|
|
ATP-dependent chromatin remodeling complex SWI/SNF in cardiogenesis and cardiac progenitor cell development |
Ienglam LEI1,2,3, Mai Har SHAM3, Zhong WANG1,2( ) |
1. Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; 2. Harvard Stem Cell Institute, 185 Cambridge Street, Boston, MA 02114, USA; 3. Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China |
|
|
Abstract The recent identification of cardiac progenitor cells (CPCs) provides a new paradigm for studying and treating heart disease. To realize the full potential of CPCs for therapeutic purposes, it is essential to understand the genetic and epigenetic mechanisms guiding CPC differentiation into cardiomyocytes, smooth muscle, or endothelial cells. ATP-dependent chromatin remodelers mediate one critical epigenetic mechanism. These large multiprotein complexes open up chromatin to modulate transcription factor access to DNA. SWI/SNF, one of the major types of chromatin remodelers, plays a key role in various aspects of development (de la Serna et al., 2006; Wu et al., 2009), including heart development and disease (Lickert et al., 2004; Wang et al., 2004; Huang et al., 2008; Stankunas et al., 2008; Hang et al., 2010). In this review, we describe the specific function of various SWI/SNF components in cardiogenesis and cardiac progenitor cell (CPC) self-renewal and differentiation. We envision that a detailed understanding of the SWI/SNF in heart development and CPC formation and differentiation will generate novel insights into epigenetic mechanisms that govern CPC differentiation and may have significant implications in understanding and treating heart disease.
|
Keywords
ATP-dependent chromatin remodeling
SWI/SNF
cardiogenesis and cardiac progenitor cell
|
Corresponding Author(s):
WANG Zhong,Email:zhwang@partners.org
|
Issue Date: 01 June 2012
|
|
1 |
Abu-Issa R, Smyth G, Smoak I, Yamamura K, Meyers E N (2002). Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse. Development , 129(19): 4613–4625 pmid:12223417
|
2 |
Arceci R J, King A A, Simon M C, Orkin S H, Wilson D B (1993). Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol Cell Biol , 13(4): 2235–2246 pmid:8455608
|
3 |
Bajpai R, Chen D A, Rada-Iglesias A, Zhang J, Xiong Y Q, Helms J, Chang C P, Zhao Y M, Swigut T, Wysocka J (2010). CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature , 463, 958–962
|
4 |
Bannister A J, Zegerman P, Partridge J F, Miska E A, Thomas J O, Allshire R C, Kouzarides T (2001). Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature , 410(6824): 120–124 doi: 10.1038/35065138 pmid:11242054
|
5 |
Berger S L (2007). The complex language of chromatin regulation during transcription. Nature , 447(7143): 407–412 doi: 10.1038/nature05915 pmid:17522673
|
6 |
Bernstein B E, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey D K, Huebert D J, McMahon S, Karlsson E K, Kulbokas E J 3rd, Gingeras T R, Schreiber S L, Lander E S (2005). Genomic maps and comparative analysis of histone modifications in human and mouse. Cell , 120(2): 169–181 doi: 10.1016/j.cell.2005.01.001 pmid:15680324
|
7 |
Boyer L A, Latek R R, Peterson C L (2004). The SANT domain: a unique histone-tail-binding module? Nat Rev Mol Cell Biol , 5(2): 158–163 doi: 10.1038/nrm1314 pmid:15040448
|
8 |
Brand T (2003). Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol , 258(1): 1–19 doi: 10.1016/S0012-1606(03)00112-X pmid:12781678
|
9 |
Bruneau B G (2010). Chromatin remodeling in heart development. Curr Opin Genet Dev , 20(5):505–11
|
10 |
Bruneau B G, Logan M, Davis N, Levi T, Tabin C J, Seidman J G, Seidman C E (1999). Chamber-specific cardiac expression of Tbx5 and heart defects in Holt-Oram syndrome. Dev Biol , 211(1): 100–108 doi: 10.1006/dbio.1999.9298 pmid:10373308
|
11 |
Buckingham M, Meilhac S, Zaffran S (2005). Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet , 6(11): 826–837 doi: 10.1038/nrg1710 pmid:16304598
|
12 |
Bultman S, Gebuhr T, Yee D, La Mantia C, Nicholson J, Gilliam A, Randazzo F, Metzger D, Chambon P, Crabtree G, Magnuson T (2000). A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol Cell , 6(6): 1287–1295 doi: 10.1016/S1097-2765(00)00127-1 pmid:11163203
|
13 |
Cai C L, Liang X, Shi Y, Chu P H, Pfaff S L, Chen J, Evans S (2003a). Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell , 5(6): 877–889 doi: 10.1016/S1534-5807(03)00363-0 pmid:14667410
|
14 |
Cai S, Han H, Kohwi-Shigematsu T (2003b). Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nature Genetics , 34: 42–51
|
15 |
Chen H, Shi S, Acosta L, Li W, Lu J, Bao S, Chen Z, Yang Z, Schneider M D, Chien K R, Conway S J, Yoder M C, Haneline L S, Franco D, Shou W (2004). BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development , 131(9): 2219–2231 doi: 10.1242/dev.01094 pmid:15073151
|
16 |
Chi T H, Wan M, Lee P P, Akashi K, Metzger D, Chambon P, Wilson C B, Crabtree G R (2003). Sequential roles of Brg, the ATPase subunit of BAF chromatin remodeling complexes, in thymocyte development. Immunity , 19(2): 169–182 doi: 10.1016/S1074-7613(03)00199-7 pmid:12932351
|
17 |
Christoffels V M, Hoogaars W M, Tessari A, Clout D E, Moorman A F, Campione M (2004). T-box transcription factor Tbx2 represses differentiation and formation of the cardiac chambers. Dev Dyn , 229(4): 763–770 doi: 10.1002/dvdy.10487 pmid:15042700
|
18 |
Cirillo L A, Lin F R, Cuesta I, Friedman D, Jarnik M, Zaret K S (2002). Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell , 9(2): 279–289 doi: 10.1016/S1097-2765(02)00459-8 pmid:11864602
|
19 |
de la Serna I L, Ohkawa Y, Imbalzano A N (2006). Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nat Rev Genet , 7(6): 461–473 doi: 10.1038/nrg1882 pmid:16708073
|
20 |
Dodou E, Verzi M P, Anderson J P, Xu S M, Black B L (2004). Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. Development , 131(16): 3931–3942 doi: 10.1242/dev.01256 pmid:15253934
|
21 |
Fischle W, Wang Y, Allis C D (2003). Histone and chromatin cross-talk. Curr Opin Cell Biol , 15(2): 172–183 doi: 10.1016/S0955-0674(03)00013-9 pmid:12648673
|
22 |
Francastel C, Schübeler D, Martin D I, Groudine M (2000). Nuclear compartmentalization and gene activity. Nat Rev Mol Cell Biol , 1(2): 137–143 doi: 10.1038/35040083 pmid:11253366
|
23 |
Frank D U, Fotheringham L K, Brewer J A, Muglia L J, Tristani-Firouzi M, Capecchi M R, Moon A M (2002). An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome. Development , 129(19): 4591–4603 pmid:12223415
|
24 |
Gao X, Tate P, Hu P, Tjian R, Skarnes W C, Wang Z (2008). ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a. Proc Natl Acad Sci USA , 105(18): 6656–6661 doi: 10.1073/pnas.0801802105 pmid:18448678
|
25 |
Gassmann M, Casagranda F, Orioli D, Simon H, Lai C, Klein R, Lemke G (1995). Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature , 378:390–394
|
26 |
Gottlieb P D, Pierce S A, Sims III R J, Yamagishi H, Weihe E K, Harriss J V, Maika S D, Kuziel W A, King H L, Olson E N, Nakagawa O, Srivastava D (2002). Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nature Genetics 31: 25–32
|
27 |
Grego-Bessa J, Luna-Zurita L, del Monte G, Bolós V, Melgar P, Arandilla A, Garratt A N, Zang H, Mukouyama Y S, Chen H, Shou W, Ballestar E, Esteller M, Rojas A, Pérez-Pomares J M, de la Pompa J L (2007). Notch signaling is essential for ventricular chamber development. Dev Cell , 12(3): 415–429 doi: 10.1016/j.devcel.2006.12.011 pmid:17336907
|
28 |
Habets P E, Moorman A F, Clout D E, van Roon M A, Lingbeek M, van Lohuizen M, Campione M, Christoffels V M (2002). Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: implications for cardiac chamber formation. Genes Dev , 16(10): 1234–1246 doi: 10.1101/gad.222902 pmid:12023302
|
29 |
Han P, Hang C T, Yang J, Chang C P (2011). Chromatin remodeling in cardiovascular development and physiology. Circ Res , 108(3): 378–396 doi: 10.1161/CIRCRESAHA.110.224287 pmid:21293009
|
30 |
Hang C T, Yang J, Han P, Cheng H L, Shang C, Ashley E, Zhou B, Chang C P (2010). Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature , 466: 62–67 nature09130 [pii]10.1038/nature09130
|
31 |
Harrelson Z, Kelly R G, Goldin S N, Gibson-Brown J J, Bollag R J, Silver L M, Papaioannou V E (2004). Tbx2 is essential for patterning the atrioventricular canal and for morphogenesis of the outflow tract during heart development. Development , 131(20): 5041–5052 doi: 10.1242/dev.01378 pmid:15459098
|
32 |
Hassan A H, Prochasson P, Neely K E, Galasinski S C, Chandy M, Carrozza M J, Workman J L (2002). Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell , 111(3): 369–379 doi: 10.1016/S0092-8674(02)01005-X pmid:12419247
|
33 |
Hiroi Y, Kudoh S, Monzen K, Ikeda Y, Yazaki Y, Nagai R, Komuro I (2001). Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nature Genetics , 28: 276–280
|
34 |
Hu T, Yamagishi H, Maeda J, McAnally J, Yamagishi C, Srivastava D (2004). Tbx1 regulates fibroblast growth factors in the anterior heart field through a reinforcing autoregulatory loop involving forkhead transcription factors. Development , 131(21): 5491–5502 doi: 10.1242/dev.01399 pmid:15469978
|
35 |
Huang X, Gao X, Diaz-Trelles R, Ruiz-Lozano P, Wang Z (2008). Coronary development is regulated by ATP-dependent SWI/SNF chromatin remodeling component BAF180. Dev Biol , 319(2): 258–266 doi: 10.1016/j.ydbio.2008.04.020 pmid:18508041
|
36 |
Jiang C, Pugh B F (2009). Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet , 10(3): 161–172 doi: 10.1038/nrg2522 pmid:19204718
|
37 |
Kelly R G, Brown N A, Buckingham M E (2001). The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell , 1(3): 435–440 doi: 10.1016/S1534-5807(01)00040-5 pmid:11702954
|
38 |
Kelly R G, Buckingham M E (2002). The anterior heart-forming field: voyage to the arterial pole of the heart. Trends Genet , 18(4): 210–216 doi: 10.1016/S0168-9525(02)02642-2 pmid:11932022
|
39 |
Kitagawa H, Fujiki R, Yoshimura K, Mezaki Y, Uematsu Y, Matsui D, Ogawa S, Unno K, Okubo M, Tokita A, Nakagawa T, Ito T, Ishimi Y, Nagasawa H, Matsumoto T, Yanagisawa J, Kato S (2003). The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome. Cell , 113(7): 905–917 doi: 10.1016/S0092-8674(03)00436-7 pmid:12837248
|
40 |
Konev A Y, Tribus M, Park S Y, Podhraski V, Lim C Y, Emelyanov A V, Vershilova E, Pirrotta V, Kadonaga J T, Lusser A, Fyodorov D V (2007). CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science , 317(5841): 1087–1090 doi: 10.1126/science.1145339 pmid:17717186
|
41 |
Kraus F, Haenig B, Kispert A (2001). Cloning and expression analysis of the mouse T-box gene tbx20. Mech Dev , 100(1): 87–91 doi: 10.1016/S0925-4773(00)00499-8 pmid:11118890
|
42 |
Kuramochi Y, Guo X, Sawyer D B (2006). Neuregulin activates erbB2-dependent src/FAK signaling and cytoskeletal remodeling in isolated adult rat cardiac myocytes. J Mol Cell Cardiol , 41(2): 228–235 doi: 10.1016/j.yjmcc.2006.04.007 pmid:16769082
|
43 |
Kwon H, Imbalzano A, Khavari P, Kingston R, Green M (1994). Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature , 370(6489): 477–481
|
44 |
Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001). Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature , 410(6824): 116–120 doi: 10.1038/35065132 pmid:11242053
|
45 |
Lee J H, Hart S R, Skalnik D G (2004). Histone deacetylase activity is required for embryonic stem cell differentiation. Genesis , 38(1): 32–38 doi: 10.1002/gene.10250 pmid:14755802
|
46 |
Lee K F, Simon H, Chen H, Bates B, Hung MC, Hauser C (1995). Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature , 23;378(6555):394–398
|
47 |
Lessard J, Wu J I, Ranish J A, Wan M, Winslow M M, Staahl B T, Wu H, Aebersold R, Graef I A, Crabtree G R (2007). An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron , 55(2): 201–215 doi: 10.1016/j.neuron.2007.06.019 pmid:17640523
|
48 |
Liberatore C M, Searcy-Schrick R D, Yutzey K E (2000). Ventricular expression of tbx5 inhibits normal heart chamber development. Dev Biol , 223(1): 169–180 doi: 10.1006/dbio.2000.9748 pmid:10864469
|
49 |
Lickert H, Takeuchi J K, Von Both I, Walls J R, McAuliffe F, Adamson S L, Henkelman R M, Wrana J L, Rossant J, Bruneau B G (2004). Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature , 432(7013): 107–112 doi: 10.1038/nature03071 pmid:15525990
|
50 |
Lodén M, van Steensel B (2005). Whole-genome views of chromatin structure. Chromosome Res , 13(3): 289–298 doi: 10.1007/s10577-005-2166-z pmid:15868422
|
51 |
Lomvardas S, Thanos D (2001). Nucleosome sliding via TBP DNA binding in vivo. Cell , 106(6): 685–696 doi: 10.1016/S0092-8674(01)00490-1 pmid:11572775
|
52 |
Lou X, Deshwar A R, Crump J G, Scott I C (2011). Smarcd3b and Gata5 promote a cardiac progenitor fate in the zebrafish embryo. Development , 138(15): 3113–3123 doi: 10.1242/dev.064279 pmid:21715426
|
53 |
Luger K, M?der A W, Richmond R K, Sargent D F, Richmond T J (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature , 389(6648): 251–260 doi: 10.1038/38444 pmid:9305837
|
54 |
Maeda J, Yamagishi H, McAnally J, Yamagishi C, Srivastava D (2006). Tbx1 is regulated by forkhead proteins in the secondary heart field. Dev Dyn , 235(3): 701–710 doi: 10.1002/dvdy.20686 pmid:16444712
|
55 |
Martens J H, O’Sullivan R J, Braunschweig U, Opravil S, Radolf M, Steinlein P, Jenuwein T (2005). The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J , 24(4): 800–812 doi: 10.1038/sj.emboj.7600545 pmid:15678104
|
56 |
Meyer D, Birchmeier C (1995). Multiple essential functions of neuregulin in development. Nature 378: 386–390
|
57 |
Mizuguchi G, Shen X, Landry J, Wu W H, Sen S, Wu C (2004). ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science , 303(5656): 343–348 doi: 10.1126/science.1090701 pmid:14645854
|
58 |
Moorman A, Lamers W (1999). Development of the conduction system of the vertebrate heart. Heart development , 151: 195–207
|
59 |
Moorman A F, Christoffels V M (2003). Cardiac chamber formation: development, genes, and evolution. Physiol Rev , 83(4): 1223–1267 pmid:14506305
|
60 |
Morrison A J, Shen X (2009). Chromatin remodelling beyond transcription: the INO80 and SWR1 complexes. Nat Rev Mol Cell Biol , 10(6): 373–384 doi: 10.1038/nrm2693 pmid:19424290
|
61 |
Nie Z, Xue Y, Yang D, Zhou S, Deroo B J, Archer T K, Wang W (2000). A specificity and targeting subunit of a human SWI/SNF family-related chromatin-remodeling complex. Mol Cell Biol , 20(23): 8879–8888 doi: 10.1128/MCB.20.23.8879-8888.2000 pmid:11073988
|
62 |
Oyake T, Itoh K, Motohashi H, Hayashi N, Hoshino H, Nishizawa M, Yamamoto M, Igarashi K (1996). Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Mol Cell Biol , 16(11): 6083–6095 pmid:8887638
|
63 |
Park E J, Ogden L A, Talbot A, Evans S, Cai C L, Black B L, Frank D U, Moon A M (2006). Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling. Development , 133(12): 2419–2433 doi: 10.1242/dev.02367 pmid:16720879
|
64 |
Phan D, Rasmussen T L, Nakagawa O, McAnally J, Gottlieb P D, Tucker P W, Richardson J A, Bassel-Duby R, Olson E N (2005). BOP, a regulator of right ventricular heart development, is a direct transcriptional target of MEF2C in the developing heart. Development , 132(11): 2669–2678 doi: 10.1242/dev.01849 pmid:15890826
|
65 |
Polach K J, Widom J (1996). A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J Mol Biol , 258(5): 800–812 doi: 10.1006/jmbi.1996.0288 pmid:8637011
|
66 |
Poot R A, Bozhenok L, van den Berg D L, Steffensen S, Ferreira F, Grimaldi M, Gilbert N, Ferreira J, Varga-Weisz P D (2004). The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci. Nat Cell Biol , 6(12): 1236–1244 doi: 10.1038/ncb1196 pmid:15543136
|
67 |
Saha A, Wittmeyer J, Cairns B R (2006). Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol , 7(6): 437–447 doi: 10.1038/nrm1945 pmid:16723979
|
68 |
Schneider M D, Gaussin V, Lyons K M (2003). Tempting fate: BMP signals for cardiac morphogenesis. Cytokine Growth Factor Rev , 14(1): 1–4 doi: 10.1016/S1359-6101(02)00053-9 pmid:12485614
|
69 |
Simone C, Forcales S V, Hill D A, Imbalzano A N, Latella L, Puri P L (2004). p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci. Nature Genetics 36: 738–743
|
70 |
Singh M K, Christoffels V M, Dias J M, Trowe M O, Petry M, Schuster-Gossler K, Bürger A, Ericson J, Kispert A (2005). Tbx20 is essential for cardiac chamber differentiation and repression of Tbx2. Development , 132(12): 2697–2707 doi: 10.1242/dev.01854 pmid:15901664
|
71 |
Stankunas K, Hang C T, Tsun Z Y, Chen H, Lee N V, Wu J I, Shang C, Bayle J H, Shou W, Iruela-Arispe M L, Chang C P (2008). Endocardial Brg1 represses ADAMTS1 to maintain the microenvironment for myocardial morphogenesis. Dev Cell , 14(2): 298–311 doi: 10.1016/j.devcel.2007.11.018 pmid:18267097
|
72 |
Stennard F A, Costa M W, Lai D, Biben C, Furtado M B, Solloway M J, McCulley D J, Leimena C, Preis J I, Dunwoodie S L, Elliott D E, Prall O W, Black B L, Fatkin D, Harvey R P (2005). Murine T-box transcription factor Tbx20 acts as a repressor during heart development, and is essential for adult heart integrity, function and adaptation. Development , 132(10): 2451–2462 doi: 10.1242/dev.01799 pmid:15843414
|
73 |
Takeuchi J K, Bruneau B G (2009). Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature , 459(7247): 708–711 doi: 10.1038/nature08039 pmid:19396158
|
74 |
von Both I, Silvestri C, Erdemir T, Lickert H, Walls J R, Henkelman R M, Rossant J, Harvey R P, Attisano L, Wrana J L (2004). Foxh1 is essential for development of the anterior heart field. Dev Cell , 7(3): 331–345 doi: 10.1016/j.devcel.2004.07.023 pmid:15363409
|
75 |
Wang W, C?té J, Xue Y, Zhou S, Khavari P A, Biggar S R, Muchardt C, Kalpana G V, Goff S P, Yaniv M, Workman J L, Crabtree G R (1996a). Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J , 15(19): 5370–5382 pmid:8895581
|
76 |
Wang W, Xue Y, Zhou S, Kuo A, Cairns B R, Crabtree G R (1996b). Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev , 10(17): 2117–2130 doi: 10.1101/gad.10.17.2117 pmid:8804307
|
77 |
Wang Z, Zhai W, Richardson J A, Olson E N, Meneses J J, Firpo M T, Kang C, Skarnes W C, Tjian R (2004). Polybromo protein BAF180 functions in mammalian cardiac chamber maturation. Genes Dev , 18(24): 3106–3116 doi: 10.1101/gad.1238104 pmid:15601824
|
78 |
Wu J I, Lessard J, Crabtree G R (2009). Understanding the words of chromatin regulation. Cell , 136(2): 200–206 doi: 10.1016/j.cell.2009.01.009 pmid:19167321
|
79 |
Wu J I, Lessard J, Olave I A, Qiu Z, Ghosh A, Graef I A, Crabtree G R (2007). Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron , 56(1): 94–108 doi: 10.1016/j.neuron.2007.08.021 pmid:17920018
|
80 |
Xue Y, Canman J C, Lee C S, Nie Z, Yang D, Moreno G T, Young M K, Salmon E D, Wang W (2000). The human SWI/SNF-B chromatin-remodeling complex is related to yeast rsc and localizes at kinetochores of mitotic chromosomes. Proc Natl Acad Sci USA , 97(24): 13015–13020 doi: 10.1073/pnas.240208597 pmid:11078522
|
81 |
Yan Z, Cui K, Murray D M, Ling C, Xue Y, Gerstein A, Parsons R, Zhao K, Wang W (2005). PBAF chromatin-remodeling complex requires a novel specificity subunit, BAF200, to regulate expression of selective interferon-responsive genes. Genes Dev , 19(14): 1662–1667 doi: 10.1101/gad.1323805 pmid:15985610
|
82 |
Yoshimura K, Kitagawa H, Fujiki R, Tanabe M, Takezawa S, Takada I, Yamaoka I, Yonezawa M, Kondo T, Furutani Y, Yagi H, Yoshinaga S, Masuda T, Fukuda T, Yamamoto Y, Ebihara K, Li D Y, Matsuoka R, Takeuchi J K, Matsumoto T, Kato S (2009). Distinct function of 2 chromatin remodeling complexes that share a common subunit, Williams syndrome transcription factor (WSTF). Proc Natl Acad Sci USA , 106(23): 9280–9285 doi: 10.1073/pnas.0901184106 pmid:19470456
|
83 |
Zhao K, Wang W, Rando O J, Xue Y, Swiderek K, Kuo A, Crabtree G R (1998). Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell , 95(5): 625–636 doi: 10.1016/S0092-8674(00)81633-5 pmid:9845365
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|