Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2012, Vol. 7 Issue (4) : 336-349    https://doi.org/10.1007/s11515-012-1236-9
REVIEW
Functional protein microarray: an ideal platform for investigating protein binding property
Shu-Min ZHOU1,2, Li CHENG1,2, Shu-Juan GUO1,2, Heng ZHU3,4(), Sheng-Ce TAO1,2()
1. Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; 2. State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China; 3. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; 4. The High-Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
 Download: PDF(780 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Functional protein microarray is an important tool for high-throughput and large-scale systems biology studies. Besides the progresses that have been made for protein microarray fabrication, significant advancements have also been achieved for applying protein microarrays on determining a variety of protein biochemical activities. Among these applications, detection of protein binding properties, such as protein-protein interactions (PPIs), protein-DNA interactions (PDIs), protein-RNA interactions, and antigen-antibody interactions, are straightforward and have substantial impacts on many research fields. In this review, we will focus on the recent progresses in protein-protein, protein-DNA, protein-RNA, protein-small molecule, protein-lipid, protein-glycan, and antigen-antibody interactions. We will also discuss the challenges and future directions of protein microarray technologies. We strongly believe that protein microarrays will soon become an indispensible tool for both basic research and clinical applications.

Keywords lectin microarray      protein microarray      protein-cell interaction      protein-DNA interaction (PDI)      protein-protein interaction (PPI)     
Corresponding Author(s): ZHU Heng,Email:hzhu4@jhmi.edu; TAO Sheng-Ce,Email:taosc@sjtu.edu.cn   
Issue Date: 01 August 2012
 Cite this article:   
Shu-Min ZHOU,Shu-Juan GUO,Heng ZHU, et al. Functional protein microarray: an ideal platform for investigating protein binding property[J]. Front Biol, 2012, 7(4): 336-349.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-012-1236-9
https://academic.hep.com.cn/fib/EN/Y2012/V7/I4/336
Fig.1  Protein microarrays for protein-ligand interaction study. The ligands could be probed on the protein microarray are protein, DNA/RNA, small molecule, glycan, lipid and etc.
Fig.2  Labeling strategies for protein microarray based PPI study. (a) Bound target proteins are recognized by a specific primary antibody followed by a fluorescent secondary antibody or by a biotinylated secondary antibody. (b) The target protein is prepared as a fusion protein with an affinity tag, thus the binding could be readout by a primary antibody specific for the affinity tag followed by a fluorescent secondary antibody. (c) The target protein could be directly labeled by a fluorescent dye when there is no specific antibody and affinity tag available.
Fig.3  Protein microarrays for protein-DNA/RNA interaction study. Generally, DNA or RNA molecules are end-labeled and profiled on a protein microarray. After washing away the non-specific binding DNA/RNA, the interactions between protein and DNA/RNA can be detected and recorded by a laser scanner. A variety types of probes such as damaged DNA, DNA motif and virus shRNA could be used as analyte.
Fig.4  Protein microarrays for protein-small molecule interaction study. Usually, a small molecule such as drug candidate is biotinylated or fluorescent conjugated and probed on a protein microarray. As to overcome the shortcoming of chemically labeling of small molecule prior to probing, MALDI-TOF may be applied as a readout technology. Briefly, a protein microarray is fabricated on a hydrophilic/hydrophobic patterned substrate slide. A mixture of un-labeled small molecules could be probed on this microarray, the results were then readout by MALDI-TOF analysis.
Fig.5  Live cell surface glycan profiling using lectin microarray. Live cells from cell cultures or clinical samples are labeled with a fluorescent dye, such as CFSE. The labeled cells were probed directly on a lectin microarray. After incubation for a while, a mild washing step should be taken to remove the non-specific bindings. The positive binding could be readout and recorded by a high-resolution fluorescence scanner.
Fig.6  Protein microarrays for protein-lipid interaction study. A target lipid is assembled into liposome with a biotinylated DHPC or a fluorescent dye. Except the sample preparation, the protein microarray based procedure for protein-lipid interaction study is similar to that of protein-small molecule study.
1 Angeloni S, Ridet J L, Kusy N, Gao H, Crevoisier F, Guinchard S, Kochhar S, Sigrist H, Sprenger N (2005). Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology , 15(1): 31–41
doi: 10.1093/glycob/cwh143 pmid:15342550
2 Angenendt P, Gl?kler J, Murphy D, Lehrach H, Cahill D J (2002). Toward optimized antibody microarrays: a comparison of current microarray support materials. Anal Biochem , 309(2): 253–260
doi: 10.1016/S0003-2697(02)00257-9 pmid:12413459
3 Apweiler R, Hermjakob H, Sharon N (1999). On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta , 1473(1): 4–8
doi: 10.1016/S0304-4165(99)00165-8 pmid:10580125
4 Avseenko N V, Morozova T Y, Ataullakhanov F I, Morozov V N (2002). Immunoassay with multicomponent protein microarrays fabricated by electrospray deposition. Anal Chem , 74(5): 927–933
doi: 10.1021/ac010970k pmid:11924994
5 Berger M F, Bulyk M L (2009). Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors. Nat Protoc , 4(3): 393–411
doi: 10.1038/nprot.2008.195 pmid:19265799
6 Carlsson J, Mecklenburg M, Lundstr?m I, Danielsson B, Winquist F (2005). Investigation of sera from various species by using lectin affinity arrays and scanning ellipsometry. Anal Chim Acta , 530(2): 167–171
doi: 10.1016/j.aca.2004.09.022
7 Charles P T, Goldman E R, Rangasammy J G, Schauer C L, Chen M S, Taitt C R (2004). Fabrication and characterization of 3D hydrogel microarrays to measure antigenicity and antibody functionality for biosensor applications. Biosens Bioelectron , 20(4): 753–764
doi: 10.1016/j.bios.2004.04.007 pmid:15522590
8 Chen C S, Korobkova E, Chen H, Zhu J, Jian X, Tao S C, He C, Zhu H (2008). A proteome chip approach reveals new DNA damage recognition activities in Escherichia coli. Nat Methods , 5(1): 69–74
doi: 10.1038/nmeth1148 pmid:18084297
9 Chen C S, Zhu H (2006). Protein microarrays. Biotechniques , 40(4): 423–429
doi: 10.2144/06404TE01 pmid:16629388
10 Chen S, Zheng T, Shortreed M R, Alexander C, Smith L M (2007). Analysis of cell surface carbohydrate expression patterns in normal and tumorigenic human breast cell lines using lectin arrays. Anal Chem , 79(15): 5698–5702
doi: 10.1021/ac070423k pmid:17580952
11 Delehanty J B (2004). Printing functional protein microarrays using piezoelectric capillaries. Methods Mol Biol , 264: 135–143
pmid:15020786
12 Delehanty J B, Ligler F S (2003). Method for printing functional protein microarrays. Biotechniques , 34(2): 380–385
pmid:12613260
13 Ebe Y, Kuno A, Uchiyama N, Koseki-Kuno S, Yamada M, Sato T, Narimatsu H, Hirabayashi J (2006). Application of lectin microarray to crude samples: differential glycan profiling of lec mutants. J Biochem , 139(3): 323–327
doi: 10.1093/jb/mvj070 pmid:16567396
14 Evans-Nguyen K M, Tao S C, Zhu H, Cotter R J (2008). Protein arrays on patterned porous gold substrates interrogated with mass spectrometry: detection of peptides in plasma. Anal Chem , 80(5): 1448–1458
doi: 10.1021/ac701800h pmid:18254611
15 Fasolo J, Sboner A, Sun M G, Yu H, Chen R, Sharon D, Kim P M, Gerstein M, Snyder M (2011). Diverse protein kinase interactions identified by protein microarrays reveal novel connections between cellular processes. Genes Dev , 25(7): 767–778
doi: 10.1101/gad.1998811 pmid:21460040
16 Frojmovic M, Wong T, van de Ven T (1991). Dynamic measurements of the platelet membrane glycoprotein IIb-IIIa receptor for fibrinogen by flow cytometry. I. Methodology, theory and results for two distinct activators. Biophys J , 59(4): 815–827
doi: 10.1016/S0006-3495(91)82294-9 pmid:1905966
17 Gao J, Liu D, Wang Z (2010). Screening lectin-binding specificity of bacterium by lectin microarray with gold nanoparticle probes. Anal Chem , 82(22): 9240–9247
doi: 10.1021/ac1022309 pmid:20973590
18 Gazit Y, Mory A, Etzioni A, Frydman M, Scheuerman O, Gershoni-Baruch R, Garty B Z (2010). Leukocyte adhesion deficiency type II: long-term follow-up and review of the literature. J Clin Immunol , 30(2): 308–313
doi: 10.1007/s10875-009-9354-0 pmid:20099014
19 Gelperin D M, White M A, Wilkinson M L, Kon Y, Kung L A, Wise K J, Lopez-Hoyo N, Jiang L, Piccirillo S, Yu H, Gerstein M, Dumont M E, Phizicky E M, Snyder M, Grayhack E J (2005). Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev , 19(23): 2816–2826
doi: 10.1101/gad.1362105 pmid:16322557
20 Hall D A, Zhu H, Zhu X, Royce T, Gerstein M, Snyder M (2004). Regulation of gene expression by a metabolic enzyme. Science , 306(5695): 482–484
doi: 10.1126/science.1096773 pmid:15486299
21 Hamelinck D, Zhou H, Li L, Verweij C, Dillon D, Feng Z, Costa J, Haab B B (2005). Optimized normalization for antibody microarrays and application to serum-protein profiling. Mol Cell Proteomics , 4(6): 773–784
doi: 10.1074/mcp.M400180-MCP200 pmid:15793073
22 Hase S, Ikenaka T, Matsushima Y (1978). Structure analyses of oligosaccharides by tagging of the reducing end sugars with a fluorescent compound. Biochem Biophys Res Commun , 85(1): 257–263
doi: 10.1016/S0006-291X(78)80037-0 pmid:743278
23 He M, Stoevesandt O, Palmer E A, Khan F, Ericsson O, Taussig M J (2008). Printing protein arrays from DNA arrays. Nat Methods , 5(2): 175–177
doi: 10.1038/nmeth.1178 pmid:18204456
24 Ho S W, Jona G, Chen C T, Johnston M, Snyder M (2006). Linking DNA-binding proteins to their recognition sequences by using protein microarrays. Proc Natl Acad Sci USA , 103(26): 9940–9945
doi: 10.1073/pnas.0509185103 pmid:16785442
25 Hsu K L, Mahal L K (2006). A lectin microarray approach for the rapid analysis of bacterial glycans. Nat Protoc , 1(2): 543–549
doi: 10.1038/nprot.2006.76 pmid:17406280
26 Hsu K L, Pilobello K T, Mahal L K (2006). Analyzing the dynamic bacterial glycome with a lectin microarray approach. Nat Chem Biol , 2(3): 153–157
doi: 10.1038/nchembio767 pmid:16462751
27 Hu S, Li Y, Liu G, Song Q, Wang L, Han Y, Zhang Y, Song Y, Yao X, Tao Y, Zeng H, Yang H, Wang J, Zhu H, Chen Z N, Wu L (2007). A protein chip approach for high-throughput antigen identification and characterization. Proteomics , 7(13): 2151–2161
doi: 10.1002/pmic.200600923 pmid:17549792
28 Hu S, Xie Z, Onishi A, Yu X, Jiang L, Lin J, Rho H S, Woodard C, Wang H, Jeong J S, Long S, He X, Wade H, Blackshaw S, Qian J, Zhu H (2009). Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell , 139(3): 610–622
doi: 10.1016/j.cell.2009.08.037 pmid:19879846
29 Huang J, Zhu H, Haggarty S J, Spring D R, Hwang H, Jin F, Snyder M, Schreiber S L (2004). Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proc Natl Acad Sci USA , 101(47): 16594–16599
doi: 10.1073/pnas.0407117101 pmid:15539461
30 Jeong J S, Jiang L, Albino E, Marrero J, Rho H S, Hu J, Hu S, Vera C, Bayron-Poueymiroy D, Rivera-Pacheco Z A., Ramos L, Torres-Castro C, Qian J, Bonaventura J, Boeke J D, Yap W Y, Pino I, Eichinger D J, Zhu H, Blackshaw S (2012). Rapid identification of monospecific monoclonal antibodies using a human proteome microarray. Mol Cell Proteomics , Online Available February3, 2012
31 Jeong J S, Rho H S, Zhu H (2011). A functional protein microarray approach to characterizing posttranslational modifications on lysine residues. Methods Mol Biol , 723: 213–223
doi: 10.1007/978-1-61779-043-0_14 pmid:21370068
32 Jones R B, Gordus A, Krall J A, MacBeath G (2006). A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature , 439(7073): 168–174
doi: 10.1038/nature04177 pmid:16273093
33 Jones V W, Kenseth J R, Porter M D, Mosher C L, Henderson E (1998). Microminiaturized immunoassays using atomic force microscopy and compositionally patterned antigen arrays. Anal Chem , 70(7): 1233–1241
doi: 10.1021/ac971125y pmid:9553488
34 Kameyama A, Kikuchi N, Nakaya S, Ito H, Sato T, Shikanai T, Takahashi Y, Takahashi K, Narimatsu H (2005). A strategy for identification of oligosaccharide structures using observational multistage mass spectral library. Anal Chem , 77(15): 4719–4725
doi: 10.1021/ac048350h pmid:16053281
35 Kamoda S, Kakehi K (2006). Capillary electrophoresis for the analysis of glycoprotein pharmaceuticals. Electrophoresis , 27(12): 2495–2504
doi: 10.1002/elps.200500853 pmid:16718643
36 Kamoda S, Nakanishi Y, Kinoshita M, Ishikawa R, Kakehi K (2006). Analysis of glycoprotein-derived oligosaccharides in glycoproteins detected on two-dimensional gel by capillary electrophoresis using on-line concentration method. J Chromatogr A , 1106(1–2): 67–74
doi: 10.1016/j.chroma.2005.08.052 pmid:16443453
37 Kollmann K, Pohl S, Marschner K, Encarna??o M, Sakwa I, Tiede S, Poorthuis B J, Lübke T, Müller-Loennies S, Storch S, Braulke T (2010). Mannose phosphorylation in health and disease. Eur J Cell Biol , 89(1): 117–123
doi: 10.1016/j.ejcb.2009.10.008 pmid:19945768
38 Koshi Y, Nakata E, Yamane H, Hamachi I (2006). A fluorescent lectin array using supramolecular hydrogel for simple detection and pattern profiling for various glycoconjugates. J Am Chem Soc , 128(32): 10413–10422
doi: 10.1021/ja0613963 pmid:16895406
39 Kramer A, Feilner T, Possling A, Radchuk V, Weschke W, Bürkle L, Kersten B (2004). Identification of barley CK2alpha targets by using the protein microarray technology. Phytochemistry , 65(12): 1777–1784
doi: 10.1016/j.phytochem.2004.04.009 pmid:15276436
40 Kuno A, Kato Y, Matsuda A, Kaneko M K, Ito H, Amano K, Chiba Y, Narimatsu H, Hirabayashi J (2009). Focused differential glycan analysis with the platform antibody-assisted lectin profiling for glycan-related biomarker verification. Mol Cell Proteomics , 8(1): 99–108
doi: 10.1074/mcp.M800308-MCP200 pmid:18697734
41 Kuno A, Uchiyama N, Koseki-Kuno S, Ebe Y, Takashima S, Yamada M, Hirabayashi J (2005). Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat Methods , 2(11): 851–856
doi: 10.1038/nmeth803 pmid:16278656
42 Kusnezow W, Jacob A, Walijew A, Diehl F, Hoheisel J D (2003). Antibody microarrays: an evaluation of production parameters. Proteomics , 3(3): 254–264
doi: 10.1002/pmic.200390038 pmid:12627378
43 Li R, Zhu J, Xie Z, Liao G, Liu J, Chen M R, Hu S, Woodard C, Lin J, Taverna S D, Desai P, Ambinder R F, Hayward G S, Qian J, Zhu H, Hayward S D (2011). Conserved herpesvirus kinases target the DNA damage response pathway and TIP60 histone acetyltransferase to promote virus replication. Cell Host Microbe , 10(4): 390–400
doi: 10.1016/j.chom.2011.08.013 pmid:22018239
44 MacBeath G (2002). Protein microarrays and proteomics. Nat Genet , 32(Suppl): 526–532
doi: 10.1038/ng1037 pmid:12454649
45 MacBeath G, Schreiber S L (2000). Printing proteins as microarrays for high-throughput function determination. Science , 289(5485): 1760–1763
pmid:10976071
46 Mecklenburg M, Svitel J, Winquist F, Gang J, Ornstein K, Dey E, Bin X, Hedborg E, Norrby R, Arwin H, Lundstr?m I, Danielsson B (2002). Differentiation of human serum samples by surface plasmon resonance monitoring of the integral glycoprotein interaction with a lectin panel. Anal Chim Acta , 459(1): 25–31
doi: 10.1016/S0003-2670(02)00101-0
47 Meng X, Wolfe S A (2006). Identifying DNA sequences recognized by a transcription factor using a bacterial one-hybrid system. Nat Protoc , 1(1): 30–45
doi: 10.1038/nprot.2006.6 pmid:17406209
48 Michaud G A, Salcius M, Zhou F, Bangham R, Bonin J, Guo H, Snyder M, Predki P F, Schweitzer B I (2003). Analyzing antibody specificity with whole proteome microarrays. Nat Biotechnol , 21(12): 1509–1512
doi: 10.1038/nbt910 pmid:14608365
49 Moravcevic K, Mendrola J M, Schmitz K R, Wang Y H, Slochower D, Janmey P A, Lemmon M A (2010). Kinase associated-1 domains drive MARK/PAR1 kinases to membrane targets by binding acidic phospholipids. Cell , 143(6): 966–977
doi: 10.1016/j.cell.2010.11.028 pmid:21145462
50 Nielsen U B, Cardone M H, Sinskey A J, MacBeath G, Sorger P K (2003). Profiling receptor tyrosine kinase activation by using Ab microarrays. Proc Natl Acad Sci USA , 100(16): 9330–9335
doi: 10.1073/pnas.1633513100 pmid:12876202
51 Ogura Y, Kurokawa K, Ooka T, Tashiro K, Tobe T, Ohnishi M, Nakayama K, Morimoto T, Terajima J, Watanabe H, Kuhara S, Hayashi T (2006). Complexity of the genomic diversity in enterohemorrhagic Escherichia coli O157 revealed by the combinational use of the O157 Sakai OligoDNA microarray and the Whole Genome PCR scanning. DNA Res , 13(1): 3–14
doi: 10.1093/dnares/dsi026 pmid:16766508
52 Petukhova G V, Pezza R J, Vanevski F, Ploquin M, Masson J Y, Camerini-Otero R D (2005). The Hop2 and Mnd1 proteins act in concert with Rad51 and Dmc1 in meiotic recombination. Nat Struct Mol Biol , 12(5): 449–453
doi: 10.1038/nsmb923 pmid:15834424
53 Pilobello K T, Krishnamoorthy L, Slawek D, Mahal L K (2005). Development of a lectin microarray for the rapid analysis of protein glycopatterns. ChemBioChem , 6(6): 985–989
doi: 10.1002/cbic.200400403 pmid:15798991
54 Pilobello K T, Mahal L K (2007). Deciphering the glycocode: the complexity and analytical challenge of glycomics. Curr Opin Chem Biol , 11(3): 300–305
doi: 10.1016/j.cbpa.2007.05.002 pmid:17500024
55 Popescu S C, Popescu G V, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh-Kumar S P (2009). MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev , 23(1): 80–92
doi: 10.1101/gad.1740009 pmid:19095804
56 Popescu S C, Popescu G V, Bachan S, Zhang Z, Seay M, Gerstein M, Snyder M, Dinesh-Kumar S P (2007a). Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc Natl Acad Sci USA , 104(11): 4730–4735
doi: 10.1073/pnas.0611615104 pmid:17360592
57 Popescu S C, Snyder M, Dinesh-Kumar S (2007b). Arabidopsis protein microarrays for the high-throughput identification of protein-protein interactions. Plant Signal Behav , 2(5): 416–420
doi: 10.4161/psb.2.5.4416 pmid:19704619
58 Poulain S, Lepelley P, Cambier N, Cosson A, Fenaux P, Wattel E (1999). Assessment of P-glycoprotein expression by immunocytochemistry and flow cytometry using two different monoclonal antibodies coupled with functional efflux analysis in 34 patients with acute myeloid leukemia. Adv Exp Med Biol , 457: 57–63
doi: 10.1007/978-1-4615-4811-9_7 pmid:10500780
59 Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona G, Breitkreutz A, Sopko R, McCartney R R, Schmidt M C, Rachidi N, Lee S J, Mah A S, Meng L, Stark M J, Stern D F, De Virgilio C, Tyers M, Andrews B, Gerstein M, Schweitzer B, Predki P F, Snyder M (2005). Global analysis of protein phosphorylation in yeast. Nature , 438(7068): 679–684
doi: 10.1038/nature04187 pmid:16319894
60 Ramachandran N, Hainsworth E, Bhullar B, Eisenstein S, Rosen B, Lau A Y, Walter J C, LaBaer J (2004). Self-assembling protein microarrays. Science , 305(5680): 86–90
doi: 10.1126/science.1097639 pmid:15232106
61 Roda A, Guardigli M, Russo C, Pasini P, Baraldini M (2000). Protein microdeposition using a conventional ink-jet printer. Biotechniques , 28(3): 492–496
pmid:10723562
62 Shamay M, Liu J, Li R, Liao G, Shen L, Greenway M, Hu S, Zhu J, Xie Z, Ambinder R F, Qian J, Zhu H, Hayward S D (2012). A protein array screen for Kaposi’s sarcoma-associated herpesvirus LANA interactors links LANA to TIP60, PP2A activity, and telomere shortening. J Virol , 86(9): 5179–5191
doi: 10.1128/JVI.00169-12 pmid:22379092
63 Shingyoji M, Gerion D, Pinkel D, Gray J W, Chen F (2005). Quantum dots-based reverse phase protein microarray. Talanta , 67(3): 472–478
doi: 10.1016/j.talanta.2005.06.064 pmid:18970191
64 Stillman B A, Tonkinson J L (2000). FAST slides: a novel surface for microarrays. Biotechniques , 29(3): 630–635
pmid:10997277
65 Tao S C, Chen C S, Zhu H (2007). Applications of protein microarray technology. Comb Chem High Throughput Screen , 10(8): 706–718
doi: 10.2174/138620707782507386 pmid:18045082
66 Tao S C, Li Y, Zhou J, Qian J, Schnaar R L, Zhang Y, Goldstein I J, Zhu H, Schneck J P (2008). Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers. Glycobiology , 18(10): 761–769
doi: 10.1093/glycob/cwn063 pmid:18625848
67 Tao S C, Zhu H (2006). Protein chip fabrication by capture of nascent polypeptides. Nat Biotechnol , 24(10): 1253–1254
doi: 10.1038/nbt1249 pmid:17013375
68 Tateno H, Toyota M, Saito S, Onuma Y, Ito Y, Hiemori K, Fukumura M, Matsushima A, Nakanishi M, Ohnuma K, Akutsu H, Umezawa A, Horimoto K, Hirabayashi J, Asashima M (2011). Glycome diagnosis of human induced pluripotent stem cells using lectin microarray. J Biol Chem , 286(23): 20345–20353
doi: 10.1074/jbc.M111.231274 pmid:21471226
69 Tateno H, Uchiyama N, Kuno A, Togayachi A, Sato T, Narimatsu H, Hirabayashi J (2007). A novel strategy for mammalian cell surface glycome profiling using lectin microarray. Glycobiology , 17(10): 1138–1146
doi: 10.1093/glycob/cwm084 pmid:17693441
70 Teichmann S A, Babu M M (2004). Gene regulatory network growth by duplication. Nat Genet , 36(5): 492–496
doi: 10.1038/ng1340 pmid:15107850
71 The ENCODE (ENCyclopedia Of DNA Elements) Project (2004). Science , 306(5696): 636–640
doi: 10.1126/science.1105136 pmid:15499007
72 Tomiya N, Awaya J, Kurono M, Endo S, Arata Y, Takahashi N (1988). Analyses of N-linked oligosaccharides using a two-dimensional mapping technique. Anal Biochem , 171(1): 73–90
doi: 10.1016/0003-2697(88)90126-1 pmid:3407923
73 Uchiyama N, Kuno A, Koseki-Kuno S, Ebe Y, Horio K, Yamada M, Hirabayashi J (2006). Development of a lectin microarray based on an evanescent-field fluorescence principle. Methods Enzymol , 415: 341–351
doi: 10.1016/S0076-6879(06)15021-1 pmid:17116484
74 Wingren C, Borrebaeck C A (2008). Antibody microarray analysis of directly labelled complex proteomes. Curr Opin Biotechnol , 19(1): 55–61
doi: 10.1016/j.copbio.2007.11.010 pmid:18187318
75 Xie Z, Hu S, Blackshaw S, Zhu H, Qian J (2010). hPDI: a database of experimental human protein-DNA interactions. Bioinformatics , 26(2): 287–289
doi: 10.1093/bioinformatics/btp631 pmid:19900953
76 Yang L, Guo S, Li Y, Zhou S, Tao S (2011). Protein microarrays for systems biology. Acta Biochim Biophys Sin (Shanghai) , 43(3): 161–171
doi: 10.1093/abbs/gmq127 pmid:21257623
77 Zajac A, Song D, Qian W, Zhukov T (2007). Protein microarrays and quantum dot probes for early cancer detection. Colloids Surf B Biointerfaces , 58(2): 309–314
doi: 10.1016/j.colsurfb.2007.02.019 pmid:17408931
78 Zheng T, Peelen D, Smith L M (2005). Lectin arrays for profiling cell surface carbohydrate expression. J Am Chem Soc , 127(28): 9982–9983
doi: 10.1021/ja0505550 pmid:16011345
79 Zhou S M, Cheng L, Guo S J, Zhu H, Tao S C (2011). Lectin microarray: a powerful tool for glycan related biomarker discovery. Comb Chem High Throughput Screen , Online Available May20, 2011
80 Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean R A, Gerstein M, Snyder M (2001). Global analysis of protein activities using proteome chips. Science , 293(5537): 2101–2105
doi: 10.1126/science.1062191 pmid:11474067
81 Zhu H, Snyder M (2001). Protein arrays and microarrays. Curr Opin Chem Biol , 5(1): 40–45
doi: 10.1016/S1367-5931(00)00170-8 pmid:11166646
82 Zhu J, Gopinath K, Murali A, Yi G, Hayward S D, Zhu H, Kao C (2007b). RNA-binding proteins that inhibit RNA virus infection. Proc Natl Acad Sci USA , 104(9): 3129–3134
doi: 10.1073/pnas.0611617104 pmid:17360619
83 Zhu X, Landry J P, Sun Y S, Gregg J P, Lam K S, Guo X (2007a). Oblique-incidence reflectivity difference microscope for label-free high-throughput detection of biochemical reactions in a microarray format. Appl Opt , 46(10): 1890–1895
doi: 10.1364/AO.46.001890 pmid:17356635
84 Zhu X D, Niedernhofer L, Kuster B, Mann M, Hoeijmakers J H, de Lange T (2003). ERCC1/XPF removes the 3′ overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. Mol Cell , 12(6): 1489–1498
doi: 10.1016/S1097-2765(03)00478-7 pmid:14690602
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed