Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2011, Vol. 6 Issue (2) : 133-139    https://doi.org/10.1007/s11515-011-1136-4
REVIEW
MicroRNA-mediated DNA methylation in plants
Xiaoyun JIA1,2, Jun YAN2, Guiliang TANG2()
1. College of Life Science, Shanxi Agricultural University, Taigu 030801, China; 2. Gene Suppression Laboratory, Department of Plant and Soil Sciences and KTRDC, University of Kentucky, Lexington, KY 40546, USA
 Download: PDF(233 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

DNA methylation, a major event in epigenetics, plays an essential role in the control of gene expression. Increasing evidence suggests that long and short non-coding RNAs are involved extensively in plants to direct the establishment, spread, and removal of DNA cytosine methylation throughout their genomes. Yet, little has been known about the role of microRNAs (miRNAs) in DNA methylation although the role of small interfering RNAs (siRNAs) in DNA methylation has been well established. Several recent studies, however, provided the evidence for miRNA-directed DNA methylation in plants, and the working mechanisms still need to be fully explored. In this review, we highlight the key features of miRNA-directed DNA methylation in plants and provide insight into the complexities of such an event in plants. The interaction between miRNAs and the epigenetic machinery and the future potential research questions are briefly discussed.

Corresponding Author(s): TANG Guiliang,Email:gtang2@uky.edu   
Issue Date: 01 April 2011
 Cite this article:   
Xiaoyun JIA,Jun YAN,Guiliang TANG. MicroRNA-mediated DNA methylation in plants[J]. Front Biol, 2011, 6(2): 133-139.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-011-1136-4
https://academic.hep.com.cn/fib/EN/Y2011/V6/I2/133
Fig.1  MicroRNA-related DNA methylation pathways in plants. Different sizes of miRNA-related sRNAs were discovered in different plant species and they are different in their biogenesis and maturation through different sets of enzymes and are channeled to different clades of AGO proteins for post-transcriptional gene silencing (PTGS) or transcriptional silencing (TGS). Specifically, in and rice, 20-22 nt miRNAs are generated by DCL1 and specifically loaded into AGO1 clade proteins to form effector complexes to direct the cleavage of their target mRNAs posttranscriptionally. 24 nt and 23-27 nt miRNAs are processed by DCL3 with or without the coordination of DCL1 and bound to AGO4 clade proteins to guide methylation of the adjacent DNA transcriptionally. In moss, two types of miRNAs are produced via two different types of PpDCL1 proteins, PpDCL1a and PpDCL1b. PpDCL1b is responsible for the miRNAs that can form a cleavage-competent RNA-induced silencing complex (RISC), while PpDCL1a is for miRNAs to form non-cleaving RISC or RNA-induced transcriptional silencing complex (RITS). To trigger the target DNA methylation in moss, RITS is believed to form either before the long miRNA binding to the target RNA or after the long miRNA formed a duplex structure with the target RNA. The cleaving RISC directs PTGS while the non-cleaving RISC mediates the TGS in moss. , rice, and moss pathways for miRNA-directed gene regulation are highlighted with the background of blue, yellow, and purple, respectively. Blue arrowed lines indicate PTGS pathways, and orange arrowed lines indicate TGS pathways in different plants. MIR, miRNA; Pol II, RNA polymerase II; Pri-miRNA, primary miRNA; AtDCL, Dicer-like protein; OsDCL, rice Dicer-like protein; PpDCL, moss Dicer-like protein; AGO, Argonaute; Poly(A), poly (A) tail; RITS, RNA-induced transcriptional silencing complex; CH3, methyl group.
Fig.1  MicroRNA-related DNA methylation pathways in plants. Different sizes of miRNA-related sRNAs were discovered in different plant species and they are different in their biogenesis and maturation through different sets of enzymes and are channeled to different clades of AGO proteins for post-transcriptional gene silencing (PTGS) or transcriptional silencing (TGS). Specifically, in and rice, 20-22 nt miRNAs are generated by DCL1 and specifically loaded into AGO1 clade proteins to form effector complexes to direct the cleavage of their target mRNAs posttranscriptionally. 24 nt and 23-27 nt miRNAs are processed by DCL3 with or without the coordination of DCL1 and bound to AGO4 clade proteins to guide methylation of the adjacent DNA transcriptionally. In moss, two types of miRNAs are produced via two different types of PpDCL1 proteins, PpDCL1a and PpDCL1b. PpDCL1b is responsible for the miRNAs that can form a cleavage-competent RNA-induced silencing complex (RISC), while PpDCL1a is for miRNAs to form non-cleaving RISC or RNA-induced transcriptional silencing complex (RITS). To trigger the target DNA methylation in moss, RITS is believed to form either before the long miRNA binding to the target RNA or after the long miRNA formed a duplex structure with the target RNA. The cleaving RISC directs PTGS while the non-cleaving RISC mediates the TGS in moss. , rice, and moss pathways for miRNA-directed gene regulation are highlighted with the background of blue, yellow, and purple, respectively. Blue arrowed lines indicate PTGS pathways, and orange arrowed lines indicate TGS pathways in different plants. MIR, miRNA; Pol II, RNA polymerase II; Pri-miRNA, primary miRNA; AtDCL, Dicer-like protein; OsDCL, rice Dicer-like protein; PpDCL, moss Dicer-like protein; AGO, Argonaute; Poly(A), poly (A) tail; RITS, RNA-induced transcriptional silencing complex; CH3, methyl group.
1 Ahmad A, Zhang Y, Cao X F (2010). Decoding the epigenetic language of plant development. Mol Plant , 3(4): 719-728
doi: 10.1093/mp/ssq026 pmid:20663898
2 Axtell M J, Snyder J A, Bartel D P (2007). Common functions for diverse small RNAs of land plants. Plant Cell , 19(6): 1750-1769
doi: 10.1105/tpc.107.051706 pmid:17601824
3 Bao N, Lye K W, Barton M K (2004). MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell , 7(5): 653-662
doi: 10.1016/j.devcel.2004.10.003 pmid:15525527
4 Bartel D P (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell , 116(2): 281-297
doi: 10.1016/S0092-8674(04)00045-5 pmid:14744438
5 Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto Y Y, Sieburth L, Voinnet O (2008). Widespread translational inhibition by plant miRNAs and siRNAs. Science , 320(5880): 1185-1190
doi: 10.1126/science.1159151 pmid:18483398
6 Cao X, Jacobsen S E (2002). Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol , 12(13): 1138-1144
doi: 10.1016/S0960-9822(02)00925-9 pmid:12121623
7 Carthew R W, Sontheimer E J (2009). Origins and mechanisms of miRNAs and siRNAs. Cell , 136(4): 642-655
doi: 10.1016/j.cell.2009.01.035 pmid:19239886
8 Chan S W, Henderson I R, Jacobsen S E (2005). Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet , 6(5): 351-360
doi: 10.1038/nrg1601 pmid:15861207
9 Chapman E J, Carrington J C (2007). Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet , 8(11): 884-896
doi: 10.1038/nrg2179 pmid:17943195
10 Chellappan P, Xia J, Zhou X, Gao S, Zhang X, Coutino G, Vazquez F, Zhang W, Jin H (2010). siRNAs from miRNA sites mediate DNA methylation of target genes. Nucleic Acids Res , 38(20): 6883-6894
doi: 10.1093/nar/gkq590 pmid:20621980
11 Chen X (2004). A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science , 303(5666): 2022-2025
doi: 10.1126/science.1088060 pmid:12893888
12 Chinnusamy V, Zhu J K (2009). Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol , 12(2): 133-139
doi: 10.1016/j.pbi.2008.12.006 pmid:19179104
13 Cokus S J, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild C D, Pradhan S, Nelson S F, Pellegrini M, Jacobsen S E (2008). Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature , 452(7184): 215-219
doi: 10.1038/nature06745 pmid:18278030
14 Das S, Foley N, Bryan K, Watters K M, Bray I, Murphy D M, Buckley P G, Stallings R L (2010). MicroRNA mediates DNA demethylation events triggered by retinoic acid during neuroblastoma cell differentiation. Cancer Res , 70(20): 7874-7881
doi: 10.1158/0008-5472.CAN-10-1534 pmid:20841484
15 Fattash I, Voss B, Reski R, Hess W R, Frank W (2007). Evidence for the rapid expansion of microRNA-mediated regulation in early land plant evolution. BMC Plant Biol , 7(1): 13
doi: 10.1186/1471-2229-7-13 pmid:17359535
16 Ghildiyal M, Zamore P D (2009). Small silencing RNAs: an expanding universe. Nat Rev Genet , 10(2): 94-108
doi: 10.1038/nrg2504 pmid:19148191
17 Gonzalez S, Pisano D G, Serrano M (2008). Mechanistic principles of chromatin remodeling guided by siRNAs and miRNAs. Cell Cycle , 7(16): 2601-2608
doi: 10.4161/cc.7.16.6541 pmid:18719372
18 Henderson I R, Jacobsen S E (2007). Epigenetic inheritance in plants. Nature , 447(7143): 418-424
doi: 10.1038/nature05917 pmid:17522675
19 Herr A J, Jensen M B, Dalmay T, Baulcombe D C (2005). RNA polymerase IV directs silencing of endogenous DNA. Science , 308(5718): 118-120
doi: 10.1126/science.1106910 pmid:15692015
20 Kanno T, Huettel B, Mette M F, Aufsatz W, Jaligot E, Daxinger L, Kreil D P, Matzke M, Matzke A J (2005). Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nat Genet , 37(7): 761-765
doi: 10.1038/ng1580 pmid:15924141
21 Khraiwesh B, Arif M A, Seumel G I, Ossowski S, Weigel D, Reski R, Frank W (2010). Transcriptional control of gene expression by microRNAs. Cell , 140(1): 111-122
doi: 10.1016/j.cell.2009.12.023 pmid:20085706
22 Kim D H, Saetrom P, Sn?ve O Jr, Rossi J J (2008). MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA , 105(42): 16230-16235
doi: 10.1073/pnas.0808830105 pmid:18852463
23 Lanet E, Delannoy E, Sormani R, Floris M, Brodersen P, Crété P, Voinnet O, Robaglia C (2009). Biochemical evidence for translational repression by Arabidopsis microRNAs. Plant Cell , 21(6): 1762-1768
doi: 10.1105/tpc.108.063412 pmid:19531599
24 Lee Y, Jeon K, Lee J T, Kim S, Kim V N (2002). MicroRNA maturation: stepwise processing and subcellular localization. EMBO J , 21(17): 4663-4670
doi: 10.1093/emboj/cdf476 pmid:12198168
25 Lelandais-Briere C, Naya L, Sallet E, Calenge F, Frugier F, Hartmann C, Gouzy J, Crespi M (2009). Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell , 21(9): 2780-2796
doi: 10.1105/tpc.109.068130 pmid:19767456
26 Li C F, Pontes O, El-Shami M, Henderson I R, Bernatavichute Y V, Chan S W, Lagrange T, Pikaard C S, Jacobsen S E (2006). An ARGONAUTE4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana. Cell , 126(1): 93-106
doi: 10.1016/j.cell.2006.05.032 pmid:16839879
27 Liu B, Li P, Li X, Liu C, Cao S, Chu C, Cao X (2005). Loss of function of OsDCL1 affects microRNA accumulation and causes developmental defects in rice. Plant Physiol , 139(1): 296-305
doi: 10.1104/pp.105.063420 pmid:16126864
28 Llave C, Xie Z, Kasschau K D, Carrington J C (2002). Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science , 297(5589): 2053-2056
doi: 10.1126/science.1076311 pmid:12242443
29 Matzke M, Kanno T, Daxinger L, Huettel B, Matzke A J (2009). RNA-mediated chromatin-based silencing in plants. Curr Opin Cell Biol , 21(3): 367-376
doi: 10.1016/j.ceb.2009.01.025 pmid:19243928
30 Onodera Y, Haag J R, Ream T, Nunes P C, Pontes O, Pikaard C S (2005). Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell , 120(5): 613-622
doi: 10.1016/j.cell.2005.02.007 pmid:15766525
31 Park W, Li J, Song R, Messing J, Chen X (2002). CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol , 12(17): 1484-1495
doi: 10.1016/S0960-9822(02)01017-5 pmid:12225663
32 Pontes O, Costa-Nunes P, Vithayathil P, Pikaard C S (2009). RNA polymerase V functions in Arabidopsis interphase heterochromatin organization independently of the 24-nt siRNA-directed DNA methylation pathway. Mol Plant , 2(4): 700-710
doi: 10.1093/mp/ssp006 pmid:19825650
33 Qi Y, He X, Wang X J, Kohany O, Jurka J, Hannon G J (2006). Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature , 443(7114): 1008-1012
doi: 10.1038/nature05198 pmid:16998468
34 Ronemus M, Martienssen R (2005). RNA interference: methylation mystery. Nature , 433(7025): 472-473
doi: 10.1038/433472a pmid:15690027
35 Sunkar R, Girke T, Jain P K, Zhu J K (2005a). Cloning and characterization of microRNAs from rice. Plant Cell , 17(5): 1397-1411
doi: 10.1105/tpc.105.031682 pmid:15805478
36 Sunkar R, Girke T, Zhu J K (2005b). Identification and characterization of endogenous small interfering RNAs from rice. Nucleic Acids Res , 33(14): 4443-4454
doi: 10.1093/nar/gki758 pmid:16077027
37 Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu J K (2008). Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol , 8(1): 25
doi: 10.1186/1471-2229-8-25 pmid:18312648
38 Tang G, Reinhart B J, Bartel D P, Zamore P D (2003). A biochemical framework for RNA silencing in plants. Genes Dev , 17(1): 49-63
doi: 10.1101/gad.1048103 pmid:12514099
39 Vazquez F, Blevins T, Ailhas J, Boller T, Meins F Jr (2008). Evolution of Arabidopsis MIR genes generates novel microRNA classes. Nucleic Acids Res , 36(20): 6429-6438
doi: 10.1093/nar/gkn670 pmid:18842626
40 Voinnet O (2009). Origin, biogenesis, and activity of plant microRNAs. Cell , 136(4): 669-687
doi: 10.1016/j.cell.2009.01.046 pmid:19239888
41 Wolffe A P, Matzke M A (1999). Epigenetics: regulation through repression. Science , 286(5439): 481-486
doi: 10.1126/science.286.5439.481 pmid:10521337
42 Wu L, Zhang Q, Zhou H, Ni F, Wu X, Qi Y (2009). Rice microRNA effector complexes and targets. Plant Cell , 21(11): 3421-3435
doi: 10.1105/tpc.109.070938 pmid:19903869
43 Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y (2010). DNA methylation mediated by a microRNA pathway. Mol Cell , 38(3): 465-475
doi: 10.1016/j.molcel.2010.03.008 pmid:20381393
44 Xie Z, Johansen L K, Gustafson A M, Kasschau K D, Lellis A D, Zilberman D, Jacobsen S E, Carrington J C (2004). Genetic and functional diversification of small RNA pathways in plants. PLoS Biol , 2(5): E104
doi: 10.1371/journal.pbio.0020104 pmid:15024409
45 Xie Z, Qi X (2008). Diverse small RNA-directed silencing pathways in plants. Biochim Biophys Acta , 1779(11): 720-724
pmid:18358247
46 Zheng B, Wang Z, Li S, Yu B, Liu J Y, Chen X (2009). Intergenic transcription by RNA polymerase II coordinates Pol IV and Pol V in siRNA-directed transcriptional gene silencing in Arabidopsis. Genes Dev , 23(24): 2850-2860
doi: 10.1101/gad.1868009 pmid:19948763
47 Zhu Q H, Spriggs A, Matthew L, Fan L, Kennedy G, Gubler F, Helliwell C (2008). A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res , 18(9): 1456-1465
doi: 10.1101/gr.075572.107 pmid:18687877
48 Zilberman D, Cao X, Jacobsen S E (2003). ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science , 299(5607): 716-719
doi: 10.1126/science.1079695 pmid:12522258
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed