|
|
Biomineralization proteins: from vertebrates to bacteria |
Lijun WANG( ), Marit NILSEN-HAMILTON |
Ames Laboratory, U. S. Department of Energy, Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA |
|
|
Abstract Biomineralization processes are frequently found in nature. Living organisms use various strategies to create highly ordered and hierarchical mineral structures under physiologic conditions in which the temperatures and pressures are much lower than those required to form the same mineralized structures by chemical synthesis. Although the mechanism of biomineralization remains elusive, proteins have been found responsible for the formation of such mineral structures in many cases. These proteins are active components in the process of biomineralization. The mechanisms by which their function can vary from providing active organic matrices that control the formation of specific mineral structures to being catalysts that facilitate the crystallization of certain metal ions. This review summarizes the current understanding of the functions of several representative biomineralization proteins from vertebrates to bacteria in the hopes of providing useful insight and guidance for further elucidation of mechanisms of biomineralization processes in living organisms.
|
Keywords
biomineralization proteins
structure-function relationships
self-assembly
nanoparticles
|
Corresponding Author(s):
WANG Lijun,Email:wlj@iastate.edu
|
Issue Date: 01 April 2013
|
|
1 |
Addadi L, Weiner S (1985). Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Natl Acad Sci USA , 82(12): 4110–4114 doi: 10.1073/pnas.82.12.4110 pmid:3858868
|
2 |
Aichmayer B, Margolis H C, Sigel R, Yamakoshi Y, Simmer J P, Fratzl P (2005). The onset of amelogenin nanosphere aggregation studied by small-angle X-ray scattering and dynamic light scattering. J Struct Biol , 151(3): 239–249 doi: 10.1016/j.jsb.2005.06.007 pmid:16125972
|
3 |
Amemiya Y, Arakaki A, Staniland S S, Tanaka T, Matsunaga T (2007). Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. Biomaterials , 28(35): 5381–5389 doi: 10.1016/j.biomaterials.2007.07.051 pmid:17720242
|
4 |
Arakaki A, Webb J, Matsunaga T (2003). A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J Biol Chem , 278(10): 8745–8750 doi: 10.1074/jbc.M211729200 pmid:12496282
|
5 |
Balkwill D L, Maratea D, Blakemore R P (1980). Ultrastructure of a magnetotactic spirillum. J Bacteriol , 141(3): 1399–1408 pmid:6245069
|
6 |
Bazylinski D A, Frankel R B (2004). Magnetosome formation in prokaryotes. Nat Rev Microbiol , 2(3): 217–230 doi: 10.1038/nrmicro842 pmid:15083157
|
7 |
Bell P E, Mills A L, Herman J S (1987). Biogeochemical donditions favoring magnetite formation during anaerobic iron reduction. Appl Environ Microbiol , 53(11): 2610–2616 pmid:16347480
|
8 |
Berthet-Colominas C, Miller A, White S W (1979). Structural study of the calcifying collagen in turkey leg tendons. J Mol Biol , 134(3): 431–445 doi: 10.1016/0022-2836(79)90362-0 pmid:537071
|
9 |
Blakemore R (1975). Magnetotactic bacteria. Science , 190(4212): 377–379 doi: 170679" target="_blank">10.1126/science. pmid:170679 pmid:170679
|
10 |
Blakemore R P, Maratea D, Wolfe R S (1979). Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J Bacteriol , 140(2): 720–729 pmid:500569
|
11 |
Bonucci E (2009). Calcification and silicification: a comparative survey of the early stages of biomineralization. J Bone Miner Metab , 27(3): 255–264 doi: 10.1007/s00774-009-0061-y pmid:19301088
|
12 |
Brinker C J, Scherrer G W (1990). Sol-gel science: the chemistry of sol-gel processing. New York: Academic Press
|
13 |
Brunner E, Gr?ger C, Lutz K, Richthammer P, Spinde K, Sumper M (2009). Analytical studies of silica biomineralization: towards an understanding of silica processing by diatoms. Appl Microbiol Biotechnol , 84(4): 607–616 doi: 10.1007/s00253-009-2140-3 pmid:19629468
|
14 |
Brutchey R L, Cheng G, Gu Q, Morse D E (2008). Positive temperature coefficient of resistivity in donor-doped BaTiO3 ceramics derived from nanocrystals synthesized at low temperature. Adv Mater , 20(5): 1029–1033 doi: 10.1002/adma.200701804
|
15 |
Brutchey R L, Morse D E (2006). Template-free, low-temperature synthesis of crystalline barium titanate nanoparticles under bio-inspired conditions. Angew Chem Int Ed Engl , 45(39): 6564–6566 doi: 10.1002/anie.200602571 pmid:16953502
|
16 |
Brutchey R L, Morse D E (2008). Silicatein and the translation of its molecular mechanism of biosilicification into low temperature nanomaterial synthesis. Chem Rev , 108(11): 4915–4934 doi: 10.1021/cr078256b pmid:18771329
|
17 |
Cha J N, Shimizu K, Zhou Y, Christiansen S C, Chmelka B F, Stucky G D, Morse D E (1999). Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA , 96(2): 361–365 doi: 10.1073/pnas.96.2.361 pmid:9892638
|
18 |
Chen C L, Bromley K M, Moradian-Oldak J, DeYoreo J J (2011). In situ AFM study of amelogenin assembly and disassembly dynamics on charged surfaces provides insights on matrix protein self-assembly. J Am Chem Soc , 133(43): 17406–17413 doi: 10.1021/ja206849c pmid:21916473
|
19 |
C?lfen H (2010). Biomineralization: A crystal-clear view. Nat Mater , 9(12): 960–961 doi: 10.1038/nmat2911 pmid:21102512
|
20 |
Cowan P M, McGavin S, North A C T (1955). The polypeptide chain configuration of collagen. Nature , 176(4492): 1062–1064 doi: 10.1038/1761062a0 pmid:13272747
|
21 |
Crookes-Goodson W J, Slocik J M, Naik R R (2008). Bio-directed synthesis and assembly of nanomaterials. Chem Soc Rev , 37(11): 2403–2412 doi: 10.1039/b702825n pmid:18949113
|
22 |
Daculsi G, Kerebel B (1978). High-resolution electron microscope study of human enamel crystallites: size, shape, and growth. J Ultrastruct Res , 65(2): 163–172 doi: 10.1016/S0022-5320(78)90053-9 pmid:731784
|
23 |
Dey A, Bomans P H H, Müller F A, Will J, Frederik P M, de With G, Sommerdijk N A J M (2010). The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat Mater , 9(12): 1010–1014 doi: 10.1038/nmat2900 pmid:21076415
|
24 |
Diekwisch T G H, Berman B J, Gentner S, Slavkin H C (1995). Initial enamel crystals are not spatially associated with mineralized dentine. Cell Tissue Res , 279(1): 149–167 doi: 10.1007/BF00300701 pmid:7895256
|
25 |
Du C, Falini G, Fermani S, Abbott C, Moradian-Oldak J (2005a). Corrections and clarifications. Science , 309(5744): 2166 doi: 10.1126/science.309.5744.2166b pmid:16195445
|
26 |
Du C, Falini G, Fermani S, Abbott C, Moradian-Oldak J (2005b). Supramolecular assembly of amelogenin nanospheres into birefringent microribbons. Science , 307(5714): 1450–1454 doi: 10.1126/science.1105675 pmid:15746422
|
27 |
Dugdale R C, Wilkerson F P (1998). Silicate regulation of new production in the equatorial Pacific upwelling. Nature , 391(6664): 270–273 doi: 10.1038/34630
|
28 |
Dunin-Borkowski R E, McCartney M R, Frankel R B, Bazylinski D A, Pósfai M, Buseck P R (1998). Magnetic microstructure of magnetotactic bacteria by electron holography. Science , 282(5395): 1868–1870 doi: 10.1126/science.282.5395.1868 pmid:9836632
|
29 |
Eastoe J E (1979). Enamel protein chemistry—past, present and future. J Dent Res , 58(Spec Issue B suppl): 753–764 doi: 10.1177/00220345790580022701 pmid:368095
|
30 |
Evans J W, Thiel P A (2010). Chemistry. A little chemistry helps the big get bigger. Science , 330(6004): 599–600 doi: 10.1126/science.1191665 pmid:21030638
|
31 |
Faivre D, B?ttger L H, Matzanke B F, Schüler D (2007). Intracellular magnetite biomineralization in bacteria proceeds by a distinct pathway involving membrane-bound ferritin and an iron(II) species. Angew Chem Int Ed Engl , 46(44): 8495–8499 doi: 10.1002/anie.200700927 pmid:17902080
|
32 |
Faivre D, Schüler D (2008). Magnetotactic bacteria and magnetosomes. Chem Rev , 108(11): 4875–4898 doi: 10.1021/cr078258w pmid:18855486
|
33 |
Falciatore A, Bowler C (2002). Revealing the molecular secrets of marine diatoms. Annu Rev Plant Biol , 53(1): 109–130 doi: 10.1146/annurev.arplant.53.091701.153921 pmid:12221969
|
34 |
Fincham A G, Leung W, Tan J and Moradian-Oldak J (1998). Does amelogenin nanosphere assembly proceed through intermediary-sized structures? Connect Tissue Res , 38(1–4): 237–240 ; discussion 241–236
|
35 |
Fincham A G, Moradian-Oldak J, Diekwisch T G, Lyaruu D M, Wright J T, Bringas P Jr, Slavkin H C (1995). Evidence for amelogenin “nanospheres” as functional components of secretory-stage enamel matrix. J Struct Biol , 115(1): 50–59 doi: 10.1006/jsbi.1995.1029 pmid:7577231
|
36 |
Fincham A G, Moradian-Oldak J, Simmer J P, Sarte P, Lau E C, Diekwisch T, Slavkin H C (1994). Self-assembly of a recombinant amelogenin protein generates supramolecular structures. J Struct Biol , 112(2): 103–109 doi: 10.1006/jsbi.1994.1011 pmid:8060728
|
37 |
Frankel R B, Bazylinski D A, Johnson M S, Taylor B L (1997). Magneto-aerotaxis in marine coccoid bacteria. Biophys J , 73(2): 994–1000 doi: 10.1016/S0006-3495(97)78132-3 pmid:9251816
|
38 |
Frankel R B, Blakemore R P, Wolfe R S (1979). Magnetite in freshwater magnetotactic bacteria. Science , 203(4387): 1355–1356 doi: 10.1126/science.203.4387.1355 pmid:17780480
|
39 |
Friddle R W, Battle K, Trubetskoy V, Tao J, Salter E A, Moradian-Oldak J, De Yoreo J J, Wierzbicki A (2011). Single-molecule determination of the face-specific adsorption of Amelogenin’s C-terminus on hydroxyapatite. Angew Chem Int Ed Engl , 50(33): 7541–7545 doi: 10.1002/anie.201100181 pmid:21710666
|
40 |
Glimcher M J (1959). Molecular biology of mineralized tissues with particular reference to bone. Rev Mod Phys , 31(2): 359–393 doi: 10.1103/RevModPhys.31.359
|
41 |
Glimcher M J, Bonar L C, Grynpas M D, Landis W J, Roufosse A H (1981). Recent studies of bone mineral: Is the amorphous calcium phosphate theory valid? J Cryst Growth , 53(1): 100–119 doi: 10.1016/0022-0248(81)90058-0
|
42 |
Gorby Y A, Beveridge T J, Blakemore R P (1988). Characterization of the bacterial magnetosome membrane. J Bacteriol , 170(2): 834–841 pmid:3123464
|
43 |
Gorski J P (1992). Acidic phosphoproteins from bone matrix: a structural rationalization of their role in biomineralization. Calcif Tissue Int , 50(5): 391–396 doi: 10.1007/BF00296767 pmid:1596774
|
44 |
Gower L B (2008). Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem Rev , 108(11): 4551–4627 doi: 10.1021/cr800443h pmid:19006398
|
45 |
Grynpas M D, Omelon S (2007). Transient precursor strategy or very small biological apatite crystals? Bone , 41(2): 162–164 doi: 10.1016/j.bone.2007.04.176 pmid:17537689
|
46 |
Hildebrand M (2003). Biological processing of nanostructured silica in diatoms. Prog Org Coat , 47(3–4): 256–266 doi: 10.1016/S0300-9440(03)00142-5
|
47 |
Hildebrand M (2008). Diatoms, biomineralization processes, and genomics. Chem Rev , 108(11): 4855–4874 doi: 10.1021/cr078253z pmid:18937513
|
48 |
Hodge A, Petruska J (1963). Aspects of Protein Structure. New York: Academic Press
|
49 |
Hulmes D J, Wess T J, Prockop D J, Fratzl P (1995). Radial packing, order, and disorder in collagen fibrils. Biophys J , 68(5): 1661–1670 doi: 10.1016/S0006-3495(95)80391-7 pmid:7612808
|
50 |
Kaluzhnaya O, Belikova A, Podolskaya E, Krasko A, Müller W, Belikov S (2007). Identification of silicateins in freshwater sponge Lubomirskia baicalensis. Mol Biol , 41(4): 554–561 doi: 10.1134/S002689330704005X
|
51 |
Katz E P, Li S T (1973). Structure and function of bone collagen fibrils. J Mol Biol , 80(1): 1–15 doi: 10.1016/0022-2836(73)90230-1 pmid:4758070
|
52 |
Kisailus D, Truong Q, Amemiya Y, Weaver J C, Morse D E (2006). Self-assembled bifunctional surface mimics an enzymatic and templating protein for the synthesis of a metal oxide semiconductor. Proc Natl Acad Sci USA , 103(15): 5652–5657 doi: 10.1073/pnas.0508488103 pmid:16585518
|
53 |
Komeili A (2007). Molecular mechanisms of magnetosome formation. Annu Rev Biochem , 76(1): 351–366 doi: 10.1146/annurev.biochem.74.082803.133444 pmid:17371202
|
54 |
Komeili A (2012). Molecular mechanisms of compartmentalization and biomineralization in magnetotactic bacteria. FEMS Microbiol Rev , 36(1): 232–255 doi: 10.1111/j.1574-6976.2011.00315.x pmid:22092030
|
55 |
Krasko A, Lorenz B, Batel R, Schr?der H C, Müller I M, Müller W E G (2000). Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem , 267(15): 4878–4887 doi: 10.1046/j.1432-1327.2000.01547.x pmid:10903523
|
56 |
Krasko A, Schr?der H C, Batel R, Grebenjuk V A, Steffen R, Müller I M, Müller W E G (2002). Iron induces proliferation and morphogenesis in primmorphs from the marine sponge Suberites domuncula. DNA Cell Biol , 21(1): 67–80 doi: 10.1089/10445490252810320 pmid:11879581
|
57 |
Kr?ger N, Poulsen N (2008). Diatoms-from cell wall biogenesis to nanotechnology. Annu Rev Genet , 42(1): 83–107 doi: 10.1146/annurev.genet.41.110306.130109 pmid:18983255
|
58 |
Landis W J, Silver F H (2009). Mineral deposition in the extracellular matrices of vertebrate tissues: identification of possible apatite nucleation sites on type I collagen. Cells Tissues Organs , 189(1–4): 20–24 doi: 10.1159/000151454 pmid:18703872
|
59 |
Levi C, Barton J L, Guillemet C, Bras E, Lehuede P (1989). A remarkably strong natural glassy rod: the anchoring spicule of the Monorhaphis sponge. J Mater Sci Lett , 8(3): 337–339 doi: 10.1007/BF00725516
|
60 |
Mahamid J, Aichmayer B, Shimoni E, Ziblat R, Li C, Siegel S, Paris O, Fratzl P, Weiner S, Addadi L (2010). Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc Natl Acad Sci USA , 107(14): 6316–6321 doi: 10.1073/pnas.0914218107 pmid:20308589
|
61 |
Matsunaga S, Sakai R, Jimbo M, Kamiya H (2007). Long-chain polyamines (LCPAs) from marine sponge: possible implication in spicule formation. ChemBioChem , 8(14): 1729–1735 doi: 10.1002/cbic.200700305 pmid:17683052
|
62 |
Matsunaga T, Okamura Y, Fukuda Y, Wahyudi A T, Murase Y, Takeyama H (2005). Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1. DNA Res , 12(3): 157–166 doi: 10.1093/dnares/dsi002 pmid:16303747
|
63 |
Miller A and Parker S B (1984). Collagen: The organic matrix of bone. Philos Trans R Soc, B 304(1121): 455–477
|
64 |
Moradian-Oldak J (2001). Amelogenins: assembly, processing and control of crystal morphology. Matrix Biol , 20(5-6): 293–305 doi: 10.1016/S0945-053X(01)00154-8 pmid:11566263
|
65 |
Moradian-Oldak J, Bouropoulos N, Wang L, Gharakhanian N (2002). Analysis of self-assembly and apatite binding properties of amelogenin proteins lacking the hydrophilic C-terminal. Matrix Biol , 21(2): 197–205 doi: 10.1016/S0945-053X(01)00190-1 pmid:11852235
|
66 |
Moradian-Oldak J, Du C, Falini G (2006). On the formation of amelogenin microribbons. Eur J Oral Sci , 114(s1 Suppl 1): 289–296 , discussion 327–329, 382 doi: 10.1111/j.1600-0722.2006.00285.x pmid:16674701
|
67 |
Moradian-Oldak J, Jimenez I, Maltby D, Fincham A G (2001). Controlled proteolysis of amelogenins reveals exposure of both carboxy- and amino-terminal regions. Biopolymers , 58(7): 606–616 doi: 10.1002/1097-0282(200106)58:7<606::AID-BIP1034>3.0.CO;2-8 pmid:11285557
|
68 |
Moradian-Oldak J, Paine M L, Lei Y P, Fincham A G, Snead M L (2000). Self-assembly properties of recombinant engineered amelogenin proteins analyzed by dynamic light scattering and atomic force microscopy. J Struct Biol , 131(1): 27–37 doi: 10.1006/jsbi.2000.4237 pmid:10945967
|
69 |
Müller W E G, Boreiko A, Schlossmacher U, Wang X, Tahir M N, Tremel W, Brandt D, Kaandorp J A, Schr?der H C (2007). Fractal-related assembly of the axial filament in the demosponge Suberites domuncula: relevance to biomineralization and the formation of biogenic silica. Biomaterials , 28(30): 4501–4511 doi: 10.1016/j.biomaterials.2007.06.030 pmid:17628661
|
70 |
Murat D, Byrne M, Komeili A (2010a). Cell biology of prokaryotic organelles. Cold Spring Harb Perspect Biol , 2(10): a000422 doi: 10.1101/cshperspect.a000422 pmid:20739411
|
71 |
Murat D, Quinlan A, Vali H, Komeili A (2010b). Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc Natl Acad Sci USA , 107(12): 5593–5598 doi: 10.1073/pnas.0914439107 pmid:20212111
|
72 |
Murr M M, Morse D E (2005). Fractal intermediates in the self-assembly of silicatein filaments. Proc Natl Acad Sci USA , 102(33): 11657–11662 doi: 10.1073/pnas.0503968102 pmid:16091468
|
73 |
Nies D H (2011). How iron is transported into magnetosomes. Mol Microbiol , 82(4): 792–796 doi: 10.1111/j.1365-2958.2011.07864.x pmid:21999528
|
74 |
Nudelman F, Pieterse K, George A, Bomans P H, Friedrich H, Brylka L J, Hilbers P A, de With G, Sommerdijk N A (2010). The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater , 9(12): 1004–1009 doi: 10.1038/nmat2875 pmid:20972429
|
75 |
Ofer S, Nowik I, Bauminger E R, Papaefthymiou G C, Frankel R B, Blakemore R P (1984). Magnetosome dynamics in magnetotactic bacteria. Biophys J , 46(1): 57–64 doi: 10.1016/S0006-3495(84)83998-3 pmid:6743757
|
76 |
Olszta M J, Cheng X, Jee S S, Kumar R, Kim Y-Y, Kaufman M J, Douglas E P and Gower L B (2007). Bone structure and formation: A new perspective. Mater Sci Eng, R 58(3–5): 77–116
|
77 |
Pascal J L, Clementine G, Jacques L, Thibaud C (2005). Mimicking biogenic silica nanostructures formation. Curr Nanosci , 1(1): 73–83 doi: 10.2174/1573413052953156
|
78 |
Penninga I, de Waard H, Moskowitz B M, Bazylinski D A, Frankel R B (1995). Remanence measurements on individual magnetotactic bacteria using a pulsed magnetic field. J Magn Magn Mater , 149(3): 279–286 doi: 10.1016/0304-8853(95)00078-X
|
79 |
Piez K A (1965). Characterization of a collagen from codfish skin containing three chromatographically different α chains. Biochemistry , 4(12): 2590–2596 doi: 10.1021/bi00888a007 pmid:5880670
|
80 |
Piez K A, Lewis M S, Martin G R, Gross J (1961). Subunits of the collagen molecule. Biochim Biophys Acta , 53(3): 596–598 doi: 10.1016/0006-3002(61)90226-8 pmid:14486552
|
81 |
Posner A S, Betts F (1975). Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acc Chem Res , 8(8): 273– 281 doi: 10.1021/ar50092a003
|
82 |
Pozzolini M, Sturla L, Cerrano C, Bavestrello G, Camardella L, Parodi A M, Raheli F, Benatti U, Müller W E G, Giovine M (2004). Molecular cloning of silicatein gene from marine sponge Petrosia ficiformis (Porifera, Demospongiae) and development of primmorphs as a model for biosilicification studies. Mar Biotechnol (NY) , 6(6): 594–603 doi: 10.1007/s10126-004-3036-y pmid:15747092
|
83 |
Prozorov T, Mallapragada S, Narasimhan B, Wang L, Palo P, Nilsen-Hamilton M, Williams T, Bazylinski D, Prozorov R, Canfield P (2007a). Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystals. Adv Funct Mater , 17(6): 951–957 doi: 10.1002/adfm.200600448
|
84 |
Prozorov T, Palo P, Wang L, Nilsen-Hamilton M, Jones D, Orr D, Mallapragada S K, Narasimhan B, Canfield P C, Prozorov R (2007b). Cobalt ferrite nanocrystals: out-performing magnetotactic bacteria. ACS Nano , 1(3): 228–233 doi: 10.1021/nn700194h pmid:19206653
|
85 |
Rabuffetti F A, Lee J S, Brutchey R L (2012). Vapor diffusion sol-gel synthesis of fluorescent perovskite oxide nanocrystals. Adv Mater , 24(11): 1434–1438 doi: 10.1002/adma.201104645 pmid:22314549
|
86 |
Ramachandran G N, Kartha G (1955). Structure of collagen. Nature , 176(4482): 593–595 doi: 10.1038/176593a0 pmid:13265783
|
87 |
Rich A, Crick F H C (1955). The structure of collagen. Nature , 176(4489): 915–916 doi: 10.1038/176915a0 pmid:13272717
|
88 |
Richter M, Kube M, Bazylinski D A, Lombardot T, Gl?ckner F O, Reinhardt R, Schüler D (2007). Comparative genome analysis of four magnetotactic bacteria reveals a complex set of group-specific genes implicated in magnetosome biomineralization and function. J Bacteriol , 189(13): 4899–4910 doi: 10.1128/JB.00119-07 pmid:17449609
|
89 |
Schr?der H C, Perovi?-Ottstadt S, Rothenberger M, Wiens M, Schwertner H, Batel R, Korzhev M, Müller I M, Müller W E G (2004a). Silica transport in the demosponge Suberites domuncula: fluorescence emission analysis using the PDMPO probe and cloning of a potential transporter. Biochem J , 381(Pt 3): 665–673 doi: 10.1042/BJ20040463 pmid:15128286
|
90 |
Schr?der H C, Perovi?-Ottstadt S, Wiens M, Batel R, Müller I M, Müller W E (2004b). Differentiation capacity of epithelial cells in the sponge Suberites domuncula. Cell Tissue Res , 316(2): 271–280 doi: 10.1007/s00441-004-0869-7 pmid:15024642
|
91 |
Schüler D (2008). Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiol Rev , 32(4): 654–672 doi: 10.1111/j.1574-6976.2008.00116.x pmid:18537832
|
92 |
Shaw W J, Campbell A A, Paine M L, Snead M L (2004). The COOH terminus of the amelogenin, LRAP, is oriented next to the hydroxyapatite surface. J Biol Chem , 279(39): 40263–40266 doi: 10.1074/jbc.C400322200 pmid:15299015
|
93 |
Shimizu K, Cha J, Stucky G D, Morse D E (1998). Silicatein α: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA , 95(11): 6234–6238 doi: 10.1073/pnas.95.11.6234 pmid:9600948
|
94 |
Simmer J P, Fincham A G (1995). Molecular mechanisms of dental enamel formation. Crit Rev Oral Biol Med , 6(2): 84–108 doi: 10.1177/10454411950060020701 pmid:7548623
|
95 |
Simpson T L (1984). The cell biology of sponges. New York: Springer Publishing
|
96 |
Staniland S, Ward B, Harrison A, van der Laan G, Telling N (2007). Rapid magnetosome formation shown by real-time X-ray magnetic circular dichroism. Proc Natl Acad Sci USA , 104(49): 19524–19528 doi: 10.1073/pnas.0704879104 pmid:18032611
|
97 |
St?ber W, Fink A, Bohn E (1968). Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci , 26(1): 62–69 doi: 10.1016/0021-9797(68)90272-5
|
98 |
Sumper M, Brunner E (2006). Learning from diatoms: Nature's tools for the production of nanostructured silica. Adv Funct Mater , 16(1): 17–26 doi: 10.1002/adfm.200500616
|
99 |
Tacke R (1999). Milestones in the biochemistry of silicon: From basic research to biotechnological applications. Angew Chem Int Ed Engl , 38(20): 3015–3018 doi: 10.1002/(SICI)1521-3773(19991018)38:20<3015::AID-ANIE3015>3.0.CO;2-X pmid:10540406
|
100 |
Tanaka M, Mazuyama E, Arakaki A, Matsunaga T (2011). MMS6 protein regulates crystal morphology during nano-sized magnetite biomineralization in vivo. J Biol Chem , 286(8): 6386–6392 doi: 10.1074/jbc.M110.183434 pmid:21169637
|
101 |
Tarasevich B J, Lea S, Bernt W, Engelhard M, Shaw W J (2009). Adsorption of amelogenin onto self-assembled and fluoroapatite surfaces. J Phys Chem B , 113(7): 1833–1842 doi: 10.1021/jp804548x pmid:19199690
|
102 |
Tarasevich B J, Lea S, Shaw W J (2010). The leucine rich amelogenin protein (LRAP) adsorbs as monomers or dimers onto surfaces. J Struct Biol , 169(3): 266–276 doi: 10.1016/j.jsb.2009.10.007 pmid:19850130
|
103 |
Termine J D, Kleinman H K, Whitson S W, Conn K M, McGarvey M L, Martin G R (1981). Osteonectin, a bone-specific protein linking mineral to collagen. Cell , 26(1 Pt 1): 99–105 doi: 10.1016/0092-8674(81)90037-4 pmid:7034958
|
104 |
Termine J D, Posner A S (1966). Infrared analysis of rat bone: age dependency of amorphous and crystalline mineral fractions. Science , 153(3743): 1523–1525 doi: 10.1126/science.153.3743.1523 pmid:5917783
|
105 |
Thiel P A, Shen M, Liu D J, Evans J W (2009). Coarsening of two-dimensional nanoclusters on metal surfaces. J Phys Chem C , 113(13): 5047–5067 doi: 10.1021/jp8063849
|
106 |
Traub W, Arad T, Weiner S (1989). Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers. Proc Natl Acad Sci USA , 86(24): 9822–9826 doi: 10.1073/pnas.86.24.9822 pmid:2602376
|
107 |
Uebe R, Junge K, Henn V, Poxleitner G, Katzmann E, Plitzko J M, Zarivach R, Kasama T, Wanner G, Pósfai M, B?ttger L, Matzanke B, Schüler D (2011). The cation diffusion facilitator proteins MamB and MamM of Magnetospirillum gryphiswaldense have distinct and complex functions, and are involved in magnetite biomineralization and magnetosome membrane assembly. Mol Microbiol , 82(4): 818–835 doi: 10.1111/j.1365-2958.2011.07863.x pmid:22007638
|
108 |
Wang L, Prozorov T, Palo P E, Liu X, Vaknin D, Prozorov R, Mallapragada S, Nilsen-Hamilton M (2012a). Self-assembly and biphasic iron-binding characteristics of Mms6, a bacterial protein that promotes the formation of superparamagnetic magnetite nanoparticles of uniform size and shape. Biomacromolecules , 13(1): 98– 105 doi: 10.1021/bm201278u pmid:22112204
|
109 |
Wang W, Bu W, Wang L, Palo P E, Mallapragada S, Nilsen-Hamilton M, Vaknin D (2012b). Interfacial properties and iron binding to bacterial proteins that promote the growth of magnetite nanocrystals: X-ray reflectivity and surface spectroscopy studies. Langmuir , 28(9): 4274–4282 doi: 10.1021/la205074n pmid:22316331
|
110 |
Weaver J C, Morse D E (2003). Molecular biology of demosponge axial filaments and their roles in biosilicification. Microsc Res Tech , 62(4): 356–367 doi: 10.1002/jemt.10401 pmid:14534908
|
111 |
Weiner S (2006). Transient precursor strategy in mineral formation of bone. Bone , 39(3): 431–433 doi: 10.1016/j.bone.2006.02.058 pmid:16581322
|
112 |
Weiner S (2008). Biomineralization: a structural perspective. J Struct Biol , 163(3): 229–234 doi: 10.1016/j.jsb.2008.02.001 pmid:18359639
|
113 |
Weiner S, Addadi L (1991). Acidic macromolecules of mineralized tissues: the controllers of crystal formation. Trends Biochem Sci , 16(7): 252–256 doi: 10.1016/0968-0004(91)90098-G pmid:1926334
|
114 |
Wheeler E J, Lewis D (1977). An x-ray study of the paracrystalline nature of bone apatite. Calcif Tissue Res , 24(3): 243–248 doi: 10.1007/BF02223323 pmid:597764
|
115 |
Yuk J M, Park J, Ercius P, Kim K, Hellebusch D J, Crommie M F, Lee J Y, Zettl A, Alivisatos A P (2012). High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science , 336(6077): 61–64 doi: 10.1126/science.1217654 pmid:22491849
|
116 |
Zeichner-David M, Diekwisch T, Fincham A, Lau E, MacDougall M, Moradian-Oldak J, Simmer J, Snead M, Slavkin H C (1995). Control of ameloblast differentiation. Int J Dev Biol , 39(1): 69–92 pmid:7626423
|
117 |
Zhou Y, Shimizu K, Cha J N, Stucky G D, Morse D E (1999). Efficient catalysis of polysiloxane synthesis by silicatein α requires specific hydroxy and imidazole functionalities. Angew Chem Int Ed Engl, 38(6): 779–782 doi: 10.1002/(SICI)1521-3773(19990315)38:6<779::AID-ANIE779>3.0.CO;2-#
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|