|
|
Functional protein microarray: an ideal platform for investigating protein binding property |
Shu-Min ZHOU1,2, Li CHENG1,2, Shu-Juan GUO1,2, Heng ZHU3,4( ), Sheng-Ce TAO1,2( ) |
1. Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; 2. State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China; 3. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; 4. The High-Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA |
|
|
Abstract Functional protein microarray is an important tool for high-throughput and large-scale systems biology studies. Besides the progresses that have been made for protein microarray fabrication, significant advancements have also been achieved for applying protein microarrays on determining a variety of protein biochemical activities. Among these applications, detection of protein binding properties, such as protein-protein interactions (PPIs), protein-DNA interactions (PDIs), protein-RNA interactions, and antigen-antibody interactions, are straightforward and have substantial impacts on many research fields. In this review, we will focus on the recent progresses in protein-protein, protein-DNA, protein-RNA, protein-small molecule, protein-lipid, protein-glycan, and antigen-antibody interactions. We will also discuss the challenges and future directions of protein microarray technologies. We strongly believe that protein microarrays will soon become an indispensible tool for both basic research and clinical applications.
|
Keywords
lectin microarray
protein microarray
protein-cell interaction
protein-DNA interaction (PDI)
protein-protein interaction (PPI)
|
Corresponding Author(s):
ZHU Heng,Email:hzhu4@jhmi.edu; TAO Sheng-Ce,Email:taosc@sjtu.edu.cn
|
Issue Date: 01 August 2012
|
|
1 |
Angeloni S, Ridet J L, Kusy N, Gao H, Crevoisier F, Guinchard S, Kochhar S, Sigrist H, Sprenger N (2005). Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology , 15(1): 31–41 doi: 10.1093/glycob/cwh143 pmid:15342550
|
2 |
Angenendt P, Gl?kler J, Murphy D, Lehrach H, Cahill D J (2002). Toward optimized antibody microarrays: a comparison of current microarray support materials. Anal Biochem , 309(2): 253–260 doi: 10.1016/S0003-2697(02)00257-9 pmid:12413459
|
3 |
Apweiler R, Hermjakob H, Sharon N (1999). On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta , 1473(1): 4–8 doi: 10.1016/S0304-4165(99)00165-8 pmid:10580125
|
4 |
Avseenko N V, Morozova T Y, Ataullakhanov F I, Morozov V N (2002). Immunoassay with multicomponent protein microarrays fabricated by electrospray deposition. Anal Chem , 74(5): 927–933 doi: 10.1021/ac010970k pmid:11924994
|
5 |
Berger M F, Bulyk M L (2009). Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors. Nat Protoc , 4(3): 393–411 doi: 10.1038/nprot.2008.195 pmid:19265799
|
6 |
Carlsson J, Mecklenburg M, Lundstr?m I, Danielsson B, Winquist F (2005). Investigation of sera from various species by using lectin affinity arrays and scanning ellipsometry. Anal Chim Acta , 530(2): 167–171 doi: 10.1016/j.aca.2004.09.022
|
7 |
Charles P T, Goldman E R, Rangasammy J G, Schauer C L, Chen M S, Taitt C R (2004). Fabrication and characterization of 3D hydrogel microarrays to measure antigenicity and antibody functionality for biosensor applications. Biosens Bioelectron , 20(4): 753–764 doi: 10.1016/j.bios.2004.04.007 pmid:15522590
|
8 |
Chen C S, Korobkova E, Chen H, Zhu J, Jian X, Tao S C, He C, Zhu H (2008). A proteome chip approach reveals new DNA damage recognition activities in Escherichia coli. Nat Methods , 5(1): 69–74 doi: 10.1038/nmeth1148 pmid:18084297
|
9 |
Chen C S, Zhu H (2006). Protein microarrays. Biotechniques , 40(4): 423–429 doi: 10.2144/06404TE01 pmid:16629388
|
10 |
Chen S, Zheng T, Shortreed M R, Alexander C, Smith L M (2007). Analysis of cell surface carbohydrate expression patterns in normal and tumorigenic human breast cell lines using lectin arrays. Anal Chem , 79(15): 5698–5702 doi: 10.1021/ac070423k pmid:17580952
|
11 |
Delehanty J B (2004). Printing functional protein microarrays using piezoelectric capillaries. Methods Mol Biol , 264: 135–143 pmid:15020786
|
12 |
Delehanty J B, Ligler F S (2003). Method for printing functional protein microarrays. Biotechniques , 34(2): 380–385 pmid:12613260
|
13 |
Ebe Y, Kuno A, Uchiyama N, Koseki-Kuno S, Yamada M, Sato T, Narimatsu H, Hirabayashi J (2006). Application of lectin microarray to crude samples: differential glycan profiling of lec mutants. J Biochem , 139(3): 323–327 doi: 10.1093/jb/mvj070 pmid:16567396
|
14 |
Evans-Nguyen K M, Tao S C, Zhu H, Cotter R J (2008). Protein arrays on patterned porous gold substrates interrogated with mass spectrometry: detection of peptides in plasma. Anal Chem , 80(5): 1448–1458 doi: 10.1021/ac701800h pmid:18254611
|
15 |
Fasolo J, Sboner A, Sun M G, Yu H, Chen R, Sharon D, Kim P M, Gerstein M, Snyder M (2011). Diverse protein kinase interactions identified by protein microarrays reveal novel connections between cellular processes. Genes Dev , 25(7): 767–778 doi: 10.1101/gad.1998811 pmid:21460040
|
16 |
Frojmovic M, Wong T, van de Ven T (1991). Dynamic measurements of the platelet membrane glycoprotein IIb-IIIa receptor for fibrinogen by flow cytometry. I. Methodology, theory and results for two distinct activators. Biophys J , 59(4): 815–827 doi: 10.1016/S0006-3495(91)82294-9 pmid:1905966
|
17 |
Gao J, Liu D, Wang Z (2010). Screening lectin-binding specificity of bacterium by lectin microarray with gold nanoparticle probes. Anal Chem , 82(22): 9240–9247 doi: 10.1021/ac1022309 pmid:20973590
|
18 |
Gazit Y, Mory A, Etzioni A, Frydman M, Scheuerman O, Gershoni-Baruch R, Garty B Z (2010). Leukocyte adhesion deficiency type II: long-term follow-up and review of the literature. J Clin Immunol , 30(2): 308–313 doi: 10.1007/s10875-009-9354-0 pmid:20099014
|
19 |
Gelperin D M, White M A, Wilkinson M L, Kon Y, Kung L A, Wise K J, Lopez-Hoyo N, Jiang L, Piccirillo S, Yu H, Gerstein M, Dumont M E, Phizicky E M, Snyder M, Grayhack E J (2005). Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev , 19(23): 2816–2826 doi: 10.1101/gad.1362105 pmid:16322557
|
20 |
Hall D A, Zhu H, Zhu X, Royce T, Gerstein M, Snyder M (2004). Regulation of gene expression by a metabolic enzyme. Science , 306(5695): 482–484 doi: 10.1126/science.1096773 pmid:15486299
|
21 |
Hamelinck D, Zhou H, Li L, Verweij C, Dillon D, Feng Z, Costa J, Haab B B (2005). Optimized normalization for antibody microarrays and application to serum-protein profiling. Mol Cell Proteomics , 4(6): 773–784 doi: 10.1074/mcp.M400180-MCP200 pmid:15793073
|
22 |
Hase S, Ikenaka T, Matsushima Y (1978). Structure analyses of oligosaccharides by tagging of the reducing end sugars with a fluorescent compound. Biochem Biophys Res Commun , 85(1): 257–263 doi: 10.1016/S0006-291X(78)80037-0 pmid:743278
|
23 |
He M, Stoevesandt O, Palmer E A, Khan F, Ericsson O, Taussig M J (2008). Printing protein arrays from DNA arrays. Nat Methods , 5(2): 175–177 doi: 10.1038/nmeth.1178 pmid:18204456
|
24 |
Ho S W, Jona G, Chen C T, Johnston M, Snyder M (2006). Linking DNA-binding proteins to their recognition sequences by using protein microarrays. Proc Natl Acad Sci USA , 103(26): 9940–9945 doi: 10.1073/pnas.0509185103 pmid:16785442
|
25 |
Hsu K L, Mahal L K (2006). A lectin microarray approach for the rapid analysis of bacterial glycans. Nat Protoc , 1(2): 543–549 doi: 10.1038/nprot.2006.76 pmid:17406280
|
26 |
Hsu K L, Pilobello K T, Mahal L K (2006). Analyzing the dynamic bacterial glycome with a lectin microarray approach. Nat Chem Biol , 2(3): 153–157 doi: 10.1038/nchembio767 pmid:16462751
|
27 |
Hu S, Li Y, Liu G, Song Q, Wang L, Han Y, Zhang Y, Song Y, Yao X, Tao Y, Zeng H, Yang H, Wang J, Zhu H, Chen Z N, Wu L (2007). A protein chip approach for high-throughput antigen identification and characterization. Proteomics , 7(13): 2151–2161 doi: 10.1002/pmic.200600923 pmid:17549792
|
28 |
Hu S, Xie Z, Onishi A, Yu X, Jiang L, Lin J, Rho H S, Woodard C, Wang H, Jeong J S, Long S, He X, Wade H, Blackshaw S, Qian J, Zhu H (2009). Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell , 139(3): 610–622 doi: 10.1016/j.cell.2009.08.037 pmid:19879846
|
29 |
Huang J, Zhu H, Haggarty S J, Spring D R, Hwang H, Jin F, Snyder M, Schreiber S L (2004). Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proc Natl Acad Sci USA , 101(47): 16594–16599 doi: 10.1073/pnas.0407117101 pmid:15539461
|
30 |
Jeong J S, Jiang L, Albino E, Marrero J, Rho H S, Hu J, Hu S, Vera C, Bayron-Poueymiroy D, Rivera-Pacheco Z A., Ramos L, Torres-Castro C, Qian J, Bonaventura J, Boeke J D, Yap W Y, Pino I, Eichinger D J, Zhu H, Blackshaw S (2012). Rapid identification of monospecific monoclonal antibodies using a human proteome microarray. Mol Cell Proteomics , Online Available February3, 2012
|
31 |
Jeong J S, Rho H S, Zhu H (2011). A functional protein microarray approach to characterizing posttranslational modifications on lysine residues. Methods Mol Biol , 723: 213–223 doi: 10.1007/978-1-61779-043-0_14 pmid:21370068
|
32 |
Jones R B, Gordus A, Krall J A, MacBeath G (2006). A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature , 439(7073): 168–174 doi: 10.1038/nature04177 pmid:16273093
|
33 |
Jones V W, Kenseth J R, Porter M D, Mosher C L, Henderson E (1998). Microminiaturized immunoassays using atomic force microscopy and compositionally patterned antigen arrays. Anal Chem , 70(7): 1233–1241 doi: 10.1021/ac971125y pmid:9553488
|
34 |
Kameyama A, Kikuchi N, Nakaya S, Ito H, Sato T, Shikanai T, Takahashi Y, Takahashi K, Narimatsu H (2005). A strategy for identification of oligosaccharide structures using observational multistage mass spectral library. Anal Chem , 77(15): 4719–4725 doi: 10.1021/ac048350h pmid:16053281
|
35 |
Kamoda S, Kakehi K (2006). Capillary electrophoresis for the analysis of glycoprotein pharmaceuticals. Electrophoresis , 27(12): 2495–2504 doi: 10.1002/elps.200500853 pmid:16718643
|
36 |
Kamoda S, Nakanishi Y, Kinoshita M, Ishikawa R, Kakehi K (2006). Analysis of glycoprotein-derived oligosaccharides in glycoproteins detected on two-dimensional gel by capillary electrophoresis using on-line concentration method. J Chromatogr A , 1106(1–2): 67–74 doi: 10.1016/j.chroma.2005.08.052 pmid:16443453
|
37 |
Kollmann K, Pohl S, Marschner K, Encarna??o M, Sakwa I, Tiede S, Poorthuis B J, Lübke T, Müller-Loennies S, Storch S, Braulke T (2010). Mannose phosphorylation in health and disease. Eur J Cell Biol , 89(1): 117–123 doi: 10.1016/j.ejcb.2009.10.008 pmid:19945768
|
38 |
Koshi Y, Nakata E, Yamane H, Hamachi I (2006). A fluorescent lectin array using supramolecular hydrogel for simple detection and pattern profiling for various glycoconjugates. J Am Chem Soc , 128(32): 10413–10422 doi: 10.1021/ja0613963 pmid:16895406
|
39 |
Kramer A, Feilner T, Possling A, Radchuk V, Weschke W, Bürkle L, Kersten B (2004). Identification of barley CK2alpha targets by using the protein microarray technology. Phytochemistry , 65(12): 1777–1784 doi: 10.1016/j.phytochem.2004.04.009 pmid:15276436
|
40 |
Kuno A, Kato Y, Matsuda A, Kaneko M K, Ito H, Amano K, Chiba Y, Narimatsu H, Hirabayashi J (2009). Focused differential glycan analysis with the platform antibody-assisted lectin profiling for glycan-related biomarker verification. Mol Cell Proteomics , 8(1): 99–108 doi: 10.1074/mcp.M800308-MCP200 pmid:18697734
|
41 |
Kuno A, Uchiyama N, Koseki-Kuno S, Ebe Y, Takashima S, Yamada M, Hirabayashi J (2005). Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat Methods , 2(11): 851–856 doi: 10.1038/nmeth803 pmid:16278656
|
42 |
Kusnezow W, Jacob A, Walijew A, Diehl F, Hoheisel J D (2003). Antibody microarrays: an evaluation of production parameters. Proteomics , 3(3): 254–264 doi: 10.1002/pmic.200390038 pmid:12627378
|
43 |
Li R, Zhu J, Xie Z, Liao G, Liu J, Chen M R, Hu S, Woodard C, Lin J, Taverna S D, Desai P, Ambinder R F, Hayward G S, Qian J, Zhu H, Hayward S D (2011). Conserved herpesvirus kinases target the DNA damage response pathway and TIP60 histone acetyltransferase to promote virus replication. Cell Host Microbe , 10(4): 390–400 doi: 10.1016/j.chom.2011.08.013 pmid:22018239
|
44 |
MacBeath G (2002). Protein microarrays and proteomics. Nat Genet , 32(Suppl): 526–532 doi: 10.1038/ng1037 pmid:12454649
|
45 |
MacBeath G, Schreiber S L (2000). Printing proteins as microarrays for high-throughput function determination. Science , 289(5485): 1760–1763 pmid:10976071
|
46 |
Mecklenburg M, Svitel J, Winquist F, Gang J, Ornstein K, Dey E, Bin X, Hedborg E, Norrby R, Arwin H, Lundstr?m I, Danielsson B (2002). Differentiation of human serum samples by surface plasmon resonance monitoring of the integral glycoprotein interaction with a lectin panel. Anal Chim Acta , 459(1): 25–31 doi: 10.1016/S0003-2670(02)00101-0
|
47 |
Meng X, Wolfe S A (2006). Identifying DNA sequences recognized by a transcription factor using a bacterial one-hybrid system. Nat Protoc , 1(1): 30–45 doi: 10.1038/nprot.2006.6 pmid:17406209
|
48 |
Michaud G A, Salcius M, Zhou F, Bangham R, Bonin J, Guo H, Snyder M, Predki P F, Schweitzer B I (2003). Analyzing antibody specificity with whole proteome microarrays. Nat Biotechnol , 21(12): 1509–1512 doi: 10.1038/nbt910 pmid:14608365
|
49 |
Moravcevic K, Mendrola J M, Schmitz K R, Wang Y H, Slochower D, Janmey P A, Lemmon M A (2010). Kinase associated-1 domains drive MARK/PAR1 kinases to membrane targets by binding acidic phospholipids. Cell , 143(6): 966–977 doi: 10.1016/j.cell.2010.11.028 pmid:21145462
|
50 |
Nielsen U B, Cardone M H, Sinskey A J, MacBeath G, Sorger P K (2003). Profiling receptor tyrosine kinase activation by using Ab microarrays. Proc Natl Acad Sci USA , 100(16): 9330–9335 doi: 10.1073/pnas.1633513100 pmid:12876202
|
51 |
Ogura Y, Kurokawa K, Ooka T, Tashiro K, Tobe T, Ohnishi M, Nakayama K, Morimoto T, Terajima J, Watanabe H, Kuhara S, Hayashi T (2006). Complexity of the genomic diversity in enterohemorrhagic Escherichia coli O157 revealed by the combinational use of the O157 Sakai OligoDNA microarray and the Whole Genome PCR scanning. DNA Res , 13(1): 3–14 doi: 10.1093/dnares/dsi026 pmid:16766508
|
52 |
Petukhova G V, Pezza R J, Vanevski F, Ploquin M, Masson J Y, Camerini-Otero R D (2005). The Hop2 and Mnd1 proteins act in concert with Rad51 and Dmc1 in meiotic recombination. Nat Struct Mol Biol , 12(5): 449–453 doi: 10.1038/nsmb923 pmid:15834424
|
53 |
Pilobello K T, Krishnamoorthy L, Slawek D, Mahal L K (2005). Development of a lectin microarray for the rapid analysis of protein glycopatterns. ChemBioChem , 6(6): 985–989 doi: 10.1002/cbic.200400403 pmid:15798991
|
54 |
Pilobello K T, Mahal L K (2007). Deciphering the glycocode: the complexity and analytical challenge of glycomics. Curr Opin Chem Biol , 11(3): 300–305 doi: 10.1016/j.cbpa.2007.05.002 pmid:17500024
|
55 |
Popescu S C, Popescu G V, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh-Kumar S P (2009). MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev , 23(1): 80–92 doi: 10.1101/gad.1740009 pmid:19095804
|
56 |
Popescu S C, Popescu G V, Bachan S, Zhang Z, Seay M, Gerstein M, Snyder M, Dinesh-Kumar S P (2007a). Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc Natl Acad Sci USA , 104(11): 4730–4735 doi: 10.1073/pnas.0611615104 pmid:17360592
|
57 |
Popescu S C, Snyder M, Dinesh-Kumar S (2007b). Arabidopsis protein microarrays for the high-throughput identification of protein-protein interactions. Plant Signal Behav , 2(5): 416–420 doi: 10.4161/psb.2.5.4416 pmid:19704619
|
58 |
Poulain S, Lepelley P, Cambier N, Cosson A, Fenaux P, Wattel E (1999). Assessment of P-glycoprotein expression by immunocytochemistry and flow cytometry using two different monoclonal antibodies coupled with functional efflux analysis in 34 patients with acute myeloid leukemia. Adv Exp Med Biol , 457: 57–63 doi: 10.1007/978-1-4615-4811-9_7 pmid:10500780
|
59 |
Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona G, Breitkreutz A, Sopko R, McCartney R R, Schmidt M C, Rachidi N, Lee S J, Mah A S, Meng L, Stark M J, Stern D F, De Virgilio C, Tyers M, Andrews B, Gerstein M, Schweitzer B, Predki P F, Snyder M (2005). Global analysis of protein phosphorylation in yeast. Nature , 438(7068): 679–684 doi: 10.1038/nature04187 pmid:16319894
|
60 |
Ramachandran N, Hainsworth E, Bhullar B, Eisenstein S, Rosen B, Lau A Y, Walter J C, LaBaer J (2004). Self-assembling protein microarrays. Science , 305(5680): 86–90 doi: 10.1126/science.1097639 pmid:15232106
|
61 |
Roda A, Guardigli M, Russo C, Pasini P, Baraldini M (2000). Protein microdeposition using a conventional ink-jet printer. Biotechniques , 28(3): 492–496 pmid:10723562
|
62 |
Shamay M, Liu J, Li R, Liao G, Shen L, Greenway M, Hu S, Zhu J, Xie Z, Ambinder R F, Qian J, Zhu H, Hayward S D (2012). A protein array screen for Kaposi’s sarcoma-associated herpesvirus LANA interactors links LANA to TIP60, PP2A activity, and telomere shortening. J Virol , 86(9): 5179–5191 doi: 10.1128/JVI.00169-12 pmid:22379092
|
63 |
Shingyoji M, Gerion D, Pinkel D, Gray J W, Chen F (2005). Quantum dots-based reverse phase protein microarray. Talanta , 67(3): 472–478 doi: 10.1016/j.talanta.2005.06.064 pmid:18970191
|
64 |
Stillman B A, Tonkinson J L (2000). FAST slides: a novel surface for microarrays. Biotechniques , 29(3): 630–635 pmid:10997277
|
65 |
Tao S C, Chen C S, Zhu H (2007). Applications of protein microarray technology. Comb Chem High Throughput Screen , 10(8): 706–718 doi: 10.2174/138620707782507386 pmid:18045082
|
66 |
Tao S C, Li Y, Zhou J, Qian J, Schnaar R L, Zhang Y, Goldstein I J, Zhu H, Schneck J P (2008). Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers. Glycobiology , 18(10): 761–769 doi: 10.1093/glycob/cwn063 pmid:18625848
|
67 |
Tao S C, Zhu H (2006). Protein chip fabrication by capture of nascent polypeptides. Nat Biotechnol , 24(10): 1253–1254 doi: 10.1038/nbt1249 pmid:17013375
|
68 |
Tateno H, Toyota M, Saito S, Onuma Y, Ito Y, Hiemori K, Fukumura M, Matsushima A, Nakanishi M, Ohnuma K, Akutsu H, Umezawa A, Horimoto K, Hirabayashi J, Asashima M (2011). Glycome diagnosis of human induced pluripotent stem cells using lectin microarray. J Biol Chem , 286(23): 20345–20353 doi: 10.1074/jbc.M111.231274 pmid:21471226
|
69 |
Tateno H, Uchiyama N, Kuno A, Togayachi A, Sato T, Narimatsu H, Hirabayashi J (2007). A novel strategy for mammalian cell surface glycome profiling using lectin microarray. Glycobiology , 17(10): 1138–1146 doi: 10.1093/glycob/cwm084 pmid:17693441
|
70 |
Teichmann S A, Babu M M (2004). Gene regulatory network growth by duplication. Nat Genet , 36(5): 492–496 doi: 10.1038/ng1340 pmid:15107850
|
71 |
The ENCODE (ENCyclopedia Of DNA Elements) Project (2004). Science , 306(5696): 636–640 doi: 10.1126/science.1105136 pmid:15499007
|
72 |
Tomiya N, Awaya J, Kurono M, Endo S, Arata Y, Takahashi N (1988). Analyses of N-linked oligosaccharides using a two-dimensional mapping technique. Anal Biochem , 171(1): 73–90 doi: 10.1016/0003-2697(88)90126-1 pmid:3407923
|
73 |
Uchiyama N, Kuno A, Koseki-Kuno S, Ebe Y, Horio K, Yamada M, Hirabayashi J (2006). Development of a lectin microarray based on an evanescent-field fluorescence principle. Methods Enzymol , 415: 341–351 doi: 10.1016/S0076-6879(06)15021-1 pmid:17116484
|
74 |
Wingren C, Borrebaeck C A (2008). Antibody microarray analysis of directly labelled complex proteomes. Curr Opin Biotechnol , 19(1): 55–61 doi: 10.1016/j.copbio.2007.11.010 pmid:18187318
|
75 |
Xie Z, Hu S, Blackshaw S, Zhu H, Qian J (2010). hPDI: a database of experimental human protein-DNA interactions. Bioinformatics , 26(2): 287–289 doi: 10.1093/bioinformatics/btp631 pmid:19900953
|
76 |
Yang L, Guo S, Li Y, Zhou S, Tao S (2011). Protein microarrays for systems biology. Acta Biochim Biophys Sin (Shanghai) , 43(3): 161–171 doi: 10.1093/abbs/gmq127 pmid:21257623
|
77 |
Zajac A, Song D, Qian W, Zhukov T (2007). Protein microarrays and quantum dot probes for early cancer detection. Colloids Surf B Biointerfaces , 58(2): 309–314 doi: 10.1016/j.colsurfb.2007.02.019 pmid:17408931
|
78 |
Zheng T, Peelen D, Smith L M (2005). Lectin arrays for profiling cell surface carbohydrate expression. J Am Chem Soc , 127(28): 9982–9983 doi: 10.1021/ja0505550 pmid:16011345
|
79 |
Zhou S M, Cheng L, Guo S J, Zhu H, Tao S C (2011). Lectin microarray: a powerful tool for glycan related biomarker discovery. Comb Chem High Throughput Screen , Online Available May20, 2011
|
80 |
Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean R A, Gerstein M, Snyder M (2001). Global analysis of protein activities using proteome chips. Science , 293(5537): 2101–2105 doi: 10.1126/science.1062191 pmid:11474067
|
81 |
Zhu H, Snyder M (2001). Protein arrays and microarrays. Curr Opin Chem Biol , 5(1): 40–45 doi: 10.1016/S1367-5931(00)00170-8 pmid:11166646
|
82 |
Zhu J, Gopinath K, Murali A, Yi G, Hayward S D, Zhu H, Kao C (2007b). RNA-binding proteins that inhibit RNA virus infection. Proc Natl Acad Sci USA , 104(9): 3129–3134 doi: 10.1073/pnas.0611617104 pmid:17360619
|
83 |
Zhu X, Landry J P, Sun Y S, Gregg J P, Lam K S, Guo X (2007a). Oblique-incidence reflectivity difference microscope for label-free high-throughput detection of biochemical reactions in a microarray format. Appl Opt , 46(10): 1890–1895 doi: 10.1364/AO.46.001890 pmid:17356635
|
84 |
Zhu X D, Niedernhofer L, Kuster B, Mann M, Hoeijmakers J H, de Lange T (2003). ERCC1/XPF removes the 3′ overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. Mol Cell , 12(6): 1489–1498 doi: 10.1016/S1097-2765(03)00478-7 pmid:14690602
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|