenesis.Ying et al., 2000
Alk1endothelial cells of fetal vesselsDilated and fused chorioallantoic vessels.Lechleider et al., 2001; Tremblay et al., 2001
Smad 1Yolk sac, allantoisMutant embryos died around E9.5 due to the defects of allantois formation. The abnormal allantois failed to fuse to the chorion.Hong et al., 2007
Smad 5Allantois, yolk sacHomozygous mutant died between E9.5 and E11.5. Allantois lacked a well-organized vasculature. Allantois could fuse to the chorion, but was not well-elongated.Chang et al., 1999
P300UnknownNull embryos died between E9.0 and E11.5. The yolk sac was poorly vascularized.Yao et al., 1998
CBPUnknownHomozygous embryos died between E9.5 and E10.5. Decreased in erythroid cells and colony-forming cells in the yolk sac.Oike et al., 1999
Tab.4  The placenta phenotype of TGF beta family mutant mice
1 Abell A N, Granger D A, Johnson N L, Vincent-Jordan N, Dibble C F, Johnson G L (2009). Trophoblast stem cell maintenance by fibroblast growth factor 4 requires MEKK4 activation of Jun N-terminal kinase. Mol Cell Biol , 29(10): 2748–2761
doi: 10.1128/MCB.01391-08 pmid:19289495
2 Adams R H, Porras A, Alonso G, Jones M, Vintersten K, Panelli S, Valladares A, Perez L, Klein R, Nebreda A R (2000). Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol Cell , 6(1): 109–116
doi: 10.1016/S1097-2765(00)00012-5 pmid:10949032
3 Adamson S L, Lu Y, Whiteley K J, Holmyard D, Hemberger M, Pfarrer C, Cross J C (2002). Interactions between trophoblast cells and the maternal and fetal circulation in the mouse placenta. Dev Biol , 250(2): 358–373
pmid:12376109
4 Akhurst R J, Lehnert S A, Faissner A, Duffie E (1990). TGF beta in murine morphogenetic processes: the early embryo and cardiogenesis. Development , 108(4): 645–656
pmid:1696875
5 Arman E, Haffner-Krausz R, Chen Y, Heath J K, Lonai P (1998). Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc Natl Acad Sci U S A , 95(9): 5082–5087
doi: 10.1073/pnas.95.9.5082 pmid:9560232
6 Armelin H A (1973). Pituitary extracts and steroid hormones in the control of 3T3 cell growth. Proc Natl Acad Sci U S A , 70(9): 2702–2706
doi: 10.1073/pnas.70.9.2702 pmid:4354860
7 Bafico A, Liu G, Yaniv A, Gazit A, Aaronson S A (2001). Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat Cell Biol , 3(7): 683–686
doi: 10.1038/35083081 pmid:11433302
8 Baird A (1994). Fibroblast growth factors: activities and significance of non-neurotrophin neurotrophic growth factors. Curr Opin Neurobiol , 4(1): 78–86
doi: 10.1016/0959-4388(94)90035-3 pmid:8173328
9 Basilico C, Moscatelli D (1992). The FGF family of growth factors and oncogenes. Adv Cancer Res , 59: 115–165
doi: 10.1016/S0065-230X(08)60305-X pmid:1381547
10 Beenken A, Mohammadi M (2009). The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov , 8(3): 235–253
doi: 10.1038/nrd2792 pmid:19247306
11 Bhanot P, Brink M, Samos C H, Hsieh J C, Wang Y, Macke J P, Andrew D, Nathans J, Nusse R (1996). A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature , 382(6588): 225–230
doi: 10.1038/382225a0 pmid:8717036
12 Bissonauth V, Roy S, Gravel M, Guillemette S, Charron J (2006). Requirement for Map2k1 (Mek1) in extra-embryonic ectoderm during placentogenesis. Development , 133(17): 3429–3440
doi: 10.1242/dev.02526 pmid:16887817
13 B?ttcher R T, Niehrs C (2005). Fibroblast growth factor signaling during early vertebrate development. Endocr Rev , 26(1): 63–77
doi: 10.1210/er.2003-0040 pmid:15689573
14 Bray S J (2006). Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol , 7(9): 678–689
doi: 10.1038/nrm2009 pmid:16921404
15 Chang H, Brown C W, Matzuk M M (2002). Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev , 23(6): 787–823
doi: 10.1210/er.2002-0003 pmid:12466190
16 Chang H, Huylebroeck D, Verschueren K, Guo Q, Matzuk M M, Zwijsen A (1999). Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. Development , 126(8): 1631–1642
pmid:10079226
17 Coan P M, Ferguson-Smith A C, Burton G J (2005). Ultrastructural changes in the interhaemal membrane and junctional zone of the murine chorioallantoic placenta across gestation. J Anat , 207(6): 783–796
doi: 10.1111/j.1469-7580.2005.00488.x pmid:16367805
18 Copp A J (1979). Interaction between inner cell mass and trophectoderm of the mouse blastocyst. II. The fate of the polar trophectoderm. J Embryol Exp Morphol , 51: 109–120
pmid:479740
19 Cross J C, Simmons D G, Watson E D (2003). Chorioallantoic morphogenesis and formation of the placental villous tree. Ann N Y Acad Sci , 995(1): 84–93
doi: 10.1111/j.1749-6632.2003.tb03212.x pmid:12814941
20 Cross J C, Werb Z, Fisher S J (1994). Implantation and the placenta: key pieces of the development puzzle. Science , 266(5190): 1508–1518
doi: 7985020" target="_blank">10.1126/science. pmid:7985020 pmid:7985020
21 Dey S K (2005). Reproductive biology: fatty link to fertility. Nature , 435(7038): 34–35
doi: 10.1038/435034a pmid:15875005
22 Dickson M C, Martin J S, Cousins F M, Kulkarni A B, Karlsson S, Akhurst R J (1995). Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development , 121(6): 1845–1854
pmid:7600998
23 Downs K M (2006). In vitro methods for studying vascularization of the murine allantois and allantoic union with the chorion. Methods Mol Med , 121: 241–272
pmid:16251748
24 Duarte A, Hirashima M, Benedito R, Trindade A, Diniz P, Bekman E, Costa L, Henrique D, Rossant J (2004). Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev , 18(20): 2474–2478
doi: 10.1101/gad.1239004 pmid:15466159
25 Ehebauer M, Hayward P, Arias A M (2006). Notch, a universal arbiter of cell fate decisions. Science , 314(5804): 1414–1415
doi: 10.1126/science.1134042 pmid:17138893
26 Eriksson A E, Cousens L S, Weaver L H, Matthews B W (1991). Three-dimensional structure of human basic fibroblast growth factor. Proc Natl Acad Sci U S A , 88(8): 3441–3445
doi: 10.1073/pnas.88.8.3441 pmid:1707542
27 Fischer A, Schumacher N, Maier M, Sendtner M, Gessler M (2004). The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev , 18(8): 901–911
doi: 10.1101/gad.291004 pmid:15107403
28 Fuerer C, Nusse R, Ten Berge D (2008). Wnt signalling in development and disease. Max Delbrück Center for Molecular Medicine meeting on Wnt signaling in Development and Disease. EMBO Rep , 9(2): 134–138
doi: 10.1038/sj.embor.7401159 pmid:18188179
29 Galabova-Kovacs G, Matzen D, Piazzolla D, Meissl K, Plyushch T, Chen A P, Silva A, Baccarini M (2006). Essential role of B-Raf in ERK activation during extraembryonic development. Proc Natl Acad Sci U S A , 103(5): 1325–1330
doi: 10.1073/pnas.0507399103 pmid:16432225
30 Galceran J, Fari?as I, Depew M J, Clevers H, Grosschedl R (1999). Wnt3a-/-—like phenotype and limb deficiency in Lef1-/-Tcf1-/- mice. Genes Dev , 13(6): 709–717
doi: 10.1101/gad.13.6.709 pmid:10090727
31 Gale N W, Dominguez M G, Noguera I, Pan L, Hughes V, Valenzuela D M, Murphy A J, Adams N C, Lin H C, Holash J, Thurston G, Yancopoulos G D (2004). Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci U S A , 101(45): 15949–15954
doi: 10.1073/pnas.0407290101 pmid:15520367
32 Gasperowicz M, Otto F (2008). The notch signalling pathway in the development of the mouse placenta. Placenta , 29(8): 651–659
doi: 10.1016/j.placenta.2008.06.004 pmid:18603295
33 Giroux S, Tremblay M, Bernard D, Cardin-Girard J F, Aubry S, Larouche L, Rousseau S, Huot J, Landry J, Jeannotte L, Charron J (1999). Embryonic death of Mek1-deficient mice reveals a role for this kinase in angiogenesis in the labyrinthine region of the placenta. Curr Biol , 9(7): 369–372
doi: 10.1016/S0960-9822(99)80164-X pmid:10209122
34 Glinka A, Wu W, Delius H, Monaghan A P, Blumenstock C, Niehrs C (1998). Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature , 391(6665): 357–362
doi: 10.1038/34848 pmid:9450748
35 Gordon M D, Nusse R (2006). Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem , 281(32): 22429–22433
doi: 10.1074/jbc.R600015200 pmid:16793760
36 Gospodarowicz D (1974). Localisation of a fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth. Nature , 249(453): 123–127
doi: 10.1038/249123a0 pmid:4364816
37 Gotoh N, Manova K, Tanaka S, Murohashi M, Hadari Y, Lee A, Hamada Y, Hiroe T, Ito M, Kurihara T, Nakazato H, Shibuya M, Lax I, Lacy E, Schlessinger J (2005). The docking protein FRS2alpha is an essential component of multiple fibroblast growth factor responses during early mouse development. Mol Cell Biol , 25(10): 4105–4116
doi: 10.1128/MCB.25.10.4105-4116.2005 pmid:15870281
38 Gridley T (2007). Notch signaling in vascular development and physiology. Development , 134(15): 2709–2718
doi: 10.1242/dev.004184 pmid:17611219
39 Grigoryan T, Wend P, Klaus A, Birchmeier W (2008). Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev , 22(17): 2308–2341
doi: 10.1101/gad.1686208 pmid:18765787
40 Guillemot F, Nagy A, Auerbach A, Rossant J, Joyner A L (1994). Essential role of Mash-2 in extraembryonic development. Nature , 371(6495): 333–336
doi: 10.1038/371333a0 pmid:8090202
41 Gurtner G C, Davis V, Li H, McCoy M J, Sharpe A, Cybulsky M I (1995). Targeted disruption of the murine VCAM1 gene: essential role of VCAM-1 in chorioallantoic fusion and placentation. Genes Dev , 9(1): 1–14
doi: 10.1101/gad.9.1.1 pmid:7530222
42 Haffner-Krausz R, Gorivodsky M, Chen Y, Lonai P (1999). Expression of Fgfr2 in the early mouse embryo indicates its involvement in preimplantation development. Mech Dev , 85(1-2): 167–172
doi: 10.1016/S0925-4773(99)00082-9 pmid:10415357
43 Hamada Y, Hiroe T, Suzuki Y, Oda M, Tsujimoto Y, Coleman J R, Tanaka S (2007). Notch2 is required for formation of the placental circulatory system, but not for cell-type specification in the developing mouse placenta. Differentiation , 75(3): 268–278
doi: 10.1111/j.1432-0436.2006.00137.x pmid:17359302
44 Hamada Y, Kadokawa Y, Okabe M, Ikawa M, Coleman J R, Tsujimoto Y (1999). Mutation in ankyrin repeats of the mouse Notch2 gene induces early embryonic lethality. Development , 126(15): 3415–3424
pmid:10393120
45 Hatano N, Mori Y, Oh-hora M, Kosugi A, Fujikawa T, Nakai N, Niwa H, Miyazaki J, Hamaoka T, Ogata M (2003). Essential role for ERK2 mitogen-activated protein kinase in placental development. Genes Cells , 8(11): 847–856
doi: 10.1046/j.1365-2443.2003.00680.x pmid:14622137
46 He X (2003). A Wnt-Wnt situation. Dev Cell , 4(6): 791–797
doi: 10.1016/S1534-5807(03)00165-5 pmid:12791265
47 Hong K H, Seki T, Oh S P (2007). Activin receptor-like kinase 1 is essential for placental vascular development in mice. Lab Invest , 87(7): 670–679
doi: 10.1038/labinvest.3700560 pmid:17530030
48 Huang H, He X (2008). Wnt/beta-catenin signaling: new (and old) players and new insights. Curr Opin Cell Biol , 20(2): 119–125
doi: 10.1016/j.ceb.2008.01.009 pmid:18339531
49 Huang H C, Klein P S (2004). Interactions between BMP and Wnt signaling pathways in mammalian cancers. Cancer Biol Ther , 3(7): 676–678
doi: 10.4161/cbt.3.7.1026 pmid:15280667
50 Hunter T (2000). Signaling—2000 and beyond. Cell , 100(1): 113–127
doi: 10.1016/S0092-8674(00)81688-8 pmid:10647936
51 Iannaccone P M, Zhou X, Khokha M, Boucher D, Kuehn M R (1992). Insertional mutation of a gene involved in growth regulation of the early mouse embryo. Dev Dyn , 194(3): 198–208
pmid:1467556
52 Inman K E, Downs K M (2007). The murine allantois: emerging paradigms in development of the mammalian umbilical cord and its relation to the fetus. Genesis , 45(5): 237–258
doi: 10.1002/dvg.20281 pmid:17440924
53 Ishikawa T, Tamai Y, Zorn A M, Yoshida H, Seldin M F, Nishikawa S, Taketo M M (2001). Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placental angiogenesis. Development , 128(1): 25–33
pmid:11092808
54 Itoh M, Yoshida Y, Nishida K, Narimatsu M, Hibi M, Hirano T (2000). Role of Gab1 in heart, placenta, and skin development and growth factor- and cytokine-induced extracellular signal-regulated kinase mitogen-activated protein kinase activation. Mol Cell Biol , 20(10): 3695–3704
doi: 10.1128/MCB.20.10.3695-3704.2000 pmid:10779359
55 Johnson D E, Williams L T (1993). Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res , 60: 1–41
doi: 10.1016/S0065-230X(08)60821-0 pmid:8417497
56 Jones R L, Stoikos C, Findlay J K, Salamonsen L A (2006). TGF-beta superfamily expression and actions in the endometrium and placenta. Reproduction , 132(2): 217–232
doi: 10.1530/rep.1.01076 pmid:16885531
57 Krebs L T, Shutter J R, Tanigaki K, Honjo T, Stark K L, Gridley T (2004). Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev , 18(20): 2469–2473
doi: 10.1101/gad.1239204 pmid:15466160
58 Krebs L T, Xue Y, Norton C R, Shutter J R, Maguire M, Sundberg J P, Gallahan D, Closson V, Kitajewski J, Callahan R, Smith G H, Stark K L, Gridley T (2000). Notch signaling is essential for vascular morphogenesis in mice. Genes Dev , 14(11): 1343–1352
pmid:10837027
59 Kühl M, Sheldahl L C, Park M, Miller J R, Moon R T (2000). The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet , 16(7): 279–283
doi: 10.1016/S0168-9525(00)02028-X pmid:10858654
60 Kwee L, Baldwin H S, Shen H M, Stewart C L, Buck C, Buck C A, Labow M A (1995). Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development , 121(2): 489–503
pmid:7539357
61 Lawler S, Candia A F, Ebner R, Shum L, Lopez A R, Moses H L, Wright C V, Derynck R (1994). The murine type II TGF-beta receptor has a coincident embryonic expression and binding preference for TGF-beta 1. Development , 120(1): 165–175
pmid:8119124
62 Lawson K A, Dunn N R, Roelen B A, Zeinstra L M, Davis A M, Wright C V, Korving J P, Hogan B L (1999). Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev , 13(4): 424–436
doi: 10.1101/gad.13.4.424 pmid:10049358
63 Lechleider R J, Ryan J L, Garrett L, Eng C, Deng C, Wynshaw-Boris A, Roberts A B (2001). Targeted mutagenesis of Smad1 reveals an essential role in chorioallantoic fusion. Dev Biol , 240(1): 157–167
doi: 10.1006/dbio.2001.0469 pmid:11784053
64 Lee P L, Johnson D E, Cousens L S, Fried V A, Williams L T (1989). Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor. Science , 245(4913): 57–60
doi: 2544996" target="_blank">10.1126/science. pmid:2544996 pmid:2544996
65 Levine R J, Lam C, Qian C, Yu K F, Maynard S E, Sachs B P, Sibai B M, Epstein F H, Romero R, Thadhani R, Karumanchi S A, the CPEP Study Group (2006). Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med , 355(10): 992–1005
doi: 10.1056/NEJMoa055352 pmid:16957146
66 Limbourg F P, Takeshita K, Radtke F, Bronson R T, Chin M T, Liao J K (2005). Essential role of endothelial Notch1 in angiogenesis. Circulation , 111(14): 1826–1832
doi: 10.1161/01.CIR.0000160870.93058.DD pmid:15809373
67 Ma G T, Soloveva V, Tzeng S J, Lowe L A, Pfendler K C, Iannaccone P M, Kuehn M R, Linzer D I (2001). Nodal regulates trophoblast differentiation and placental development. Dev Biol , 236(1): 124–135
doi: 10.1006/dbio.2001.0334 pmid:11456449
68 Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler B M, Delius H, Hoppe D, Stannek P, Walter C, Glinka A, Niehrs C (2002). Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature , 417(6889): 664–667
doi: 10.1038/nature756 pmid:12050670
69 Mao B, Wu W, Li Y, Hoppe D, Stannek P, Glinka A, Niehrs C (2001). LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature , 411(6835): 321–325
doi: 10.1038/35077108 pmid:11357136
70 Melillo R M, Santoro M, Ong S H, Billaud M, Fusco A, Hadari Y R, Schlessinger J, Lax I (2001). Docking protein FRS2 links the protein tyrosine kinase RET and its oncogenic forms with the mitogen-activated protein kinase signaling cascade. Mol Cell Biol , 21(13): 4177–4187
doi: 10.1128/MCB.21.13.4177-4187.2001 pmid:11390647
71 Mikula M, Schreiber M, Husak Z, Kucerova L, Rüth J, Wieser R, Zatloukal K, Beug H, Wagner E F, Baccarini M (2001). Embryonic lethality and fetal liver apoptosis in mice lacking the c-raf-1 gene. EMBO J , 20(8): 1952–1962
doi: 10.1093/emboj/20.8.1952 pmid:11296228
72 Mlodzik M (2002). Planar cell polarization: do the same mechanisms regulate Drosophila tissue polarity and vertebrate gastrulation? Trends Genet , 18(11): 564–571
doi: 10.1016/S0168-9525(02)02770-1 pmid:12414186
73 Monkley S J, Delaney S J, Pennisi D J, Christiansen J H, Wainwright B J (1996). Targeted disruption of the Wnt2 gene results in placentation defects. Development , 122(11): 3343–3353
pmid:8951051
74 Moon R T, Kohn A D, De Ferrari G V, Kaykas A (2004). WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet , 5(9): 691–701
doi: 10.1038/nrg1427 pmid:15372092
75 Mudgett J S, Ding J, Guh-Siesel L, Chartrain N A, Yang L, Gopal S, Shen M M (2000). Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis. Proc Natl Acad Sci U S A , 97(19): 10454–10459
doi: 10.1073/pnas.180316397 pmid:10973481
76 Murphy V E, Smith R, Giles W B, Clifton V L (2006). Endocrine regulation of human fetal growth: the role of the mother, placenta, and fetus. Endocr Rev , 27(2): 141–169
doi: 10.1210/er.2005-0011 pmid:16434511
77 Nadeau V, Guillemette S, Bélanger L F, Jacob O, Roy S, Charron J (2009). Map2k1 and Map2k2 genes contribute to the normal development of syncytiotrophoblasts during placentation. Development , 136(8): 1363–1374
doi: 10.1242/dev.031872 pmid:19304888
78 Nakamura Y, Hamada Y, Fujiwara T, Enomoto H, Hiroe T, Tanaka S, Nose M, Nakahara M, Yoshida N, Takenawa T, Fukami K (2005). Phospholipase C-delta1 and -delta3 are essential in the trophoblast for placental development. Mol Cell Biol , 25(24): 10979–10988
doi: 10.1128/MCB.25.24.10979-10988.2005 pmid:16314520
79 Nakayama H, Liu Y, Stifani S, Cross J C (1997). Developmental restriction of Mash-2 expression in trophoblast correlates with potential activation of the notch-2 pathway. Dev Genet , 21(1): 21–30
doi: 10.1002/(SICI)1520-6408(1997)21:1<21::AID-DVG3>3.0.CO;2-A pmid:9291577
80 Natale D R, Hemberger M, Hughes M, Cross J C (2009). Activin promotes differentiation of cultured mouse trophoblast stem cells towards a labyrinth cell fate. Dev Biol , 335(1): 120–131
doi: 10.1016/j.ydbio.2009.08.022 pmid:19716815
81 Natale D R, Starovic M, Cross J C (2006). Phenotypic analysis of the mouse placenta. Methods Mol Med , 121: 275–293
pmid:16251749
82 Nusse R, Varmus H E (1982). Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell , 31(1): 99–109
doi: 10.1016/0092-8674(82)90409-3 pmid:6297757
83 Oike Y, Takakura N, Hata A, Kaname T, Akizuki M, Yamaguchi Y, Yasue H, Araki K, Yamamura K, Suda T (1999). Mice homozygous for a truncated form of CREB-binding protein exhibit defects in hematopoiesis and vasculo-angiogenesis. Blood , 93(9): 2771–2779
pmid:10216070
84 Oka C, Nakano T, Wakeham A, de la Pompa J L, Mori C, Sakai T, Okazaki S, Kawaichi M, Shiota K, Mak T W, Honjo T (1995). Disruption of the mouse RBP-J kappa gene results in early embryonic death. Development , 121(10): 3291–3301
pmid:7588063
85 Ornitz D M, Itoh N (2001). Fibroblast growth factors. Genome Biol, 2(3): 1-12
86 Ornitz D M, Xu J, Colvin J S, McEwen D G, MacArthur C A, Coulier F, Gao G, Goldfarb M (1996). Receptor specificity of the fibroblast growth factor family. J Biol Chem , 271(25): 15292–15297
doi: 10.1074/jbc.271.25.15292 pmid:8663044
87 Oshima M, Oshima H, Taketo M M (1996). TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol , 179(1): 297–302
doi: 10.1006/dbio.1996.0259 pmid:8873772
88 Parr B A, Cornish V A, Cybulsky M I, McMahon A P (2001). Wnt7b regulates placental development in mice. Dev Biol , 237(2): 324–332
doi: 10.1006/dbio.2001.0373 pmid:11543617
89 Peng S, Miao C, Li J, Fan X, Cao Y, Duan E (2006). Dickkopf-1 induced apoptosis in human placental choriocarcinoma is independent of canonical Wnt signaling. Biochem Biophys Res Commun , 350(3): 641–647
doi: 10.1016/j.bbrc.2006.09.087 pmid:17026960
90 Plotnikov A N, Hubbard S R, Schlessinger J, Mohammadi M (2000). Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity. Cell , 101(4): 413–424
doi: 10.1016/S0092-8674(00)80851-X pmid:10830168
91 Polakis P (2000). Wnt signaling and cancer. Genes Dev , 14(15): 1837–1851
pmid:10921899
92 Pollheimer J, Knofler M (2005). Signalling pathways regulating the invasive differentiation of human trophoblasts: a review. Placenta , 26 (Suppl A): S21–30
93 Pollheimer J, Loregger T, Sonderegger S, Saleh L, Bauer S, Bilban M, Czerwenka K, Husslein P, Kn?fler M (2006). Activation of the canonical wingless/T-cell factor signaling pathway promotes invasive differentiation of human trophoblast. Am J Pathol , 168(4): 1134–1147
doi: 10.2353/ajpath.2006.050686 pmid:16565489
94 Powers C J, McLeskey S W, Wellstein A (2000). Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer , 7(3): 165–197
doi: 10.1677/erc.0.0070165 pmid:11021964
95 Qian X, Esteban L, Vass W C, Upadhyaya C, Papageorge A G, Yienger K, Ward J M, Lowy D R, Santos E (2000). The Sos1 and Sos2 Ras-specific exchange factors: differences in placental expression and signaling properties. EMBO J , 19(4): 642–654
doi: 10.1093/emboj/19.4.642 pmid:10675333
96 Rattner A, Hsieh J C, Smallwood P M, Gilbert D J, Copeland N G, Jenkins N A, Nathans J (1997). A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors. Proc Natl Acad Sci U S A , 94(7): 2859–2863
doi: 10.1073/pnas.94.7.2859 pmid:9096311
97 Redline R W, Chernicky C L, Tan H Q, Ilan J, Ilan J (1993). Differential expression of insulin-like growth factor-II in specific regions of the late (post day 9.5) murine placenta. Mol Reprod Dev , 36(2): 121–129
doi: 10.1002/mrd.1080360202 pmid:8257562
98 Regan C P, Li W, Boucher D M, Spatz S, Su M S, Kuida K (2002). Erk5 null mice display multiple extraembryonic vascular and embryonic cardiovascular defects. Proc Natl Acad Sci U S A , 99(14): 9248–9253
doi: 10.1073/pnas.142293999 pmid:12093914
99 Robinson M L, MacMillan-Crow L A, Thompson J A, Overbeek P A (1995). Expression of a truncated FGF receptor results in defective lens development in transgenic mice. Development , 121(12): 3959–3967
pmid:8575296
100 Roca C, Adams R H (2007). Regulation of vascular morphogenesis by Notch signaling. Genes Dev , 21(20): 2511–2524
doi: 10.1101/gad.1589207 pmid:17938237
101 Rossant J, Cross J C (2001). Placental development: lessons from mouse mutants. Nat Rev Genet , 2(7): 538–548
doi: 10.1038/35080570 pmid:11433360
102 Saba-El-Leil M K, Vella F D, Vernay B, Voisin L, Chen L, Labrecque N, Ang S L, Meloche S (2003). An essential function of the mitogen-activated protein kinase Erk2 in mouse trophoblast development. EMBO Rep , 4(10): 964–968
doi: 10.1038/sj.embor.embor939 pmid:14502223
103 Saxton T M, Cheng A M, Ong S H, Lu Y, Sakai R, Cross J C, Pawson T (2001). Gene dosage-dependent functions for phosphotyrosine-Grb2 signaling during mammalian tissue morphogenesis. Curr Biol , 11(9): 662–670
doi: 10.1016/S0960-9822(01)00198-1 pmid:11369229
104 Schlessinger J (2000). Cell signaling by receptor tyrosine kinases. Cell , 103(2): 211–225
doi: 10.1016/S0092-8674(00)00114-8 pmid:11057895
105 Scifres C M, Nelson D M (2009). Intrauterine growth restriction, human placental development and trophoblast cell death. J Physiol , 587(Pt 14): 3453–3458
doi: 10.1113/jphysiol.2009.173252 pmid:19451203
106 Sem?nov M V, Tamai K, Brott B K, Kühl M, Sokol S, He X (2001). Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr Biol , 11(12): 951–961
doi: 10.1016/S0960-9822(01)00290-1 pmid:11448771
107 Sleeman M, Fraser J, McDonald M, Yuan S, White D, Grandison P, Kumble K, Watson J D, Murison J G (2001). Identification of a new fibroblast growth factor receptor, FGFR5. Gene , 271(2): 171–182
doi: 10.1016/S0378-1119(01)00518-2 pmid:11418238
108 Sohn S J, Sarvis B K, Cado D, Winoto A (2002). ERK5 MAPK regulates embryonic angiogenesis and acts as a hypoxia-sensitive repressor of vascular endothelial growth factor expression. J Biol Chem , 277(45): 43344–43351
doi: 10.1074/jbc.M207573200 pmid:12221099
109 Solloway M J, Robertson E J (1999). Early embryonic lethality in Bmp5;Bmp7 double mutant mice suggests functional redundancy within the 60A subgroup. Development , 126(8): 1753–1768
pmid:10079236
110 Sonderegger S, Husslein H, Leisser C,Knofler M (2007). Complex expression pattern of Wnt ligands and frizzled receptors in human placenta and its trophoblast subtypes. Placenta , 28 (Suppl A): S97–102
111 Song H, Lim H, Paria B C, Matsumoto H, Swift L L, Morrow J, Bonventre J V, Dey S K (2002). Cytosolic phospholipase A2alpha is crucial [correction of A2alpha deficiency is crucial] for ‘on-time’ embryo implantation that directs subsequent development. Development , 129(12): 2879–2889
pmid:12050136
112 Swiatek P J, Lindsell C E, del Amo F F, Weinmaster G, Gridley T (1994). Notch1 is essential for postimplantation development in mice. Genes Dev , 8(6): 707–719
doi: 10.1101/gad.8.6.707 pmid:7926761
113 Tanaka M, Gertsenstein M, Rossant J, Nagy A (1997). Mash2 acts cell autonomously in mouse spongiotrophoblast development. Dev Biol , 190(1): 55–65
doi: 10.1006/dbio.1997.8685 pmid:9331331
114 Tanaka S, Kunath T, Hadjantonakis A K, Nagy A, Rossant J (1998). Promotion of trophoblast stem cell proliferation by FGF4. Science , 282(5396): 2072–2075
doi: 10.1126/science.282.5396.2072 pmid:9851926
115 Tremblay K D, Dunn N R, Robertson E J (2001). Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development , 128(18): 3609–3621
pmid:11566864
116 Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim Y M, Bdolah Y, Lim K H, Yuan H T, Libermann T A, Stillman I E, Roberts D, D’Amore P A, Epstein F H, Sellke F W, Romero R, Sukhatme V P, Letarte M, Karumanchi S A (2006). Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med , 12(6): 642–649
doi: 10.1038/nm1429 pmid:16751767
117 Wang H, Dey S K (2006). Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet , 7(3): 185–199
doi: 10.1038/nrg1808 pmid:16485018
118 Watson E D, Cross J C (2005). Development of structures and transport functions in the mouse placenta. Physiology (Bethesda) , 20(3): 180–193
doi: 10.1152/physiol.00001.2005 pmid:15888575
119 Wilcox A J, Baird D D, Weinberg C R (1999). Time of implantation of the conceptus and loss of pregnancy. N Engl J Med , 340(23): 1796–1799
doi: 10.1056/NEJM199906103402304 pmid:10362823
120 Willert K, Brown J D, Danenberg E, Duncan A W, Weissman I L, Reya T, Yates J R 3rd, Nusse R (2003). Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature , 423(6938): 448–452
doi: 10.1038/nature01611 pmid:12717451
121 Willert K, Jones K A (2006). Wnt signaling: is the party in the nucleus? Genes Dev , 20(11): 1394–1404
doi: 10.1101/gad.1424006 pmid:16751178
122 Winnier G, Blessing M, Labosky P A, Hogan B L (1995). Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev , 9(17): 2105–2116
doi: 10.1101/gad.9.17.2105 pmid:7657163
123 Xie H, Tranguch S, Jia X, Zhang H, Das S K, Dey S K, Kuo C J, Wang H (2008). Inactivation of nuclear Wnt-beta-catenin signaling limits blastocyst competency for implantation. Development , 135(4): 717–727
doi: 10.1242/dev.015339 pmid:18199579
124 Xu X, Weinstein M, Li C, Naski M, Cohen R I, Ornitz D M, Leder P, Deng C (1998). Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development , 125(4): 753–765
pmid:9435295
125 Xue Y, Gao X, Lindsell C E, Norton C R, Chang B, Hicks C, Gendron-Maguire M, Rand E B, Weinmaster G, Gridley T (1999). Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet , 8(5): 723–730
doi: 10.1093/hmg/8.5.723 pmid:10196361
126 Yan L, Carr J, Ashby P R, Murry-Tait V, Thompson C, Arthur J S (2003). Knockout of ERK5 causes multiple defects in placental and embryonic development. BMC Dev Biol , 3(1): 11
doi: 10.1186/1471-213X-3-11 pmid:14675480
127 Yang J, Boerm M, McCarty M, Bucana C, Fidler I J, Zhuang Y, Su B (2000). Mekk3 is essential for early embryonic cardiovascular development. Nat Genet , 24(3): 309–313
doi: 10.1038/73550 pmid:10700190
128 Yang J T, Rayburn H, Hynes R O (1995). Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development , 121(2): 549–560
pmid:7539359
129 Yang W, Klaman L D, Chen B, Araki T, Harada H, Thomas S M, George E L, Neel B G (2006). An Shp2/SFK/Ras/Erk signaling pathway controls trophoblast stem cell survival. Dev Cell , 10(3): 317–327
doi: 10.1016/j.devcel.2006.01.002 pmid:16516835
130 Yang Z Z, Tschopp O, Hemmings-Mieszczak M, Feng J, Brodbeck D, Perentes E, Hemmings B A (2003). Protein kinase B alpha/Akt1 regulates placental development and fetal growth. J Biol Chem , 278(34): 32124–32131
doi: 10.1074/jbc.M302847200 pmid:12783884
131 Yao T P, Oh S P, Fuchs M, Zhou N D, Ch’ng L E, Newsome D, Bronson R T, Li E, Livingston D M, Eckner R (1998). Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell , 93(3): 361–372
doi: 10.1016/S0092-8674(00)81165-4 pmid:9590171
132 Ye X, Hama K, Contos J J, Anliker B, Inoue A, Skinner M K, Suzuki H, Amano T, Kennedy G, Arai H, Aoki J, Chun J (2005). LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature , 435(7038): 104–108
doi: 10.1038/nature03505 pmid:15875025
133 Ying Y, Liu X M, Marble A, Lawson K A, Zhao G Q (2000). Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol Endocrinol , 14(7): 1053–1063
doi: 10.1210/me.14.7.1053 pmid:10894154
134 Zeigler B M, Sugiyama D, Chen M, Guo Y, Downs K M, Speck N A (2006). The allantois and chorion, when isolated before circulation or chorio-allantoic fusion, have hematopoietic potential. Development , 133(21): 4183–4192
doi: 10.1242/dev.02596 pmid:17038514
135 Zhang H, Bradley A (1996). Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development , 122(10): 2977–2986
pmid:8898212
136 Zhu X, Komiya H, Chirino A, Faham S, Fox G M, Arakawa T, Hsu B T, Rees D C (1991). Three-dimensional structures of acidic and basic fibroblast growth factors. Science , 251(4989): 90–93
doi: 10.1126/science.1702556 pmid: 1702556
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed