Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2013, Vol. 8 Issue (2) : 234-246    https://doi.org/10.1007/s11515-012-1205-3
REVIEW
Biomineralization proteins: from vertebrates to bacteria
Lijun WANG(), Marit NILSEN-HAMILTON
Ames Laboratory, U. S. Department of Energy, Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
 Download: PDF(431 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Biomineralization processes are frequently found in nature. Living organisms use various strategies to create highly ordered and hierarchical mineral structures under physiologic conditions in which the temperatures and pressures are much lower than those required to form the same mineralized structures by chemical synthesis. Although the mechanism of biomineralization remains elusive, proteins have been found responsible for the formation of such mineral structures in many cases. These proteins are active components in the process of biomineralization. The mechanisms by which their function can vary from providing active organic matrices that control the formation of specific mineral structures to being catalysts that facilitate the crystallization of certain metal ions. This review summarizes the current understanding of the functions of several representative biomineralization proteins from vertebrates to bacteria in the hopes of providing useful insight and guidance for further elucidation of mechanisms of biomineralization processes in living organisms.

Keywords biomineralization proteins      structure-function relationships      self-assembly      nanoparticles     
Corresponding Author(s): WANG Lijun,Email:wlj@iastate.edu   
Issue Date: 01 April 2013
 Cite this article:   
Lijun WANG,Marit NILSEN-HAMILTON. Biomineralization proteins: from vertebrates to bacteria[J]. Front Biol, 2013, 8(2): 234-246.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-012-1205-3
https://academic.hep.com.cn/fib/EN/Y2013/V8/I2/234
Fig.1  Schematic representation of surface-directed mineralization of calcium phosphate. Stage 1: loose aggregation of prenucleation clusters in equilibrium with ions in solution. Stage 2: prenucleation clusters aggregate in the presence of the monolayer with loose aggregates still present in solution. Stage 3: aggregation leads to densification near the monolayer. Stage 4: nucleation of amorphous spherical particles only at the monolayer surface. Stage 5: development of crystallinity following the oriented nucleation directed by the monolayer (). Reprinted by permission from Macmillan Publishers Ltd: Nat Mater, copyright ().
Fig.2  Schematic representation of amelogenin. Schematic presentation of some structural features of amelogenin protein based on previous reports and recent studies on self-assembly and limited proteolysis experiments. Numbers in parentheses refer to amino acids in amelogenin sequences in different species. Proteolytic activities by enamelysin occur at the GWL, FSM and WPA sites. The molecules contain one phosphorylated serine at position 16. When the absence of the hydrophilic C-terminal domain mineral binding domain. causes fusion of amelogenin nanospheres, the absence of the hydrophobic segment between FSM and WPA locus results in the formation of small nanospheres and fusion does not occur (). Reprinted with permission from Elsevier, copyright ().
Fig.3  Model of the fractal assembly of silicatein. Silicatein monomers associate into oligomers via disulfide bonds. The oligomers form fractal networks by diffusion-limited aggregation. As soon as the fractal network is formed, the close proximity and reduction in degrees of freedom drives the condensation and organization into a filament (). Reprinted with permission from National Academy of Sciences, copyright ().
Fig.4  Mechanism of silicatein catalyzed condensation of silicon ethoxide. Proposed reaction mechanism of silicon ethoxide condensation catalyzed by silicatein α, based on the well characterized mechanism of catalysis by the Ser/His and Cys/His active-site proteases. R= phenyl- or methyl- for the silicon triethoxide substrates, and R=CHCH—O— (= EtO—) for TEOS. Hydrogen-bonding between the imidazole nitrogen of the conserved histidine and the hydroxyl of the active-site serine is proposed to increase the nucleophilicity of the serine oxygen, potentiating its attack on the silicon atom of the substrate. Nucleophilic attack on the silicon displaces ethanol, forming a covalent protein—O—Si intermediate (potentially stabilized as the pentavalent silicon adduct via donor bond formation with the imidazole nitrogen). The addition of water completes hydrolysis of the first alkoxide bond. Condensation initiated by nucleophilic attack of the released Si—O— on the silicon of the second substrate molecule then forms the disiloxane product (). Reprinted with permission from National Academy of Sciences, copyright ().
Fig.5  Mms6, an iron-binding protein that forms magnetic nanoparticles. (A) Sequence of mature Mms6. Acidic amino acid residues are colored in red, basic amino acid residues are colored in blue and polar uncharged amino acid residues are colored in green. (B) Two phases of iron binding by Mms6. Binding of Mms6 to free ferric iron was measured using FeCl with the filter assay at pH 3. Inset: Hill plot. ●: Mms6, ?, ?:Control proteins (). Reprinted with permission from American Chemical Society, copyright ().
1 Addadi L, Weiner S (1985). Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Natl Acad Sci USA , 82(12): 4110–4114
doi: 10.1073/pnas.82.12.4110 pmid:3858868
2 Aichmayer B, Margolis H C, Sigel R, Yamakoshi Y, Simmer J P, Fratzl P (2005). The onset of amelogenin nanosphere aggregation studied by small-angle X-ray scattering and dynamic light scattering. J Struct Biol , 151(3): 239–249
doi: 10.1016/j.jsb.2005.06.007 pmid:16125972
3 Amemiya Y, Arakaki A, Staniland S S, Tanaka T, Matsunaga T (2007). Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. Biomaterials , 28(35): 5381–5389
doi: 10.1016/j.biomaterials.2007.07.051 pmid:17720242
4 Arakaki A, Webb J, Matsunaga T (2003). A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J Biol Chem , 278(10): 8745–8750
doi: 10.1074/jbc.M211729200 pmid:12496282
5 Balkwill D L, Maratea D, Blakemore R P (1980). Ultrastructure of a magnetotactic spirillum. J Bacteriol , 141(3): 1399–1408
pmid:6245069
6 Bazylinski D A, Frankel R B (2004). Magnetosome formation in prokaryotes. Nat Rev Microbiol , 2(3): 217–230
doi: 10.1038/nrmicro842 pmid:15083157
7 Bell P E, Mills A L, Herman J S (1987). Biogeochemical donditions favoring magnetite formation during anaerobic iron reduction. Appl Environ Microbiol , 53(11): 2610–2616
pmid:16347480
8 Berthet-Colominas C, Miller A, White S W (1979). Structural study of the calcifying collagen in turkey leg tendons. J Mol Biol , 134(3): 431–445
doi: 10.1016/0022-2836(79)90362-0 pmid:537071
9 Blakemore R (1975). Magnetotactic bacteria. Science , 190(4212): 377–379
doi: 170679" target="_blank">10.1126/science. pmid:170679 pmid:170679
10 Blakemore R P, Maratea D, Wolfe R S (1979). Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J Bacteriol , 140(2): 720–729
pmid:500569
11 Bonucci E (2009). Calcification and silicification: a comparative survey of the early stages of biomineralization. J Bone Miner Metab , 27(3): 255–264
doi: 10.1007/s00774-009-0061-y pmid:19301088
12 Brinker C J, Scherrer G W (1990). Sol-gel science: the chemistry of sol-gel processing. New York: Academic Press
13 Brunner E, Gr?ger C, Lutz K, Richthammer P, Spinde K, Sumper M (2009). Analytical studies of silica biomineralization: towards an understanding of silica processing by diatoms. Appl Microbiol Biotechnol , 84(4): 607–616
doi: 10.1007/s00253-009-2140-3 pmid:19629468
14 Brutchey R L, Cheng G, Gu Q, Morse D E (2008). Positive temperature coefficient of resistivity in donor-doped BaTiO3 ceramics derived from nanocrystals synthesized at low temperature. Adv Mater , 20(5): 1029–1033
doi: 10.1002/adma.200701804
15 Brutchey R L, Morse D E (2006). Template-free, low-temperature synthesis of crystalline barium titanate nanoparticles under bio-inspired conditions. Angew Chem Int Ed Engl , 45(39): 6564–6566
doi: 10.1002/anie.200602571 pmid:16953502
16 Brutchey R L, Morse D E (2008). Silicatein and the translation of its molecular mechanism of biosilicification into low temperature nanomaterial synthesis. Chem Rev , 108(11): 4915–4934
doi: 10.1021/cr078256b pmid:18771329
17 Cha J N, Shimizu K, Zhou Y, Christiansen S C, Chmelka B F, Stucky G D, Morse D E (1999). Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA , 96(2): 361–365
doi: 10.1073/pnas.96.2.361 pmid:9892638
18 Chen C L, Bromley K M, Moradian-Oldak J, DeYoreo J J (2011). In situ AFM study of amelogenin assembly and disassembly dynamics on charged surfaces provides insights on matrix protein self-assembly. J Am Chem Soc , 133(43): 17406–17413
doi: 10.1021/ja206849c pmid:21916473
19 C?lfen H (2010). Biomineralization: A crystal-clear view. Nat Mater , 9(12): 960–961
doi: 10.1038/nmat2911 pmid:21102512
20 Cowan P M, McGavin S, North A C T (1955). The polypeptide chain configuration of collagen. Nature , 176(4492): 1062–1064
doi: 10.1038/1761062a0 pmid:13272747
21 Crookes-Goodson W J, Slocik J M, Naik R R (2008). Bio-directed synthesis and assembly of nanomaterials. Chem Soc Rev , 37(11): 2403–2412
doi: 10.1039/b702825n pmid:18949113
22 Daculsi G, Kerebel B (1978). High-resolution electron microscope study of human enamel crystallites: size, shape, and growth. J Ultrastruct Res , 65(2): 163–172
doi: 10.1016/S0022-5320(78)90053-9 pmid:731784
23 Dey A, Bomans P H H, Müller F A, Will J, Frederik P M, de With G, Sommerdijk N A J M (2010). The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat Mater , 9(12): 1010–1014
doi: 10.1038/nmat2900 pmid:21076415
24 Diekwisch T G H, Berman B J, Gentner S, Slavkin H C (1995). Initial enamel crystals are not spatially associated with mineralized dentine. Cell Tissue Res , 279(1): 149–167
doi: 10.1007/BF00300701 pmid:7895256
25 Du C, Falini G, Fermani S, Abbott C, Moradian-Oldak J (2005a). Corrections and clarifications. Science , 309(5744): 2166
doi: 10.1126/science.309.5744.2166b pmid:16195445
26 Du C, Falini G, Fermani S, Abbott C, Moradian-Oldak J (2005b). Supramolecular assembly of amelogenin nanospheres into birefringent microribbons. Science , 307(5714): 1450–1454
doi: 10.1126/science.1105675 pmid:15746422
27 Dugdale R C, Wilkerson F P (1998). Silicate regulation of new production in the equatorial Pacific upwelling. Nature , 391(6664): 270–273
doi: 10.1038/34630
28 Dunin-Borkowski R E, McCartney M R, Frankel R B, Bazylinski D A, Pósfai M, Buseck P R (1998). Magnetic microstructure of magnetotactic bacteria by electron holography. Science , 282(5395): 1868–1870
doi: 10.1126/science.282.5395.1868 pmid:9836632
29 Eastoe J E (1979). Enamel protein chemistry—past, present and future. J Dent Res , 58(Spec Issue B suppl): 753–764
doi: 10.1177/00220345790580022701 pmid:368095
30 Evans J W, Thiel P A (2010). Chemistry. A little chemistry helps the big get bigger. Science , 330(6004): 599–600
doi: 10.1126/science.1191665 pmid:21030638
31 Faivre D, B?ttger L H, Matzanke B F, Schüler D (2007). Intracellular magnetite biomineralization in bacteria proceeds by a distinct pathway involving membrane-bound ferritin and an iron(II) species. Angew Chem Int Ed Engl , 46(44): 8495–8499
doi: 10.1002/anie.200700927 pmid:17902080
32 Faivre D, Schüler D (2008). Magnetotactic bacteria and magnetosomes. Chem Rev , 108(11): 4875–4898
doi: 10.1021/cr078258w pmid:18855486
33 Falciatore A, Bowler C (2002). Revealing the molecular secrets of marine diatoms. Annu Rev Plant Biol , 53(1): 109–130
doi: 10.1146/annurev.arplant.53.091701.153921 pmid:12221969
34 Fincham A G, Leung W, Tan J and Moradian-Oldak J (1998). Does amelogenin nanosphere assembly proceed through intermediary-sized structures? Connect Tissue Res , 38(1–4): 237–240 ; discussion 241–236
35 Fincham A G, Moradian-Oldak J, Diekwisch T G, Lyaruu D M, Wright J T, Bringas P Jr, Slavkin H C (1995). Evidence for amelogenin “nanospheres” as functional components of secretory-stage enamel matrix. J Struct Biol , 115(1): 50–59
doi: 10.1006/jsbi.1995.1029 pmid:7577231
36 Fincham A G, Moradian-Oldak J, Simmer J P, Sarte P, Lau E C, Diekwisch T, Slavkin H C (1994). Self-assembly of a recombinant amelogenin protein generates supramolecular structures. J Struct Biol , 112(2): 103–109
doi: 10.1006/jsbi.1994.1011 pmid:8060728
37 Frankel R B, Bazylinski D A, Johnson M S, Taylor B L (1997). Magneto-aerotaxis in marine coccoid bacteria. Biophys J , 73(2): 994–1000
doi: 10.1016/S0006-3495(97)78132-3 pmid:9251816
38 Frankel R B, Blakemore R P, Wolfe R S (1979). Magnetite in freshwater magnetotactic bacteria. Science , 203(4387): 1355–1356
doi: 10.1126/science.203.4387.1355 pmid:17780480
39 Friddle R W, Battle K, Trubetskoy V, Tao J, Salter E A, Moradian-Oldak J, De Yoreo J J, Wierzbicki A (2011). Single-molecule determination of the face-specific adsorption of Amelogenin’s C-terminus on hydroxyapatite. Angew Chem Int Ed Engl , 50(33): 7541–7545
doi: 10.1002/anie.201100181 pmid:21710666
40 Glimcher M J (1959). Molecular biology of mineralized tissues with particular reference to bone. Rev Mod Phys , 31(2): 359–393
doi: 10.1103/RevModPhys.31.359
41 Glimcher M J, Bonar L C, Grynpas M D, Landis W J, Roufosse A H (1981). Recent studies of bone mineral: Is the amorphous calcium phosphate theory valid? J Cryst Growth , 53(1): 100–119
doi: 10.1016/0022-0248(81)90058-0
42 Gorby Y A, Beveridge T J, Blakemore R P (1988). Characterization of the bacterial magnetosome membrane. J Bacteriol , 170(2): 834–841
pmid:3123464
43 Gorski J P (1992). Acidic phosphoproteins from bone matrix: a structural rationalization of their role in biomineralization. Calcif Tissue Int , 50(5): 391–396
doi: 10.1007/BF00296767 pmid:1596774
44 Gower L B (2008). Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem Rev , 108(11): 4551–4627
doi: 10.1021/cr800443h pmid:19006398
45 Grynpas M D, Omelon S (2007). Transient precursor strategy or very small biological apatite crystals? Bone , 41(2): 162–164
doi: 10.1016/j.bone.2007.04.176 pmid:17537689
46 Hildebrand M (2003). Biological processing of nanostructured silica in diatoms. Prog Org Coat , 47(3–4): 256–266
doi: 10.1016/S0300-9440(03)00142-5
47 Hildebrand M (2008). Diatoms, biomineralization processes, and genomics. Chem Rev , 108(11): 4855–4874
doi: 10.1021/cr078253z pmid:18937513
48 Hodge A, Petruska J (1963). Aspects of Protein Structure. New York: Academic Press
49 Hulmes D J, Wess T J, Prockop D J, Fratzl P (1995). Radial packing, order, and disorder in collagen fibrils. Biophys J , 68(5): 1661–1670
doi: 10.1016/S0006-3495(95)80391-7 pmid:7612808
50 Kaluzhnaya O, Belikova A, Podolskaya E, Krasko A, Müller W, Belikov S (2007). Identification of silicateins in freshwater sponge Lubomirskia baicalensis. Mol Biol , 41(4): 554–561
doi: 10.1134/S002689330704005X
51 Katz E P, Li S T (1973). Structure and function of bone collagen fibrils. J Mol Biol , 80(1): 1–15
doi: 10.1016/0022-2836(73)90230-1 pmid:4758070
52 Kisailus D, Truong Q, Amemiya Y, Weaver J C, Morse D E (2006). Self-assembled bifunctional surface mimics an enzymatic and templating protein for the synthesis of a metal oxide semiconductor. Proc Natl Acad Sci USA , 103(15): 5652–5657
doi: 10.1073/pnas.0508488103 pmid:16585518
53 Komeili A (2007). Molecular mechanisms of magnetosome formation. Annu Rev Biochem , 76(1): 351–366
doi: 10.1146/annurev.biochem.74.082803.133444 pmid:17371202
54 Komeili A (2012). Molecular mechanisms of compartmentalization and biomineralization in magnetotactic bacteria. FEMS Microbiol Rev , 36(1): 232–255
doi: 10.1111/j.1574-6976.2011.00315.x pmid:22092030
55 Krasko A, Lorenz B, Batel R, Schr?der H C, Müller I M, Müller W E G (2000). Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem , 267(15): 4878–4887
doi: 10.1046/j.1432-1327.2000.01547.x pmid:10903523
56 Krasko A, Schr?der H C, Batel R, Grebenjuk V A, Steffen R, Müller I M, Müller W E G (2002). Iron induces proliferation and morphogenesis in primmorphs from the marine sponge Suberites domuncula. DNA Cell Biol , 21(1): 67–80
doi: 10.1089/10445490252810320 pmid:11879581
57 Kr?ger N, Poulsen N (2008). Diatoms-from cell wall biogenesis to nanotechnology. Annu Rev Genet , 42(1): 83–107
doi: 10.1146/annurev.genet.41.110306.130109 pmid:18983255
58 Landis W J, Silver F H (2009). Mineral deposition in the extracellular matrices of vertebrate tissues: identification of possible apatite nucleation sites on type I collagen. Cells Tissues Organs , 189(1–4): 20–24
doi: 10.1159/000151454 pmid:18703872
59 Levi C, Barton J L, Guillemet C, Bras E, Lehuede P (1989). A remarkably strong natural glassy rod: the anchoring spicule of the Monorhaphis sponge. J Mater Sci Lett , 8(3): 337–339
doi: 10.1007/BF00725516
60 Mahamid J, Aichmayer B, Shimoni E, Ziblat R, Li C, Siegel S, Paris O, Fratzl P, Weiner S, Addadi L (2010). Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc Natl Acad Sci USA , 107(14): 6316–6321
doi: 10.1073/pnas.0914218107 pmid:20308589
61 Matsunaga S, Sakai R, Jimbo M, Kamiya H (2007). Long-chain polyamines (LCPAs) from marine sponge: possible implication in spicule formation. ChemBioChem , 8(14): 1729–1735
doi: 10.1002/cbic.200700305 pmid:17683052
62 Matsunaga T, Okamura Y, Fukuda Y, Wahyudi A T, Murase Y, Takeyama H (2005). Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1. DNA Res , 12(3): 157–166
doi: 10.1093/dnares/dsi002 pmid:16303747
63 Miller A and Parker S B (1984). Collagen: The organic matrix of bone. Philos Trans R Soc, B 304(1121): 455–477
64 Moradian-Oldak J (2001). Amelogenins: assembly, processing and control of crystal morphology. Matrix Biol , 20(5-6): 293–305
doi: 10.1016/S0945-053X(01)00154-8 pmid:11566263
65 Moradian-Oldak J, Bouropoulos N, Wang L, Gharakhanian N (2002). Analysis of self-assembly and apatite binding properties of amelogenin proteins lacking the hydrophilic C-terminal. Matrix Biol , 21(2): 197–205
doi: 10.1016/S0945-053X(01)00190-1 pmid:11852235
66 Moradian-Oldak J, Du C, Falini G (2006). On the formation of amelogenin microribbons. Eur J Oral Sci , 114(s1 Suppl 1): 289–296 , discussion 327–329, 382
doi: 10.1111/j.1600-0722.2006.00285.x pmid:16674701
67 Moradian-Oldak J, Jimenez I, Maltby D, Fincham A G (2001). Controlled proteolysis of amelogenins reveals exposure of both carboxy- and amino-terminal regions. Biopolymers , 58(7): 606–616
doi: 10.1002/1097-0282(200106)58:7<606::AID-BIP1034>3.0.CO;2-8 pmid:11285557
68 Moradian-Oldak J, Paine M L, Lei Y P, Fincham A G, Snead M L (2000). Self-assembly properties of recombinant engineered amelogenin proteins analyzed by dynamic light scattering and atomic force microscopy. J Struct Biol , 131(1): 27–37
doi: 10.1006/jsbi.2000.4237 pmid:10945967
69 Müller W E G, Boreiko A, Schlossmacher U, Wang X, Tahir M N, Tremel W, Brandt D, Kaandorp J A, Schr?der H C (2007). Fractal-related assembly of the axial filament in the demosponge Suberites domuncula: relevance to biomineralization and the formation of biogenic silica. Biomaterials , 28(30): 4501–4511
doi: 10.1016/j.biomaterials.2007.06.030 pmid:17628661
70 Murat D, Byrne M, Komeili A (2010a). Cell biology of prokaryotic organelles. Cold Spring Harb Perspect Biol , 2(10): a000422
doi: 10.1101/cshperspect.a000422 pmid:20739411
71 Murat D, Quinlan A, Vali H, Komeili A (2010b). Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc Natl Acad Sci USA , 107(12): 5593–5598
doi: 10.1073/pnas.0914439107 pmid:20212111
72 Murr M M, Morse D E (2005). Fractal intermediates in the self-assembly of silicatein filaments. Proc Natl Acad Sci USA , 102(33): 11657–11662
doi: 10.1073/pnas.0503968102 pmid:16091468
73 Nies D H (2011). How iron is transported into magnetosomes. Mol Microbiol , 82(4): 792–796
doi: 10.1111/j.1365-2958.2011.07864.x pmid:21999528
74 Nudelman F, Pieterse K, George A, Bomans P H, Friedrich H, Brylka L J, Hilbers P A, de With G, Sommerdijk N A (2010). The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater , 9(12): 1004–1009
doi: 10.1038/nmat2875 pmid:20972429
75 Ofer S, Nowik I, Bauminger E R, Papaefthymiou G C, Frankel R B, Blakemore R P (1984). Magnetosome dynamics in magnetotactic bacteria. Biophys J , 46(1): 57–64
doi: 10.1016/S0006-3495(84)83998-3 pmid:6743757
76 Olszta M J, Cheng X, Jee S S, Kumar R, Kim Y-Y, Kaufman M J, Douglas E P and Gower L B (2007). Bone structure and formation: A new perspective. Mater Sci Eng, R 58(3–5): 77–116
77 Pascal J L, Clementine G, Jacques L, Thibaud C (2005). Mimicking biogenic silica nanostructures formation. Curr Nanosci , 1(1): 73–83
doi: 10.2174/1573413052953156
78 Penninga I, de Waard H, Moskowitz B M, Bazylinski D A, Frankel R B (1995). Remanence measurements on individual magnetotactic bacteria using a pulsed magnetic field. J Magn Magn Mater , 149(3): 279–286
doi: 10.1016/0304-8853(95)00078-X
79 Piez K A (1965). Characterization of a collagen from codfish skin containing three chromatographically different α chains. Biochemistry , 4(12): 2590–2596
doi: 10.1021/bi00888a007 pmid:5880670
80 Piez K A, Lewis M S, Martin G R, Gross J (1961). Subunits of the collagen molecule. Biochim Biophys Acta , 53(3): 596–598
doi: 10.1016/0006-3002(61)90226-8 pmid:14486552
81 Posner A S, Betts F (1975). Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acc Chem Res , 8(8): 273– 281
doi: 10.1021/ar50092a003
82 Pozzolini M, Sturla L, Cerrano C, Bavestrello G, Camardella L, Parodi A M, Raheli F, Benatti U, Müller W E G, Giovine M (2004). Molecular cloning of silicatein gene from marine sponge Petrosia ficiformis (Porifera, Demospongiae) and development of primmorphs as a model for biosilicification studies. Mar Biotechnol (NY) , 6(6): 594–603
doi: 10.1007/s10126-004-3036-y pmid:15747092
83 Prozorov T, Mallapragada S, Narasimhan B, Wang L, Palo P, Nilsen-Hamilton M, Williams T, Bazylinski D, Prozorov R, Canfield P (2007a). Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystals. Adv Funct Mater , 17(6): 951–957
doi: 10.1002/adfm.200600448
84 Prozorov T, Palo P, Wang L, Nilsen-Hamilton M, Jones D, Orr D, Mallapragada S K, Narasimhan B, Canfield P C, Prozorov R (2007b). Cobalt ferrite nanocrystals: out-performing magnetotactic bacteria. ACS Nano , 1(3): 228–233
doi: 10.1021/nn700194h pmid:19206653
85 Rabuffetti F A, Lee J S, Brutchey R L (2012). Vapor diffusion sol-gel synthesis of fluorescent perovskite oxide nanocrystals. Adv Mater , 24(11): 1434–1438
doi: 10.1002/adma.201104645 pmid:22314549
86 Ramachandran G N, Kartha G (1955). Structure of collagen. Nature , 176(4482): 593–595
doi: 10.1038/176593a0 pmid:13265783
87 Rich A, Crick F H C (1955). The structure of collagen. Nature , 176(4489): 915–916
doi: 10.1038/176915a0 pmid:13272717
88 Richter M, Kube M, Bazylinski D A, Lombardot T, Gl?ckner F O, Reinhardt R, Schüler D (2007). Comparative genome analysis of four magnetotactic bacteria reveals a complex set of group-specific genes implicated in magnetosome biomineralization and function. J Bacteriol , 189(13): 4899–4910
doi: 10.1128/JB.00119-07 pmid:17449609
89 Schr?der H C, Perovi?-Ottstadt S, Rothenberger M, Wiens M, Schwertner H, Batel R, Korzhev M, Müller I M, Müller W E G (2004a). Silica transport in the demosponge Suberites domuncula: fluorescence emission analysis using the PDMPO probe and cloning of a potential transporter. Biochem J , 381(Pt 3): 665–673
doi: 10.1042/BJ20040463 pmid:15128286
90 Schr?der H C, Perovi?-Ottstadt S, Wiens M, Batel R, Müller I M, Müller W E (2004b). Differentiation capacity of epithelial cells in the sponge Suberites domuncula. Cell Tissue Res , 316(2): 271–280
doi: 10.1007/s00441-004-0869-7 pmid:15024642
91 Schüler D (2008). Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiol Rev , 32(4): 654–672
doi: 10.1111/j.1574-6976.2008.00116.x pmid:18537832
92 Shaw W J, Campbell A A, Paine M L, Snead M L (2004). The COOH terminus of the amelogenin, LRAP, is oriented next to the hydroxyapatite surface. J Biol Chem , 279(39): 40263–40266
doi: 10.1074/jbc.C400322200 pmid:15299015
93 Shimizu K, Cha J, Stucky G D, Morse D E (1998). Silicatein α: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA , 95(11): 6234–6238
doi: 10.1073/pnas.95.11.6234 pmid:9600948
94 Simmer J P, Fincham A G (1995). Molecular mechanisms of dental enamel formation. Crit Rev Oral Biol Med , 6(2): 84–108
doi: 10.1177/10454411950060020701 pmid:7548623
95 Simpson T L (1984). The cell biology of sponges. New York: Springer Publishing
96 Staniland S, Ward B, Harrison A, van der Laan G, Telling N (2007). Rapid magnetosome formation shown by real-time X-ray magnetic circular dichroism. Proc Natl Acad Sci USA , 104(49): 19524–19528
doi: 10.1073/pnas.0704879104 pmid:18032611
97 St?ber W, Fink A, Bohn E (1968). Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci , 26(1): 62–69
doi: 10.1016/0021-9797(68)90272-5
98 Sumper M, Brunner E (2006). Learning from diatoms: Nature's tools for the production of nanostructured silica. Adv Funct Mater , 16(1): 17–26
doi: 10.1002/adfm.200500616
99 Tacke R (1999). Milestones in the biochemistry of silicon: From basic research to biotechnological applications. Angew Chem Int Ed Engl , 38(20): 3015–3018
doi: 10.1002/(SICI)1521-3773(19991018)38:20<3015::AID-ANIE3015>3.0.CO;2-X pmid:10540406
100 Tanaka M, Mazuyama E, Arakaki A, Matsunaga T (2011). MMS6 protein regulates crystal morphology during nano-sized magnetite biomineralization in vivo. J Biol Chem , 286(8): 6386–6392
doi: 10.1074/jbc.M110.183434 pmid:21169637
101 Tarasevich B J, Lea S, Bernt W, Engelhard M, Shaw W J (2009). Adsorption of amelogenin onto self-assembled and fluoroapatite surfaces. J Phys Chem B , 113(7): 1833–1842
doi: 10.1021/jp804548x pmid:19199690
102 Tarasevich B J, Lea S, Shaw W J (2010). The leucine rich amelogenin protein (LRAP) adsorbs as monomers or dimers onto surfaces. J Struct Biol , 169(3): 266–276
doi: 10.1016/j.jsb.2009.10.007 pmid:19850130
103 Termine J D, Kleinman H K, Whitson S W, Conn K M, McGarvey M L, Martin G R (1981). Osteonectin, a bone-specific protein linking mineral to collagen. Cell , 26(1 Pt 1): 99–105
doi: 10.1016/0092-8674(81)90037-4 pmid:7034958
104 Termine J D, Posner A S (1966). Infrared analysis of rat bone: age dependency of amorphous and crystalline mineral fractions. Science , 153(3743): 1523–1525
doi: 10.1126/science.153.3743.1523 pmid:5917783
105 Thiel P A, Shen M, Liu D J, Evans J W (2009). Coarsening of two-dimensional nanoclusters on metal surfaces. J Phys Chem C , 113(13): 5047–5067
doi: 10.1021/jp8063849
106 Traub W, Arad T, Weiner S (1989). Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers. Proc Natl Acad Sci USA , 86(24): 9822–9826
doi: 10.1073/pnas.86.24.9822 pmid:2602376
107 Uebe R, Junge K, Henn V, Poxleitner G, Katzmann E, Plitzko J M, Zarivach R, Kasama T, Wanner G, Pósfai M, B?ttger L, Matzanke B, Schüler D (2011). The cation diffusion facilitator proteins MamB and MamM of Magnetospirillum gryphiswaldense have distinct and complex functions, and are involved in magnetite biomineralization and magnetosome membrane assembly. Mol Microbiol , 82(4): 818–835
doi: 10.1111/j.1365-2958.2011.07863.x pmid:22007638
108 Wang L, Prozorov T, Palo P E, Liu X, Vaknin D, Prozorov R, Mallapragada S, Nilsen-Hamilton M (2012a). Self-assembly and biphasic iron-binding characteristics of Mms6, a bacterial protein that promotes the formation of superparamagnetic magnetite nanoparticles of uniform size and shape. Biomacromolecules , 13(1): 98– 105
doi: 10.1021/bm201278u pmid:22112204
109 Wang W, Bu W, Wang L, Palo P E, Mallapragada S, Nilsen-Hamilton M, Vaknin D (2012b). Interfacial properties and iron binding to bacterial proteins that promote the growth of magnetite nanocrystals: X-ray reflectivity and surface spectroscopy studies. Langmuir , 28(9): 4274–4282
doi: 10.1021/la205074n pmid:22316331
110 Weaver J C, Morse D E (2003). Molecular biology of demosponge axial filaments and their roles in biosilicification. Microsc Res Tech , 62(4): 356–367
doi: 10.1002/jemt.10401 pmid:14534908
111 Weiner S (2006). Transient precursor strategy in mineral formation of bone. Bone , 39(3): 431–433
doi: 10.1016/j.bone.2006.02.058 pmid:16581322
112 Weiner S (2008). Biomineralization: a structural perspective. J Struct Biol , 163(3): 229–234
doi: 10.1016/j.jsb.2008.02.001 pmid:18359639
113 Weiner S, Addadi L (1991). Acidic macromolecules of mineralized tissues: the controllers of crystal formation. Trends Biochem Sci , 16(7): 252–256
doi: 10.1016/0968-0004(91)90098-G pmid:1926334
114 Wheeler E J, Lewis D (1977). An x-ray study of the paracrystalline nature of bone apatite. Calcif Tissue Res , 24(3): 243–248
doi: 10.1007/BF02223323 pmid:597764
115 Yuk J M, Park J, Ercius P, Kim K, Hellebusch D J, Crommie M F, Lee J Y, Zettl A, Alivisatos A P (2012). High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science , 336(6077): 61–64
doi: 10.1126/science.1217654 pmid:22491849
116 Zeichner-David M, Diekwisch T, Fincham A, Lau E, MacDougall M, Moradian-Oldak J, Simmer J, Snead M, Slavkin H C (1995). Control of ameloblast differentiation. Int J Dev Biol , 39(1): 69–92
pmid:7626423
117 Zhou Y, Shimizu K, Cha J N, Stucky G D, Morse D E (1999). Efficient catalysis of polysiloxane synthesis by silicatein α requires specific hydroxy and imidazole functionalities. Angew Chem Int Ed Engl, 38(6): 779–782
doi: 10.1002/(SICI)1521-3773(19990315)38:6<779::AID-ANIE779>3.0.CO;2-#
[1] Lu HUANG, Xiaojie CHENG, Chengsheng LIU, Ke XING, Jing ZHANG, Gangzheng SUN, Xiaoyan LI, Xiguang CHEN. Preparation, characterization, and antibacterial activity of oleic acid-grafted chitosan oligosaccharide nanoparticles[J]. Front Biol Chin, 2009, 4(3): 321-327.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed