Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2012, Vol. 7 Issue (1) : 57-64    https://doi.org/10.1007/s11515-011-1164-0
REVIEW
Quantitative analysis of FRET assay in biology New developments in protein interaction affinity and protease kinetics determinations in the SUMOylation cascade
Yan LIU, Yang SONG, Ling JIANG, Jiayu LIAO(email.png)
Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, 900 University Avenue, Riverside, CA 92521, USA
 Download: PDF(260 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

F?rster resonance energy transfer (FRET) techniques have been widely used in biological studies in vitro and in vivo and are powerful tools for elucidating protein interactions in many regulatory cascades. FRET occurs between oscillating dipoles of two fluorophores with overlapping emission and excitation wavelengths and is dependent on the spectroscopic and geometric properties of the donor-acceptor pair. Various efforts have been made to develop quantitative FRET methods to accurately determine the interaction affinity and kinetics parameters. SUMOylation is an important post-translational protein modification with key roles in multiple biological processes. Conjugating SUMO to substrates requires an enzymatic cascade. Sentrin/SUMO-specific proteases (SENP) act as endopeptidases to process the pre-SUMO or an isopeptidase to deconjugate SUMO from its substrate. Here we also summarize recent developments of theoretical and experimental procedures for determining the protein interaction dissociation constant, Kd, and protease kinetics parameters, kcat and Km, in the SUMOylation pathway. The general principles of these quantitative FRET-based measurements can be applied to other protein interactions and proteases.

Keywords quantitative FRET analysis      protein affinity determination      kinetics analysis     
Corresponding Author(s): LIAO Jiayu,Email:jiayu.liao@ucr.edu   
Issue Date: 01 February 2012
 Cite this article:   
Yan LIU,Jiayu LIAO,Yang SONG, et al. Quantitative analysis of FRET assay in biology New developments in protein interaction affinity and protease kinetics determinations in the SUMOylation cascade[J]. Front Biol, 2012, 7(1): 57-64.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-011-1164-0
https://academic.hep.com.cn/fib/EN/Y2012/V7/I1/57
Fig.1  SUMOylation conjugation cascade. ① Maturation of SUMO by cleavage of SUMO C-terminus by SENP proteases. ② SUMO activation (linkage to E1) by heterodimer of E1 ligase. ③ SUMO is transferred to E2 ligase. ④ Conjugation of SUMO peptide to substrate(s) is mediated by E3 ligase. ⑤ Removal of SUMO peptide from substrate by SENP proteases. Please see the text for abbreviations.
Fig.2  Quantitative analysis of fluorescence signals of FRET emission. RFU: Relative fluorescent units. (A) Fluorescent emission at acceptor wavelength (530 nm) () can be divided into three fractions—FRET emission, direct emission of donor, and direct emission of acceptor. (B) Acceptor emission when excited at 475 nm (). (C) Donor emission at 475 nm () and 530 nm () when excited at 414 nm. (D) Donor emission at 530 nm when excited at 414 nm () or 475 nm ().
1 Albertazzi L, Arosio D, Marchetti L, Ricci F, Beltram F (2009). Quantitative FRET analysis with the EGFP-mCherry fluorescent protein pair. Photochem Photobiol , 85(1): 287–297
doi: 10.1111/j.1751-1097.2008.00435.x pmid:18764891
2 Andreou A M, Tavernarakis N (2009). SUMOylation and cell signalling. Biotechnol J , 4(12): 1740–1752
doi: 10.1002/biot.200900219 pmid:19946876
3 Bendix P M, Pedersen M S, Stamou D (2009). Quantification of nano-scale intermembrane contact areas by using fluorescence resonance energy transfer. Proc Natl Acad Sci USA , 106(30): 12341–12346
doi: 10.1073/pnas.0903052106 pmid:19597158
4 Bücher H, Drexhage K H, Fleck M, Kuhn H, M?bius D, Sch?fer F P, Sondermann J, Sperling W, Tillmann P, Wiegand J (1967). Controlled transfer of excitation energy through thin layers. Mol Cryst , 2(3): 199–230
doi: 10.1080/15421406708083417
5 Cheng A K H, Su H, Wang Y A, Yu H Z (2009). Aptamer-based detection of detection of epithelial tumor marker mucin 1 with quantum dot-based fluorescence readout. Anal Chem , 81(15): 6130–6139
6 Dams G, Van Acker K, Gustin E, Vereycken I, Bunkens L, Holemans P, Smeulders L, Clayton R, Ohagen A, Hertogs K (2007). A time-resolved fluorescence assay to identify small-molecule inhibitors of HIV-1 fusion. J Biomol Screen , 12(6): 865–874
doi: 10.1177/1087057107304645 pmid:17644771
7 dos Remedios C G, Moens P D (1995). Fluorescence resonance energy transfer spectroscopy is a reliable “ruler” for measuring structural changes in proteins. Dispelling the problem of the unknown orientation factor. J Struct Biol , 115(2): 175–185
doi: 10.1006/jsbi.1995.1042 pmid:7577238
8 Eis P S, Olson M C, Takova T, Curtis M L, Olson S M, Vener T I, Ip H S, Vedvik K L, Bartholomay C T, Allawi H T, Ma W P, Hall J G, Morin M D, Rushmore T H, Lyamichev V I, Kwiatkowski R W (2001). An invasive cleavage assay for direct quantitation of specific RNAs. Nat Biotechnol , 19(7): 673–676
9 Elangovan M, Wallrabe H, Chen Y, Day R N, Barroso M, Periasamy A (2003). Characterization of one and two photon excitation fluorescence resonance energy transfer microscopy. Methods , 29: 58–73
pmid:12543072
10 F?rster T (1948). Zwischenmolekulare energiewanderung und fluoreszenz. Ann Phys , 437(1–2): 55–75
doi: 10.1002/andp.19484370105
11 Gambin Y, Deniz A A (2010). Multicolor single-molecule FRET to explore protein folding and binding. Mol Biosyst , 6(9): 1540–1547
doi: 10.1039/c003024d pmid:20601974
12 Gareau J R, Lima C D (2010). The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol , 11(12): 861–871
doi: 10.1038/nrm3011 pmid:21102611
13 Gordon G W, Berry G, Liang X H, Levine B, Herman B (1998), Quantitative fluorescence resonance energy transfer measurements using fluroescnece miscroscop. Biophys J , 74: 2702–2713
pmid:9591694
14 Haugland R P, Yguerabide J, Stryer L (1969). Dependence of the kinetics of singlet-singlet energy transfer on spectral overlap. Proc Natl Acad Sci USA , 63(1): 23–30
doi: 10.1073/pnas.63.1.23 pmid:16591747
15 Hires S A, Zhu Y, Tsien R Y (2008). Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters. Proc Natl Acad Sci USA , 105(11): 4411–4416
doi: 10.1073/pnas.0712008105 pmid:18332427
16 Johnson E S (2004). Protein modification by SUMO. Annu Rev Biochem , 73(1): 355–382
doi: 10.1146/annurev.biochem.73.011303.074118 pmid:15189146
17 Kam Z, Volberg T, Geiger B (1995). Mapping of adherens junction components using microscopic resonance energy transfer imaging. J Cell Sci , 108(Pt 3): 1051–1062
pmid:7622593
18 Kenworthy A K (2001). Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy. Methods , 24(3): 289–296
doi: 10.1006/meth.2001.1189 pmid:11403577
19 Lam A D, Ismail S, Wu R, Yizhar O, Passmore D R, Ernst S A, Stuenkel E L (2010). Mapping dynamic protein interactions to insulin secretory granule behavior with TIRF-FRET. Biophys J , 99(4): 1311–1320
doi: 10.1016/j.bpj.2010.06.014 pmid:20713017
20 Lu S, Wang Y (2010). Fluorescence resonance energy transfer biosensors for cancer detection and evaluation of drug efficacy. Clin Cancer Res , 16(15): 3822–3824
doi: 10.1158/1078-0432.CCR-10-1333 pmid:20670948
21 Mahajan N P, Linder K, Berry G, Gordon G W, Heim R, Herman B (1998). Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer. Nat Biotechnol , 16(6): 547–552
doi: 10.1038/nbt0698-547 pmid:9624685
22 Martin S F, Tatham M H, Hay R T, Samuel I D (2008). Quantitative analysis of multi-protein interactions using FRET: application to the SUMO pathway. Protein Sci , 17(4): 777–784
doi: 10.1110/ps.073369608 pmid:18359863
23 Mehta K, Hoppe A D, Kainkaryam R, Woolf P J, Linderman J J (2009). A computational approach to inferring cellular protein-binding affinities from quantitative fluorescence resonance energy transfer imaging. Proteomics , 9(23): 5371–5383
doi: 10.1002/pmic.200800494 pmid:19834887
24 Merchant K A, Best R B, Louis J M, Gopich I V, Eaton W A (2007). Characterizing the unfolded states of proteins using single-molecule FRET spectroscopy and molecular simulations. Proc Natl Acad Sci USA , 104(5): 1528–1533
doi: 10.1073/pnas.0607097104 pmid:17251351
25 Nguyen A W, Daugherty P S (2005). Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol , 23(3): 355–360
doi: 10.1038/nbt1066 pmid:15696158
26 Padilla-Parra S, Audugé N, Coppey-Moisan M, Tramier M (2008). Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells. Biophys J , 95(6): 2976–2988
doi: 10.1529/biophysj.108.131276 pmid:18539634
27 Peter M, Ameer-Beg S M, Hughes M K, Keppler M D, Prag S, Marsh M, Vojnovic B, Ng T (2005). Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions. Biophys J , 88(2): 1224–1237
doi: 10.1529/biophysj.104.050153 pmid:15531633
28 Prasuhn D E, Feltz A, Blanco-Canosa J B, Susumu K, Stewart M H, Mei B C, Yakovlev A V, Loukov C, Mallet J M, Oheim M, Dawson P E, Medintz I L (2010). Quantum dot peptide biosensors for monitoring caspase 3 proteolysis and calcium ions. ACS Nano , 4(9): 5487–5497
doi: 10.1021/nn1016132 pmid:20822159
29 Reverter D, Lima C D, (2006). Structural basis for SENP2 protease interactions with SUMO precursors and conjugated substrates. Nat Struct Mol Biol , 13(12): 1060–1068
doi: 10.1073/pnas.0600137103 pmid:16905651
30 Saucerman J J, Zhang J, Martin J C, Peng L X, Stenbit A E, Tsien R Y, McCulloch A D (2006). Systems analysis of PKA-mediated phosphorylation gradients in live cardiac myocytes. Proc Natl Acad Sci USA , 103(34): 12923–12928
doi: 10.1073/pnas.0600137103 pmid:16905651
31 Shen L, Tatham M H, Dong C, Zagórska A, Naismith J H, Hay R T (2006). SUMO protease SENP1 induces isomerization of the scissile peptide bond. Nat Struct Mol Biol , 13(12): 1069–1077
doi: 10.1073/pnas.0600137103 pmid:16905651
32 Song Y, Madahar V, Liao J (2011). Development of FRET assay into quantitative and high-throughput screening technology platforms for protein-protein interactions. Ann Biomed Eng , 39(4): 1224–1234
doi: 10.1007/s10439-010-0225-x pmid:21174150
33 Steffan J S, Agrawal N, Pallos J, Rockabrand E, Trotman L C, Slepko N, Illes K, Lukacsovich T, Zhu Y Z, Cattaneo E, Pandolfi P P, Thompson L M, Marsh J L (2004). SUMO modification of Huntingtin and Huntington’s disease pathology. Science , 304(5667): 100–104
doi: 10.1126/science.1092194 pmid:15064418
34 Stryer L (1978). Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem , 47(1): 819–846
doi: 10.1146/annurev.bi.47.070178.004131 pmid:354506
35 Stryer L R P H, Haugland R P (1967). Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci USA , 58(2): 719–726
doi: 10.1073/pnas.58.2.719 pmid:5233469
36 Suzuki Y (2000). Detection of the swings of the lever arm of a myosin motor by fluorescence resonance energy transfer of green and blue fluorescent proteins. Methods , 22(4): 355–363
doi: 10.1006/meth.2000.1087 pmid:11133241
37 Sz?llosi J, Nagy P, Sebestyén Z, Damjanovicha S, Park J W, Mátyus L (2002). Application of fluorescence resonance engergy transfer for mapping biological membranes. Rev Mol Biotechnol , 82: 251–266
38 Tatham M H, Kim S, Yu B, Jaffray E, Song J, Zheng J, Rodriguez M S, Hay R T, Chen Y (2003). Role of an N-terminal site of Ubc9 in SUMO-1, -2, and -3 binding and conjugation. Biochemistry , 42(33): 9959–9969
doi: 10.1021/bi0345283 pmid:12924945
39 Tron L, Sz?llósi J, Damjanovich S, Helliwell S H, Arndt-Jovin D J, Jovin T M (1984). Flow cytometric measurment of FRET on cell surfaces. Biophys J , 45: 939–946 6428482
doi: 10.1016/S0006-3495(84)84240-X
40 Tsuji A, Koshimoto H, Sato Y, Hirano M, Sei-Iida Y, Kondo S, Ishibashi K (2000). Direct observation of specific messenger RNA in a single living cell under a fluorescence microscope. Biophys J , 78(6): 3260–3274
doi: 10.1016/S0006-3495(00)76862-7 pmid:10828002
41 Valentin G, Verheggen C, Piolot T, Neel H, Coppey-Moisan M, Bertrand E (2005). Photoconversion of YFP into a CFP-like species during acceptor photobleaching FRET experiements. Nat Methods , 2: 80116278647
doi: 10.1038/nmeth1105-801
42 Van Munster E B, Kremers G J, Adjobo-Hermans M J, Gadella T W Jr (2005). Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching. J Microsc , 218: 253–262 15958019
doi: 10.1111/j.1365-2818.2005.01483.x
43 Verveer P J, Wouters F S, Reynolds A R, Bastiaens P I (2000). Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane. Science , 290(5496): 1567–1570
doi: 10.1126/science.290.5496.1567 pmid:11090353
44 Victor Ruiz-Velasco S R I (2001). Functional expression and FRET analysis of GFP fused to G-protein subunits in rat sympthetic neurons. J Physiol , 537(3): 679–692
45 Wallrabe H, Periasamy A (2005). Imaging protein molecules using FRET and FLIM microscopy. Curr Opin Biotechnol , 16(1): 19–27
doi: 10.1016/j.copbio.2004.12.002 pmid:15722011
46 Yeh E T H (2009). SUMOylation and De-SUMOylation: wrestling with life’s processes. J Biol Chem , 284(13): 8223–8227
doi: 10.1074/jbc.R800050200 pmid:19008217
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed